Skip to main content

BQP-Complete Problems

  • Reference work entry
Handbook of Natural Computing

Abstract

The concept of completeness is one of the most important notions in theoretical computer science. PromiseBQP-complete problems are those in PromiseBQP to which all other PromiseBQP problems can be reduced in classically probabilistic polynomial time. Studies of PromiseBQP-complete problems can deepen our understanding of both the power and limitation of efficient quantum computation. In this chapter we give a review of known PromiseBQP-complete problems, including various problems related to the eigenvalues of sparse Hamiltonians and problems about additive approximation of Jones polynomials and Tutte polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aharonov D, Arad I (2006) The BQP-hardness of approximating the Jones polynomial. quant-ph/0605181

    Google Scholar 

  • Aharonov D, Ta-Shma A (2003) Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of 35th annual ACM symposium on theory of computing (STOC). ACM, New York, pp 20–29

    Google Scholar 

  • Aharonov D, van Dam W, Kempe J, Landau Z, Lloyd S, Regev O (2004) Adiabatic quantum computation is equivalent to standard quantum computation. In: Proceedings of the 45th annual IEEE symposium on foundations of computer science (FOCS). IEEE Computer Society, Washington, DC, pp 42–51

    Google Scholar 

  • Aharonov D, Jones V, Landau Z (2006) A polynomial quantum algorithm for approximating the Jones polynomial. In: Proceedings of the 38th annual ACM symposium on theory of computing (STOC). ACM, New York, pp 427–436

    Google Scholar 

  • Aharonov D, Arad I, Eban E, Landau Z (2007a) Polynomial quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane. arXiv:quant-ph/0702008

    Google Scholar 

  • Aharonov D, Gottesman D, Irani S, Kempe J (2007b) The power of quantum systems on a line. In: Proceedings of the 48th annual IEEE symposium on foundations of computer science (FOCS). IEEE Computer Society, Washington, DC, pp 373–383

    Chapter  Google Scholar 

  • Ambainis A, Childs AM, Reichardt BW, Spalek R, Zhang S (2007) Any and-or formula of size n can be evaluated in time \({n}^{1/2+o(1)}\) on a quantum computer. In: Proceedings of the 48th annual IEEE symposium on foundations of computer science (FOCS). IEEE Computer Society, Washington, DC, pp 363–372

    Google Scholar 

  • Arora S, Barak B (2009) Computational complexity: a modern approach. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • Bernstein E, Vazirani U (1997) Quantum complexity theory. SIAM J Comput 26(5):1411–1473

    Article  MathSciNet  MATH  Google Scholar 

  • Berry D, Ahokas G, Cleve R, Sanders B (2007) Efficient quantum algorithms for simulating sparse Hamiltonians. Commun Math Phys 270(2):359–371

    Article  MathSciNet  MATH  Google Scholar 

  • Biggs N (1993) Algebraic graph theory, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Bollobás B (1998) Modern graph theory. Springer, New York

    Book  MATH  Google Scholar 

  • Browne D, Briegel H (2006) One-way quantum computation - a tutorial introduction. arXiv:quant-ph/0603226

    Google Scholar 

  • Chernoff P (1968) Note on product formulas for operator semigroups. J Funct Anal 2:238–242

    Article  MathSciNet  MATH  Google Scholar 

  • Childs A (2009) Universal computation by quantum walk. Phys Rev Lett 102:180501

    Google Scholar 

  • Childs A, van Dam W (2010) Quantum algorithms for algebraic problems. Rev Mod Phys arXiv:0812.0380, 82:1–52

    Google Scholar 

  • Childs A, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman D (2003) Exponential algorithmic speedup by a quantum walk. Proceedings of the 35th annual ACM symposium on theory of computing (STOC). ACM Press, New York, pp 59–68

    Google Scholar 

  • Cook S (1971) The complexity of theorem-proving procedures. In: Proceedings of 3rd annual ACM symposium on theory of computing (STOC). ACM Press, New York, pp 151–158

    Google Scholar 

  • Freedman M (1998) P/NP, and the quantum field computer. Proc Natl Acad Sci 95(1):98–101

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman M, Kitaev A, Larsen M, Wang Z (2002a) Topological quantum computation. Bull Amer Math Soc 40(1):31–38

    Article  MathSciNet  Google Scholar 

  • Freedman M, Kitaev A, Wang Z (2002b) Simulation of topological field theories by quantum computers. Commun Math Phys 227(3):587–603

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman M, Larsen M, Wang Z (2002c) A modular functor which is universal for quantum computation. Commun Math Phys 227:605–622

    Article  MathSciNet  MATH  Google Scholar 

  • Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman, New York

    MATH  Google Scholar 

  • Godsil C, Royle G (2001) Algebraic graph theory. Springer, New York

    Book  MATH  Google Scholar 

  • Goldreich O (2005) On promise problems (a survey in memory of Shimon Even [1935–2004]). Electronic colloquium on computational complexity (ECCC). TR05–018

