Skip to main content

Bell's Inequalities — Foundations and Quantum Communication

  • Reference work entry
Handbook of Natural Computing

Abstract

For individual events, quantum mechanics makes only probabilistic predictions. Can one go beyond quantum mechanics in this respect? This question has been a subject of debate and research since the early days of the theory. Efforts to construct a deeper, realistic level of physical description, in which individual systems have, like in classical physics, preexisting properties revealed by measurements are known as hidden-variable programs. Demonstrations that a hidden-variable program necessarily requires outcomes of certain experiments to disagree with the predictions of quantum theory are called “no-go theorems.” The Bell theorem excludes local hidden variable theories. The Kochen–Specker theorem excludes non-contextual hidden variable theories. In local hidden-variable theories faster-than-light-influences are forbidden, thus the results for a given measurement (actual, or just potentially possible) are independent of the settings of other measurement devices which are at space-like separation. In non-contextual hidden-variable theories, the predetermined results of a (degenerate) observable are independent of any other observables that are measured jointly with it.

It is a fundamental doctrine of quantum information science that quantum communication and quantum computation outperform their classical counterparts. If this is to be true, some fundamental quantum characteristics must be behind the better-than-classical performance of information-processing tasks. This chapter aims at establishing connections between certain quantum information protocols and foundational issues in quantum theory. After a brief discussion of the most common misinterpretations of Bell's theorem and a discussion of what its real meaning is, we will demonstrate how quantum contextuality and violation of local realism can be used as useful resources in quantum information applications. In any case, the readers should bear in mind that this chapter is not a review of the literature of the subject, but rather a quick introduction to it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acín A, Scarani V, Wolf MM (2002) Bell inequalities and distillability in N-quantum-bit systems. Phys Rev A 66:042323

    Article  MathSciNet  Google Scholar 

  • Acín A, Gisin N, Masanes L (2006) From Bell's theorem to secure quantum key distribution. Phys Rev Lett 97:120405

    Article  Google Scholar 

  • Aharon N, Vaidman L (2008) Quantum advantages in classically defined tasks. Phys Rev A 77:052310

    Article  Google Scholar 

  • Ambainis A, Nayak A, Ta-Shma A, Vazirani U (1999) Dense quantum coding and a lower bound for 1-way quantum automata. Proceedings of the 31st annual ACM symposium on the theory of computing, New York, pp 376–383

    Google Scholar 

  • Anders J, Browne DE (2009) Computational power of correlations. Phys Rev Lett 102:050502

    Google Scholar 

  • Aspect A, Dalibard J, Roger G (1982) Experimental test of Bell's inequalities using time-varying analyzers. Phys Rev Lett 49:1804–1807

    Article  MathSciNet  Google Scholar 

  • Augusiak R, Horodecki P (2006) Bound entanglement maximally violating Bell inequalities: quantum entanglement is not fully equivalent to cryptographic security. Phys Rev A 74:010305

    Article  MathSciNet  Google Scholar 

  • Barrett J (2007) Information processing in generalized probabilistic theories. Phys Rev A 75:032304

    Article  Google Scholar 

  • Bechmann-Pasquinucci H (2005) From quantum state targeting to Bell inequalities. Found Phys 35:1787–1804

    Article  MathSciNet  MATH  Google Scholar 

  • Bell JS (1964) On the Einstein-Podolsky-Rosen paradox. Physics 1:195–200; reprinted in Bell JS (1987) Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Bell JS (1966) On the problem of hidden variables in quantum mechanics. Rev Mod Phys 38:447–452

    Article  MATH  Google Scholar 

  • Bell JS (1985) Free variables and local causality. Dialectica 39:103–106

    Google Scholar 

  • Bennett CH, Wiesner SJ (1992) Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett 69:2881–2884

    Article  MathSciNet  MATH  Google Scholar 

  • Bohm D (1952) A suggested interpretation of the quantum theory in terms of “hidden” variables, I and II. Phys Rev 85:166–193

    Article  MathSciNet  MATH  Google Scholar 

  • Bohr N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 48:696–702

    Article  MATH  Google Scholar 

  • Branciard C, Ling A, Gisin N et al. (2007) Experimental falsification of Leggett's nonlocal variable model. Phys Rev Lett 99:210407

    Article  Google Scholar 

  • Brassard G (2003) Quantum communication complexity (a survey). Found Phys 33:1593–1616. Available via http://arxiv.org/abs/quant-ph/0101005

