Abstract
This chapter surveys the field of quantum computer algorithms. It gives a taste of both the breadth and the depth of the known algorithms for quantum computers, focusing on some of the more recent results. It begins with a brief review of quantum Fourier transform-based algorithms, followed by quantum searching and some of its early generalizations. It continues with a more in-depth description of two more recent developments: algorithms developed in the quantum walk paradigm, followed by tensor network evaluation algorithms (which include approximating the Tutte polynomial).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aaronson S, Shi Y (2004) Quantum lower bounds for the collision and the element distinctness problems. J ACM 51(4):595–605. doi: http://doi.acm.org/10.1145/1008731.1008735
Aharonov D, Ambainis A, Kempe J, Vazirani U (2001) Quantum walks on graphs. In: STOC’01: proceedings of the 33rd annual ACM symposium on theory of computing. ACM Press, New York, pp 50–59. doi: http://doi.acm.org/10.1145/380752.380758
Aharonov D, Arad I (2006) The BQP-hardness of approximating the Jones polynomial. http://arxiv.org/abs/quant-ph/0605181
Aharonov D, Arad I, Eban E, Landau Z (2007) Polynomial quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane. http://arxiv.org/abs/quant-ph/0702008
Aharonov D, Jones V, Landau Z (2008) A polynomial quantum algorithm for approximating the Jones polynomial. Algorithmica 55(3):395–421
Ambainis A (2003) Quantum walks and their algorithmic applications. Int J Quantum Inform 1:507–518
Ambainis A (2004) Quantum walk algorithm for element distinctness. In: Proceedings of the 45th annual IEEE symposium on foundations of computer science, pp 22–31. doi: 10.1109/FOCS.2004.54
Ambainis A, Bach E, Nayak A, Vishwanath A, Watrous J (2001) One-dimensional quantum walks. In: STOC’ 01: proceedings of the 33rd annual ACM symposium on theory of computing. ACM Press, New York, pp 37–49. doi: http://doi.acm.org/10.1145/380752.380757
Ambainis A, Childs A, Reichardt B, Spalek R, Zhang S (2007) Any and-or formula of size n can be evaluated in time n 1 ∕ 2+o(1) on a quantum computer. In: Proceedings of the 48th annual IEEE symposium on foundations of computer science, pp 363–372. doi: 10.1109/FOCS.2007.57
Arad I, Landau Z (2008) Quantum computation and the evaluation of tensor networks. http://arxiv.org/abs/0805.0040
Beaudin L, Ellis-Monaghan J, Pangborn G, Shrock R (2008) A little statistical mechanics for the graph theorist. http://arxiv.org/abs/0804.2468
Bernstein BK, Vazirani U (1997) Quantum complexity theory. SIAM J Comput 26:1411–1473
Berry DW, Ahokas G, Cleve R, Sanders BC (2007) Efficient quantum algorithms for simulating sparse Hamiltonians. Commun Math Phys 270:359
Boixo S, Knill E, Somma R (2009) Quantum state preparation by phase randomization. http://arxiv.org/abs/0903.1652
Boneh D, Lipton R (1995) Quantum cryptanalysis of hidden linear functions (extended abstract). In: Proceedings of the 15th annual international cryptology conference on advances in cryptology. Lecture notes in computer science, vol. 963. Springer, London, UK, pp 424–437
Boyer M, Brassard G, Høyer P, Tapp A (1998) Tight bounds on quantum searching. Fortschritte der Physik 56(5–5):493–505
Brassard G, Høyer P (1997) An exact quantum polynomial-time algorithm for Simon's problem. In: Proceedings of the fifth Israeli symposium on theory of computing and systems (ISTCS’97). IEEE Press, Piscataway, pp 12–23
Brassard G, Høyer P, Mosca M, Tapp A (2002) Quantum amplitude amplification and estimation. Quantum Computation & Information, AMS Contemporary Math Series 305:53–74
Brassard G, Høyer P, Tapp A (1997) Cryptology column — quantum algorithm for the collision problem. ACM SIGACT News 28:14–19
Brouwer AE (1989) Distance-regular graphs. Springer, New York
Childs A (2008) CO781 Topics in quantum information: quantum algorithms. Lecture notes on quantum algorithms. http://www.math.uwaterloo.ca/~amchilds/teaching/w08/co781.html
Childs AM, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman DA (2003) Exponential algorithmic speedup by a quantum walk. In: STOC ’03: proceedings of the 35th annual ACM symposium on theory of computing. ACM Press, New York, pp 59–68. doi: http://doi.acm.org/10.1145/780542.780552
Childs A, van Dam W (2010) Quantum algorithms for algebraic problems. Rev Mod Phys 82(1):1–52
Cleve R, Ekert A, Macchiavello C, Mosca M (1998) Quantum algorithms revisited. Proc Roy Soc Lond A 454:339–354
D'Ariano GM, van Dam W, Ekert E, Macchiavello C, Mosca M (2007) General optimized schemes for phase estimation. Phys Rev Lett 98(9):090,501
Das A, Chakrabarti BK (2008) Quantum annealing and analog quantum computation. Rev Mod Phys 80:1061
De las Cuevas G, Dür W, Van den Nest M, Briegel HJ (2008) Completeness of classical spin models and universal quantum computation. http://arxiv.org/abs/0812.2368
Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc Roy Soc Lond A 400:97–117
Deutsch D, Jozsa R (1992) Rapid solutions of problems by quantum computation. Proc Roy Soc Lond, A 439:553–558
Farhi E, Goldstone J, Gutmann S (2007) A quantum algorithm for the Hamiltonian NAND tree. http://arxiv.org/abs/quant-ph/0702144
