Skip to main content

Algorithms for Quantum Computers

  • Reference work entry
Handbook of Natural Computing

Abstract

This chapter surveys the field of quantum computer algorithms. It gives a taste of both the breadth and the depth of the known algorithms for quantum computers, focusing on some of the more recent results. It begins with a brief review of quantum Fourier transform-based algorithms, followed by quantum searching and some of its early generalizations. It continues with a more in-depth description of two more recent developments: algorithms developed in the quantum walk paradigm, followed by tensor network evaluation algorithms (which include approximating the Tutte polynomial).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aaronson S, Shi Y (2004) Quantum lower bounds for the collision and the element distinctness problems. J ACM 51(4):595–605. doi: http://doi.acm.org/10.1145/1008731.1008735

    Google Scholar 

  • Aharonov D, Ambainis A, Kempe J, Vazirani U (2001) Quantum walks on graphs. In: STOC’01: proceedings of the 33rd annual ACM symposium on theory of computing. ACM Press, New York, pp 50–59. doi: http://doi.acm.org/10.1145/380752.380758

  • Aharonov D, Arad I (2006) The BQP-hardness of approximating the Jones polynomial. http://arxiv.org/abs/quant-ph/0605181

  • Aharonov D, Arad I, Eban E, Landau Z (2007) Polynomial quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane. http://arxiv.org/abs/quant-ph/0702008

  • Aharonov D, Jones V, Landau Z (2008) A polynomial quantum algorithm for approximating the Jones polynomial. Algorithmica 55(3):395–421

    Article  MathSciNet  Google Scholar 

  • Ambainis A (2003) Quantum walks and their algorithmic applications. Int J Quantum Inform 1:507–518

    Article  MATH  Google Scholar 

  • Ambainis A (2004) Quantum walk algorithm for element distinctness. In: Proceedings of the 45th annual IEEE symposium on foundations of computer science, pp 22–31. doi: 10.1109/FOCS.2004.54

    Google Scholar 

  • Ambainis A, Bach E, Nayak A, Vishwanath A, Watrous J (2001) One-dimensional quantum walks. In: STOC’ 01: proceedings of the 33rd annual ACM symposium on theory of computing. ACM Press, New York, pp 37–49. doi: http://doi.acm.org/10.1145/380752.380757

  • Ambainis A, Childs A, Reichardt B, Spalek R, Zhang S (2007) Any and-or formula of size n can be evaluated in time n 1 ∕ 2+o(1) on a quantum computer. In: Proceedings of the 48th annual IEEE symposium on foundations of computer science, pp 363–372. doi: 10.1109/FOCS.2007.57

    Google Scholar 

  • Arad I, Landau Z (2008) Quantum computation and the evaluation of tensor networks. http://arxiv.org/abs/0805.0040

  • Beaudin L, Ellis-Monaghan J, Pangborn G, Shrock R (2008) A little statistical mechanics for the graph theorist. http://arxiv.org/abs/0804.2468

  • Bernstein BK, Vazirani U (1997) Quantum complexity theory. SIAM J Comput 26:1411–1473

    Article  MathSciNet  MATH  Google Scholar 

  • Berry DW, Ahokas G, Cleve R, Sanders BC (2007) Efficient quantum algorithms for simulating sparse Hamiltonians. Commun Math Phys 270:359

    Article  MathSciNet  MATH  Google Scholar 

  • Boixo S, Knill E, Somma R (2009) Quantum state preparation by phase randomization. http://arxiv.org/abs/0903.1652

  • Boneh D, Lipton R (1995) Quantum cryptanalysis of hidden linear functions (extended abstract). In: Proceedings of the 15th annual international cryptology conference on advances in cryptology. Lecture notes in computer science, vol. 963. Springer, London, UK, pp 424–437

    Google Scholar 

  • Boyer M, Brassard G, Høyer P, Tapp A (1998) Tight bounds on quantum searching. Fortschritte der Physik 56(5–5):493–505

    Article  Google Scholar 

  • Brassard G, Høyer P (1997) An exact quantum polynomial-time algorithm for Simon's problem. In: Proceedings of the fifth Israeli symposium on theory of computing and systems (ISTCS’97). IEEE Press, Piscataway, pp 12–23