    Google Scholar 

  • Brassard G, Buhrman H, Linden N et al. (2006) Limit on nonlocality in any world in which communication complexity is not trivial. Phys Rev Lett 96:250401

    Article  MathSciNet  Google Scholar 

  • Bremner M J, Mora C, Winter A (2009) Are random pure states useful for quantum computation? Phys Rev Lett 102:190502

    Google Scholar 

  • Brennen GK, Miyake A (2008) Measurement-based quantum computer in the gapped ground state of a two-body Hamiltonian. Phys Rev Lett 101:010502

    Article  Google Scholar 

  • Brukner Č, Paterek T, Żukowski M (2003) Quantum communication complexity protocols based on higher-dimensional entangled systems. Int J Quantum Inf 1:519–525

    Article  MATH  Google Scholar 

  • Brukner Č, Żukowski M, Zeilinger A (2002) Quantum communication complexity protocol with two entangled qutrits. Phys Rev Lett 89:197901

    Article  Google Scholar 

  • Brukner Č, Taylor S, Cheung S, Vedral V (2004a) Quantum entanglement in time. Available via arXiv:quant-ph/0402127

    Google Scholar 

  • Brukner Č, Żukowski M, Pan J-W, Zeilinger A (2004b) Bell's inequality and quantum communication complexity. Phys Rev Lett 92:127901

    Article  MathSciNet  Google Scholar 

  • Buhrman H, Cleve R, van Dam W (1997) Quantum entanglement and communication complexity. Available via http://arxiv.org/abs/quant-ph/9705033

  • Buhrman H, van Dam W, Høyer P, Tapp A (1999) Multiparty quantum communication complexity. Phys Rev A 60:2737–2741

    Article  Google Scholar 

  • Cabello A, Estebaranz JM, García-Alcaine G (1996) Bell-Kochen-Specker theorem: a proof with 18 vectors. Phys Lett A 212:183–187

    Article  MathSciNet  MATH  Google Scholar 

  • Cirel'son BS (1980) Quantum generalizations of Bell's inequality. Lett Math Phys 4:93–100

    Article  MathSciNet  Google Scholar 

  • Clauser JF, Horne MA, Shimony A, Holt RA (1969) Proposed experiment to test local hidden-variable theories. Phys Rev Lett 23:880–884

    Article  Google Scholar 

  • Cleve R, Buhrman H (1997) Substituting quantum entanglement for communication. Phys Rev A 56:1201–1204

    Article  Google Scholar 

  • Cleve R, Høyer P, Toner B, Watrous J (2004) Consequences and limits of nonlocal strategies. Proceedings of the 19th IEEE annual conference on computational complexity, Amherst, MA, pp 236–249

    Google Scholar 

  • Dakic B, Brukner C (2009) Quantum theory and beyond: is entanglement special? arXiv:0911.0695

    Google Scholar 

  • DiVincenzo DP, Peres A (1997) Quantum code words contradict local realism. Phys Rev A 55: 4089–4092

    Article  Google Scholar 

  • Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777–780

    Article  MATH  Google Scholar 

  • Ekert A (1991) Quantum cryptography based on Bell's theorem. Phys Rev Lett 67:661–663

    Article  MathSciNet  MATH  Google Scholar 

  • Fannes M, Nachtergaele B, Werner RF (1992) Finitely correlated states on quantum spin chains. Commun Math Phys 144:443–490

    Article  MathSciNet  MATH  Google Scholar 

  • Galvão EF (2001) Feasible quantum communication complexity protocol. Phys Rev A 65:012318

    Article  Google Scholar 

  • Galvão EF (2002) Foundations of quantum theory and quantum information applications. Ph.D. thesis, University of Oxford, Oxford. Available via arXiv:quant-ph/0212124

    Google Scholar 

  • Gill RD, Weihs G, Zeilinger A, Żukowski M (2002) No time loophole in Bell's theorem: the Hess-Philipp model is nonlocal. Proc Nat Acad Sci USA 99:14632–14635

    Article  MATH  Google Scholar 

  • Gill RD, Weihs G, Zeilinger A, Żukowski M (2003) Comment on “Exclusion of time in the theorem of Bell” by Hess K and Philipp W. Europhy Lett 61:282–283