    Google Scholar 

  • Goldreich O (2008) Computational complexity: a conceptual perspective. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • Goldreich O, Micali S, Wigderson A (1991) Proofs that yield nothing but their validity. J ACM 38(3):690–728

    Article  MathSciNet  Google Scholar 

  • Hallgren S (2007) Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem. J ACM 54(1):1–19

    Article  MathSciNet  Google Scholar 

  • Janzing D, Wocjan P (2007) A simple PromiseBQP-complete matrix problem. Theor Comput 3(1):61–79

    Article  MathSciNet  Google Scholar 

  • Janzing D, Wocjan P, Zhang S (2008) Measuring energy of basis states in translationally invariant nearest-neighbor interactions in qudit chains is universal for quantum computing. New J Phys 10:093004

    Article  Google Scholar 

  • Jones V (1985) A polynomial invariant for knots via von Neumann algebras. Bull Amer Math Soc 12(1):103–111

    Article  MathSciNet  MATH  Google Scholar 

  • Karp R (1972) Reducibility among combinatorial problems. In: Thatcher JW, Miller RE (eds) Complexity of computer computations. Plenum Press, New York

    Google Scholar 

  • Kempe J, Kitaev A, Regev O (2006) The complexity of the local Hamiltonian problem. SIAM J Comput 35(5):1070–1097

    Article  MathSciNet  MATH  Google Scholar 

  • Kitaev A (1995) Quantum measurements and the Abelian stabilizer problem. arXiv:quant-ph/9511026

    Google Scholar 

  • Kitaev A, Shen A, Vyalyi M (2002) Classical and quantum computation. American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  • Knill E, Laflamme R (2001) Quantum computing and quadratically signed weight enumerators. Infor Process Lett 79(4):173–179

    Article  MathSciNet  MATH  Google Scholar 

  • Kuperberg G (2005) A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J Comput 35(1):170–188

    Article  MathSciNet  MATH  Google Scholar 

  • Levin L (1973) Universal search problems (in Russian). Problemy Peredachi Informatsii 9(3):265–266

    Google Scholar 

  • Lipton R, Zalcstein Y (1977) Word problems solvable in logspace. J ACM 24(3):522–526

    Article  MathSciNet  MATH  Google Scholar 

  • Lomont C (2004) The hidden subgroup problem – review and open problems. arXiv:quant-ph/0411037

    Google Scholar 

  • Magniez F, Nayak A, Roland J, Santha M (2007) Search via quantum walk. In: Proceedings of the 39th annual ACM symposium on theory of computing (STOC). ACM Press, New York, pp 575–584

    Google Scholar 

  • Nielsen M, Chuang I (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Papadimitriou C (1994) Computational complexity. Addison-Wesley, Reading

    Google Scholar 

  • Papadimitriou C (1997) NP-completeness: a retrospective. In: Proceedings of the 24th international colloquium on automata, languages and programming (ICALP), Lecture notes in computer science, vol. 1256. Springer, Berlin, pp 2–6

    Google Scholar 

  • Podtelezhnikov A, Cozzarelli N, Vologodskii A (1999) Equilibrium distributions of topological states in circular DNA: interplay of supercoiling and knotting. Proc Natl Acad Sci USA 96(23):12974–12979

    Article  MathSciNet  MATH  Google Scholar 

  • Reichardt B, Spalek R (2008) Span-program-based quantum algorithm for evaluating formulas. In: Proceedings of 40th annual ACM symposium on theory of computing (STOC). ACM Press, New York, pp 103–112

    Google Scholar 

  • Shor P (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 26:1484–1509

    Article  MathSciNet  MATH  Google Scholar 

  • Shor P (2004) Progress in quantum algorithms. Quant Inform Process 3:5–13

    Article  MathSciNet  MATH  Google Scholar 

  • Sokal A (2005) The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Webb BS (ed) Surveys in combinatorics. Cambridge University Press, Cambridge, UK, pp 173–226

    Chapter  Google Scholar 

  • Trotter H (1959) On the product of semigroups of operators. Proc Amer Math Soc 10:545–551

    Article  MathSciNet  MATH  Google Scholar 

  • Wocjan P, Yard J (2008) The Jones polynomial: quantum algorithms and applications in quantum complexity theory. Quant Inform Comput 8(1&2):147–180

    MathSciNet  MATH  Google Scholar 

  • Wocjan P, Zhang S (2006) Several natural BQP-complete problems. arXiv:quant-ph/0606179

    Google Scholar 

  • Wu FY (1982) The Potts model. Rev Mod Phys 54:235–268

    Article  Google Scholar 

  • Wu FY (1992) Knot theory and statistical mechanics. Rev Mod Phys 64:1099–1131

    Article  Google Scholar 

  • Yao A (1993) Quantum circuit complexity. In: Proceedings of the 34th annual symposium on foundations of computer science (FOCS). IEEE Computer Society, Washington, DC, pp 352–361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Zhang, S. (2012). BQP-Complete Problems. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_46

Download citation

Publish with us

Policies and ethics