    Google Scholar 

  • Brassard G, Høyer P, Mosca M, Tapp A (2002) Quantum amplitude amplification and estimation. Quantum Computation & Information, AMS Contemporary Math Series 305:53–74

    Google Scholar 

  • Brassard G, Høyer P, Tapp A (1997) Cryptology column — quantum algorithm for the collision problem. ACM SIGACT News 28:14–19

    Article  Google Scholar 

  • Brouwer AE (1989) Distance-regular graphs. Springer, New York

    Book  MATH  Google Scholar 

  • Childs A (2008) CO781 Topics in quantum information: quantum algorithms. Lecture notes on quantum algorithms. http://www.math.uwaterloo.ca/~amchilds/teaching/w08/co781.html

  • Childs AM, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman DA (2003) Exponential algorithmic speedup by a quantum walk. In: STOC ’03: proceedings of the 35th annual ACM symposium on theory of computing. ACM Press, New York, pp 59–68. doi: http://doi.acm.org/10.1145/780542.780552

  • Childs A, van Dam W (2010) Quantum algorithms for algebraic problems. Rev Mod Phys 82(1):1–52

    Google Scholar 

  • Cleve R, Ekert A, Macchiavello C, Mosca M (1998) Quantum algorithms revisited. Proc Roy Soc Lond A 454:339–354

    Article  MathSciNet  MATH  Google Scholar 

  • D'Ariano GM, van Dam W, Ekert E, Macchiavello C, Mosca M (2007) General optimized schemes for phase estimation. Phys Rev Lett 98(9):090,501

    Google Scholar 

  • Das A, Chakrabarti BK (2008) Quantum annealing and analog quantum computation. Rev Mod Phys 80:1061

    Article  MathSciNet  MATH  Google Scholar 

  • De las Cuevas G, Dür W, Van den Nest M, Briegel HJ (2008) Completeness of classical spin models and universal quantum computation. http://arxiv.org/abs/0812.2368

  • Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc Roy Soc Lond A 400:97–117

    Article  MathSciNet  MATH  Google Scholar 

  • Deutsch D, Jozsa R (1992) Rapid solutions of problems by quantum computation. Proc Roy Soc Lond, A 439:553–558

    Article  MathSciNet  MATH  Google Scholar 

  • Farhi E, Goldstone J, Gutmann S (2007) A quantum algorithm for the Hamiltonian NAND tree. http://arxiv.org/abs/quant-ph/0702144

  • Feynman R (1982) Simulating physics with computers. Int J Theor Phys 21(6,7):467–488

    Article  MathSciNet  Google Scholar 

  • Freedman MH, Kitaev A, Larsen MJ, Wang Z (2001) Topological quantum computation. http://arxiv.org/abs/quant-ph/0101025

  • Freedman MH, Kitaev A, Wang Z (2000) Simulation of topological field theories by quantum computers. http://arxiv.org/abs/quant-ph/0001071

  • Geraci J (2008) A BQP-complete problem related to the Ising model partition function via a new connection between quantum circuits and graphs. http://arxiv.org/abs/0801.4833

  • Geraci J, Lidar DA (2008) On the exact evaluation of certain instances of the Potts partition function by quantum computers. Commun Math Phys 279(3):735–768

    Article  MathSciNet  MATH  Google Scholar 

  • Grigoriev D (1997) Testing shift-equivalence of polynomials by deterministic, probabilistic and quantum machines. Theor Comput Sci 180:217–228

    Article  MathSciNet  MATH  Google Scholar 

  • Grover L (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th annual ACM symposium on the theory of computing (STOC, 96). ACM Press, New York, pp 212–219

    Google Scholar 

  • Grover L (1998) A framework for fast quantum mechanical algorithms. In: Proceedings of the 13th annual ACM symposium on theory of computing (STOC' 98). ACM Press, New York, pp 53–62

    Chapter  Google Scholar 

  • Hirvensalo M (2001) Quantum computing. Series: Natural Computing Series. Springer

