Skip to main content

Classification of Adhesive and Sealant Materials

  • Reference work entry
Handbook of Adhesion Technology

Abstract

In this chapter, classification of adhesive and sealant materials is presented. For this purpose, various categories are considered depending on the polymer base (i.e., natural or synthetic), functionality in the polymer “backbone” (i.e., thermoplastic or thermoset), physical forms (i.e., one or multiple components, films), chemical families (i.e., epoxy, silicon), functional types (i.e., structural, hot melt, pressure sensitive, water-base, ultraviolet/electron beam cured, conductive, etc.), and methods of application. The classification covers high-temperature adhesives, sealants, conductive adhesives, nanocomposite adhesives, primers, solvent-activated adhesives, water-activated adhesives, and hybrid adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aussawasathien D, Sancaktar E (2008) Effect of non-woven carbon nanofiber mat presence on cure kinetics of epoxy nanocomposites. Macromol Symp 264:26–33

    Article  Google Scholar 

  • Brinson HF (1987a) Engineered materials handbook, vol 1, composites. ASM International, Materials Park

    Google Scholar 

  • Brinson HF (1987b) Engineered materials handbook, vol 2, engineering plastics. ASM International, Materials Park

    Google Scholar 

  • Brinson HF (1987c) Engineered materials handbook, vol 3, adhesives and sealants. ASM International, Materials Park

    Google Scholar 

  • De Lollis NJ (1980) Adhesives, adherends, adhesion. Krieger Publishing Company Inc., Malabar

    Google Scholar 

  • Dilsiz N, Partch R, Matijevic’ E, Sancaktar E (1997) Silver coating of spindle- and filament- type magnetic particles for conductive adhesive applications. J Adhes Sci Technol 11:1105–1118

    Article  Google Scholar 

  • Ge L, Sethi S, Ci L, Ajayan PM, Dhinojwala A (2007) Carbon nanotube-based synthetic gecko tapes. Proc Natl Acad Sci USA 104:10792–10795

    Article  Google Scholar 

  • Kamal MR (1974) Thermoset characterization for moldability analysis. Polym Eng Sci 14:231–239

    Article  Google Scholar 

  • Kim JS, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Comp 20:124–131

    Article  Google Scholar 

  • Klepner D, Frisch KC (1991) Polymeric foams. Hanser, New York

    Google Scholar 

  • Lin S-C, Pearce EM (1993) High performance thermosets. Hanser, New York

    Google Scholar 

  • Morton M (ed) (1987) Rubber technology, 3rd edn. Von Nostrand Reinhold, New York

    Google Scholar 

  • Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  Google Scholar 

  • Sancaktar E, Aussawasathien D (2009) Nanocomposites of epoxy with electrospun carbon nanofibers: mechanical behavior. J Adhes 85:160–179

    Article  Google Scholar 

  • Sancaktar E, Dembosky SK (1986) The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive. J Adhesion 19:287–308

    Article  Google Scholar 

  • Sancaktar E, Dilsiz N (1997) Anisotropic alignment of nickel particles in magnetic field for electronically conductive adhesives. J Adhes Sci Technol 11:155–166

    Article  Google Scholar 

  • Sancaktar E, Dilsiz N (1999a) Pressure dependent conduction behavior of various particles for conductive adhesive applications. J Adhes Sci Technol 13:679–693

    Article  Google Scholar 

  • Sancaktar E, Dilsiz N (1999b) Thickness dependent conduction behavior of various particles for conductive adhesive applications. J Adhes Sci Technol 13:763–771

    Article  Google Scholar 

  • Sancaktar E, Kuznicki J (2006) Stress-induced reduction of water uptake in clay-reinforced epoxy nanocomposites. Curr Nanosci 2:351–357

    Article  Google Scholar 

  • Sancaktar E, Schenck SC (1985) Material characterization of structural adhesives in the lap shear mode, part II: the effects of rate. Ind Eng Chem Prod Res Dev 24:257–263

    Article  Google Scholar 

  • Sancaktar E, Wei Y (1996) The effect of pressure on the initial establishment of conductive paths in electronically conductive adhesives. J Adhes Sci Technol 10:1221–1235

    Article  Google Scholar 

  • Sancaktar E, Zhang P (1990) Nonlinear viscoelastic modeling of the fiber-matrix interphase in composite materials. Trans ASME, J Mech Des 112:605–619

    Article  Google Scholar 

  • Sancaktar E, Schenck SC, Padgilwar S (1984) Material characterization of structural adhesives in the lap shear mode, part I: temperature dependent delayed failure. Ind Eng Chem Prod Res Dev 23:426–434

    Article  Google Scholar 

  • Sancaktar E, Wei Y, Gaynes MA (1996) Conduction efficiency and strength of electronically conductive adhesive joints. J Adhesion 56:229–246

    Article  Google Scholar 

  • Sancaktar E, Rajput P, Khanolkar A (2005) Correlation of silver migration to the pull out strength of silver wire embedded in an adhesive matrix. IEEE Trans Compon Packag Technol 28:771–780

    Article  Google Scholar 

  • Sethi S, Ge L, Ci L, Ajayan PM, Dhinojwala A (2008) Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Lett 8:822–825

    Article  Google Scholar 

  • Shields J (1985) Adhesive handbook, 3rd edn. Butterworth & Co Ltd., London

    Google Scholar 

  • Wang Z, Lan T, Pinnavaia TJ (1996) Hybrid organic-inorganic nanocomposites formed from an epoxy polymer and a layered silicic acid (magadiite). Chem Mater 8:2200–2204

    Article  Google Scholar 

  • Wang Z, Lan T, Pinnavaia TJ (1998) Hybrid organic-inorganic nanocomposites: exfoliation of magadiite in an elastomeric epoxy polymer. Chem Mater 10:1820–1826

    Article  Google Scholar 

  • Wang Z, Lan T, Pinnavaia TJ (2000) Epoxy-clay nanocomposites. In: Pinnavaia TJ, Beall GW (eds) Polymer-clay nanocomposites. Wiley, Hoboken

    Google Scholar 

  • Wei Y, Sancaktar E (1996) Dependence of electric conduction on film thickness of conductive adhesives: modeling, computer simulation, and experiment. J Adhes Sci Technol 10:1199–1219

    Article  Google Scholar 

  • White JL (1995) Rubber processing. Hanser, New York

    Google Scholar 

  • Woods G (1990) The ICI polyurethanes book, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Yu MF, Lourie O, Dyer M, Moloni K, Kelly T, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    Article  Google Scholar 

  • Zhou JG, Sancaktar E (2008) Stable and unstable capillary flows of highly-filled epoxy/nickel suspensions. J Adhes Sci Technol 22:983–1002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erol Sancaktar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sancaktar, E. (2011). Classification of Adhesive and Sealant Materials. In: da Silva, L.F.M., Öchsner, A., Adams, R.D. (eds) Handbook of Adhesion Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01169-6_12

Download citation

Publish with us

Policies and ethics