    Article  Google Scholar 

  • Greenberger DM, Horne MA, Zeilinger A (1989) Going beyond Bell's theorem. In: Kafatos M (ed) Bell's theorem, quantum theory, and conceptions of the universe. Kluwer, Dordrecht, pp 73–76

    Google Scholar 

  • Greenberger DM, Horne MA, Shimony A, Zeilinger A (1990) Bell's theorem without inequalities. Am J Phys 58:1131–1143

    Article  MathSciNet  Google Scholar 

  • Gröblacher S, Paterek T, Kaltenbaek R et al. (2007) An experimental test of non-local realism. Nature 446:871–875

    Article  Google Scholar 

  • Gross D, Flammia S, Eisert J (2009) Most quantum states are too entangled to be useful as computational resources. Phys Rev Lett 102:190501

    Google Scholar 

  • Holevo AS (1973) Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii 9:3–11. English translation in Probl Inf Transm 9:177–183

    MathSciNet  MATH  Google Scholar 

  • Horodecki R, Horodecki P, Horodecki M (1995) Violating Bell inequality by mixed spin-\({1 \over 2}\) states: necessary and sufficient condition. Phys Lett A 200:340–344

    Article  MathSciNet  MATH  Google Scholar 

  • Hyllus P, Gühne O, Bruß D, Lewenstein M (2005) Relations between entanglement witnesses and Bell inequalities. Phys Rev A 72:012321

    Article  MathSciNet  Google Scholar 

  • Kochen S, Specker E (1968) The problem of hidden variables in quantum mechanics. J Math Mech 17:59–87

    MathSciNet  Google Scholar 

  • Kofler J, Paterek T, Brukner C (2006) Experimenter's freedom in Bell's theorem and quantum cryptography, Phys Rev A 73:022104

    Google Scholar 

  • Kushilevitz E, Nisan N (1997) Communication complexity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Leggett AJ (2002) Testing the limits of quantum mechanics: motivation, state of play, prospects. J Phys Condensed Matter 14:15 R415

    Article  Google Scholar 

  • Leggett AJ (2003) Nonlocal hidden-variable theories and quantum mechanics: an incompatibility theorem. Found Phys 33:1469–1493

    Article  MathSciNet  Google Scholar 

  • Leggett AJ, Garg A (1985) Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys Rev Lett 54:857–860

    Article  MathSciNet  Google Scholar 

  • Marcovitch S, Reznik B (2008) Implications of communication complexity in multipartite systems. Phys Rev A 77:032120

    Article  Google Scholar 

  • Markov IL, Shi Y (2008) Simulating quantum computation by contracting tensor networks. SIAM J Comput 38(3):963–981

    Article  MathSciNet  MATH  Google Scholar 

  • Mermin ND (1993) Hidden variables and the two theorems of John Bell. Rev Mod Phys 65:803–815

    Article  MathSciNet  Google Scholar 

  • Morikoshi F (2006) Information-theoretic temporal Bell inequality and quantum computation. Phys Rev A 73:052308

    Article  Google Scholar 

  • Nagata K (2005) Kochen-Specker theorem as a precondition for secure quantum key distribution. Phys Rev A 72:012325

    Article  MathSciNet  Google Scholar 

  • Pawłowski M, Paterek T, Kaszlikowski D, Scarani V, Winter A and Zukowski M (2009) Information causality as a physical principle. Nature (London) 461(7267):1101–1104

    Google Scholar 

  • Paz JP, Mahler G (1993) Proposed test for temporal Bell inequalities. Phys Rev Lett 71:3235–3239

    Article  Google Scholar 

  • Peres A (1991) Two simple proofs of the Kochen-Specker theorem. J Phys A 24:L175–L178

    Article  MathSciNet  Google Scholar 

  • Peres A (1994) Quantum theory: concepts and methods. Kluwer, Boston

    Google Scholar 

  • Popescu S, Rohrlich D (1994) Quantum nonlocality as an axiom. Found Phys 24:379–385

    Article  MathSciNet  Google Scholar 

  • Rowe MA, Kielpinski D, Meyer V, Sackett CA, Itano WM, Monroe C, Wineland DJ (2001) Experimental violation of a Bell's inequality with efficient detection. Nature 409:791–794

    Article  Google Scholar 

  • Scarani V, Gisin N (2001) Quantum communication between N partners and Bell's inequalities. Phys Rev Lett 87:117901

    Article  Google Scholar 

  • Scarani V, Acín A, Schenck E, Aspelmeyer M (2005) Nonlocality of cluster states of qubits. Phys Rev A 71:042325