Feynman R (1982) Simulating physics with computers. Int J Theor Phys 21(6,7):467–488
Freedman MH, Kitaev A, Larsen MJ, Wang Z (2001) Topological quantum computation. http://arxiv.org/abs/quant-ph/0101025
Freedman MH, Kitaev A, Wang Z (2000) Simulation of topological field theories by quantum computers. http://arxiv.org/abs/quant-ph/0001071
Geraci J (2008) A BQP-complete problem related to the Ising model partition function via a new connection between quantum circuits and graphs. http://arxiv.org/abs/0801.4833
Geraci J, Lidar DA (2008) On the exact evaluation of certain instances of the Potts partition function by quantum computers. Commun Math Phys 279(3):735–768
Grigoriev D (1997) Testing shift-equivalence of polynomials by deterministic, probabilistic and quantum machines. Theor Comput Sci 180:217–228
Grover L (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th annual ACM symposium on the theory of computing (STOC, 96). ACM Press, New York, pp 212–219
Grover L (1998) A framework for fast quantum mechanical algorithms. In: Proceedings of the 13th annual ACM symposium on theory of computing (STOC' 98). ACM Press, New York, pp 53–62
Hirvensalo M (2001) Quantum computing. Series: Natural Computing Series. Springer
Hübener R, Van den Nest M, Dür W, Briegel HJ (2008) Classical spin systems and the quantum stabilizer formalism: general mappings and applications. http://arxiv.org/abs/0812.2127
Jordan S (2008) Quantum computation beyond the circuit model. PhD thesis, MIT University, Cambridge
Karchmer M, Wigderson A (1993) On span programs. In: Proceedings of the 8th IEEE structures in complexity conference. IEEE Press, Piscataway, pp 102–111
Kaye P, Laflamme R, Mosca M (2007) An introduction to quantum computation. Oxford University Press, Oxford, UK
Kempe J (2003) Quantum random walks - an introductory overview. Contemp Phys 44(4):307–327
Kitaev AY (1995) Quantum measurements and the Abelian stabilizer problem. http://arxiv.org/abs/quant-ph/9511026
Kitaev A, Shen A, Vyalvi M (2002) Classical and quantum computation. American Mathematical Society, Providence, RI
Magniez F, Nayak A, Roland J, Santha M (2007) Search via quantum walk. In: STOC ’07: proceedings of the 39th annual ACM symposium on theory of computing. ACM, New York, pp 575–584. doi: http://doi.acm.org/10.1145/1250790.1250874
Menezes A, van Oorschot P, Vanstone S (1996) Handbook of applied cryptography. CRC Press, Boca Raton
Mermin ND (2007) Quantum computer science: an introduction. Cambridge University Press, Cambridge
Mosca M (2001) Counting by quantum eigenvalue estimation. Theor Comput Sci 264:139–153
Mosca M (2008) Abelian hidden subgroup problem. In: Kao M-Y (ed) Encyclopedia of algorithms. Springer, Berlin
Mosca M (2009) Quantum algorithms. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer
Nayak A, Vishwanath A (2000) Quantum walk on the line. http://arxiv.org/abs/quant-ph/0010117
Nielsen M, Chuang I (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge, UK
Reichardt BW, Spalek R (2008) Span-program-based quantum algorithm for evaluating formulas. In: STOC ’08: proceedings of the 40th annual ACM symposium on theory of computing. ACM Press, New York, pp 103–112. doi: http://doi.acm.org/10.1145/1374376.1374394
Santha M (2008) Quantum walk based search algorithms. In: Agrawal M, Du D-Z, Duan Z, Li A (eds) Theory and applications of models of computation. Lecture notes in computer science, vol 4978. Springer, Berlin, Heidelberg, pp 31–46. doi: 10.1007/978-3-540-79228-4_3
Shor P (1994) Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th annual symposium on foundations of computer science. IEEE Computer Society, Washington, DC, pp 124–134
Shor P (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 26:1484–1509
Simon D (1994) On the power of quantum computation. In: Proceedings of the 35th IEEE symposium on the foundations of computer science (FOCS). IEEE Computer Society, Washington, DC, pp 116–123
Szegedy M (2004) Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th annual IEEE symposium on foundations of computer science (FOCS). IEEE Computer Society, Washington, DC, pp 32–41. doi: http://dx.doi.org/10.1109/FOCS.2004.53
Tulsi T, Grover L, Patel A (2006) A new algorithm for fixed point quantum search. Quant Inform Comput 6(6):483–494
Welsh D (1993) Complexity: knots, colourings and countings. Cambridge University Press, Cambridge, UK
Wiebe N, Berry DW, Høyer P, Sanders BC (2008) Higher order decompositions of ordered operator exponentials. http://arxiv.org/abs/0812.0562
Wocjan P, Yard J (2006) The Jones polynomial: quantum algorithms and applications in quantum complexity theory. http://arxiv.org/abs/quant-ph/0603069
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this entry
Cite this entry
Smith, J., Mosca, M. (2012). Algorithms for Quantum Computers. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_43
Download citation
DOI: https://doi.org/10.1007/978-3-540-92910-9_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92909-3
Online ISBN: 978-3-540-92910-9
eBook Packages: Computer ScienceReference Module Computer Science and Engineering