    Google Scholar 

  • Hübener R, Van den Nest M, Dür W, Briegel HJ (2008) Classical spin systems and the quantum stabilizer formalism: general mappings and applications. http://arxiv.org/abs/0812.2127

  • Jordan S (2008) Quantum computation beyond the circuit model. PhD thesis, MIT University, Cambridge

    Google Scholar 

  • Karchmer M, Wigderson A (1993) On span programs. In: Proceedings of the 8th IEEE structures in complexity conference. IEEE Press, Piscataway, pp 102–111

    Google Scholar 

  • Kaye P, Laflamme R, Mosca M (2007) An introduction to quantum computation. Oxford University Press, Oxford, UK

    Google Scholar 

  • Kempe J (2003) Quantum random walks - an introductory overview. Contemp Phys 44(4):307–327

    Article  MathSciNet  Google Scholar 

  • Kitaev AY (1995) Quantum measurements and the Abelian stabilizer problem. http://arxiv.org/abs/quant-ph/9511026

  • Kitaev A, Shen A, Vyalvi M (2002) Classical and quantum computation. American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  • Magniez F, Nayak A, Roland J, Santha M (2007) Search via quantum walk. In: STOC ’07: proceedings of the 39th annual ACM symposium on theory of computing. ACM, New York, pp 575–584. doi: http://doi.acm.org/10.1145/1250790.1250874

  • Menezes A, van Oorschot P, Vanstone S (1996) Handbook of applied cryptography. CRC Press, Boca Raton

    Book  Google Scholar 

  • Mermin ND (2007) Quantum computer science: an introduction. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Mosca M (2001) Counting by quantum eigenvalue estimation. Theor Comput Sci 264:139–153

    Article  MathSciNet  MATH  Google Scholar 

  • Mosca M (2008) Abelian hidden subgroup problem. In: Kao M-Y (ed) Encyclopedia of algorithms. Springer, Berlin

    Google Scholar 

  • Mosca M (2009) Quantum algorithms. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer

    Google Scholar 

  • Nayak A, Vishwanath A (2000) Quantum walk on the line. http://arxiv.org/abs/quant-ph/0010117

  • Nielsen M, Chuang I (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Reichardt BW, Spalek R (2008) Span-program-based quantum algorithm for evaluating formulas. In: STOC ’08: proceedings of the 40th annual ACM symposium on theory of computing. ACM Press, New York, pp 103–112. doi: http://doi.acm.org/10.1145/1374376.1374394

  • Santha M (2008) Quantum walk based search algorithms. In: Agrawal M, Du D-Z, Duan Z, Li A (eds) Theory and applications of models of computation. Lecture notes in computer science, vol 4978. Springer, Berlin, Heidelberg, pp 31–46. doi: 10.1007/978-3-540-79228-4_3

    Google Scholar 

  • Shor P (1994) Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th annual symposium on foundations of computer science. IEEE Computer Society, Washington, DC, pp 124–134

    Google Scholar 

  • Shor P (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 26:1484–1509

    Article  MathSciNet  MATH  Google Scholar 

  • Simon D (1994) On the power of quantum computation. In: Proceedings of the 35th IEEE symposium on the foundations of computer science (FOCS). IEEE Computer Society, Washington, DC, pp 116–123

    Google Scholar 

  • Szegedy M (2004) Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th annual IEEE symposium on foundations of computer science (FOCS). IEEE Computer Society, Washington, DC, pp 32–41. doi: http://dx.doi.org/10.1109/FOCS.2004.53

  • Tulsi T, Grover L, Patel A (2006) A new algorithm for fixed point quantum search. Quant Inform Comput 6(6):483–494

    MathSciNet  MATH  Google Scholar 

  • Welsh D (1993) Complexity: knots, colourings and countings. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wiebe N, Berry DW, Høyer P, Sanders BC (2008) Higher order decompositions of ordered operator exponentials. http://arxiv.org/abs/0812.0562

  • Wocjan P, Yard J (2006) The Jones polynomial: quantum algorithms and applications in quantum complexity theory. http://arxiv.org/abs/quant-ph/0603069

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Smith, J., Mosca, M. (2012). Algorithms for Quantum Computers. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_43

Download citation

Publish with us

Policies and ethics