    Article  MathSciNet  Google Scholar 

  • Schmid C, Kiesel N, Laskowski W et al. (2008) Discriminating multipartite entangled states. Phys Rev Lett 100:200407

    Article  MathSciNet  Google Scholar 

  • Scheidl T, Ursin R, Kofler J et al. (2008) Violation of local realism with freedom of choice. Available via http://arxiv.org/abs/0811.3129

  • Schrödinger E (1935) Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23:807–812; 823–828; 844–849. Translation published in Proc Am Philos Soc 124:323–338 and in Wheeler JA, Zurek WH (eds) (1983) Quantum theory and measurement. Princeton University Press, Princeton, NJ, pp 152–167

    Article  Google Scholar 

  • Shafiee A, Golshani M (2003) Single-particle Bell-type inequality. Annales de la Fondation de Broglie 28:105–118

    MathSciNet  Google Scholar 

  • Simon C, Brukner Č, Zeilinger A (2001) Hidden-variable theorems for real experiments. Phys Rev Lett 86:4427–4430

    Article  Google Scholar 

  • Spekkens RW, Buzacott DH, Keehn AJ et al. (2009) Preparation contextuality powers parity-oblivious multiplexing. Phys Rev Lett 102:010401

    Article  Google Scholar 

  • Svozil K (2004) Quantum mechanics is noncontextual. Available via arXiv:quant-ph/0401112

    Google Scholar 

  • Tamir B (2007) Communication complexity protocols for qutrits. Phys Rev A 75:032344

    Article  MathSciNet  Google Scholar 

  • Tóth G, Gühne O, Briegel HJ (2006) Two-setting Bell inequalities for graph states. Phys Rev A 73:022303

    Article  MathSciNet  Google Scholar 

  • Trojek P, Schmid C, Bourennane M et al. (2005) Experimental quantum communication complexity. Phys Rev A 72:050305

    Article  Google Scholar 

  • van Dam W (2000) Implausible consequences of superstrong nonlocality. Chapter 9 in van Dam W, Nonlocality & communication complexity. Ph.D. Thesis, University of Oxford, Department of Physics. Available via arXiv:quant-ph/0501159

    Google Scholar 

  • Van den Nest M, Miyake A, Dür W, Briegel HJ (2006) Universal resources for measurement-based quantum computation. Phys Rev Lett 97:150504

    Article  Google Scholar 

  • Vidal G (2007) Classical simulation of infinite-size quantum lattice systems in one spatial dimension. Phys Rev Lett 98:070201

    Article  MathSciNet  Google Scholar 

  • Weihs G, Jennewein T, Simon C, Weinfurter H, Zeilinger A (1998) Violation of Bell's inequality under strict Einstein locality conditions. Phys Rev Lett 81:5039–5043

    Article  MathSciNet  MATH  Google Scholar 

  • Weinfurter H, Żukowski M (2001) Four-photon entanglement from down-conversion. Phys Rev A 64:010102

    Article  Google Scholar 

  • Werner RF, Wolf MM (2001) All multipartite Bell correlation inequalities for two dichotomic observables per site. Phys Rev A 64:032112

    Article  Google Scholar 

  • Wiesner S (1983) Conjugate coding, ACM Sigact News 15:78–88

    Article  Google Scholar 

  • von Weizsäcker CF (1985) Aufbau der Physik. Hanser, Munich

    Google Scholar 

  • Yao AC (1979) Some complexity questions related to distributed computing. Proceedings of the 11th Annual ACM Symposium on Theory of Computing, pp 209–213

    Google Scholar 

  • Zeilinger A (1999) A foundational principle for quantum mechanics. Found Phys 29:631–643

    Article  MathSciNet  Google Scholar 

  • Żukowski M, Brukner Č (2002) Bell's theorem for general N-qubit states. Phys Rev Lett 88:210401

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Support from the Austrian Science Foundation FWF within Project No. P19570-N16, SFB FoQuS and CoQuS No. W1210-N16, and the European Commission, Projects QAP and QESSENCE, is acknowledged. MZ is supported by MNiSW grant N202 208538. The collaboration is a part of an ÖAD/MNiSW program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Brukner, Č., Żukowski, M. (2012). Bell's Inequalities — Foundations and Quantum Communication. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_42

Download citation

Publish with us

Policies and ethics