Skip to main content

Mathematics for Quantum Information Processing

  • Reference work entry
Handbook of Natural Computing
  • 10k Accesses

Abstract

Information processing in the physical world must be based on a physical system representing the information. If such a system has a quantum physical description, then one talks about quantum information processing. The mathematics needed to handle quantum information is somewhat more complicated than that used for classical information. The purpose of this chapter is to introduce the basic mathematical machinery used to describe quantum systems with finitely many potential observable values. A typical example of such a system is the quantum bit (or qubit, for short), which has at most two potential values for any physical observable. The mathematics for quantum information processing is based on vector spaces over complex numbers, and can be seen as a straightforward generalization of linear algebra of real vector spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aharonov A, Kitaev A, Nisan N (1998) Quantum circuits with mixed states. In: proceedings of the 30th annual ACM symposium on theory of computation, Dallas, TX, May 1998, pp 20–30

    Google Scholar 

  • Axler S (1997) Linear algebra done right. Springer, New York, http://www.springer.com/mathematics/algebra/book/978-0-387-98259-5

    MATH  Google Scholar 

  • Barenco A, Bennett CH, Cleve R et al. (1995) Elementary gates for quantum computation. Phys Rev A 52(5): 3457–3467

    Article  Google Scholar 

  • Benioff PA (1980) The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J Stat Phys 22(5):563–591

    Article  MathSciNet  Google Scholar 

  • Benioff PA (1982) Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: application to Turing machines. Int J Theor Phys 21(3/4):177–202

    Article  MathSciNet  MATH  Google Scholar 

  • Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17:525–532

    Article  MATH  Google Scholar 

  • Bernstein E, Vazirani U (1997) Quantum complexity theory. SIAM J Comput 26(5):1411–1473

    Article  MathSciNet  MATH  Google Scholar 

  • Cohn PM (1994) Elements of linear algebra. Chapman & Hall, Boca Raton, FL. CRC Press reprint (1999). http://www.amazon.com/Elements-Linear-Algebra-Chapman-Mathematics/dp/0412552809

    Google Scholar 

  • Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21(6/7):467–488

    Article  MathSciNet  Google Scholar 

  • Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc Lond Ser A Math Phys Sci 400:97–117

    Article  MathSciNet  MATH  Google Scholar 

  • Deutsch D (1989) Quantum computational networks. Proc R Soc Lond A 425:73–90

    Article  MathSciNet  MATH  Google Scholar 

  • Gleason AM (1957) Measures on the closed subspaces of a Hilbert space. J Math Mech 6:885–893

    MathSciNet  MATH  Google Scholar 

  • Grover LK (1996) A fast quantum-mechanical algorithm for database search. In: Proceedings of the 28th annual ACM symposium on the theory of computing, Philadelphia, PA, May 1996, pp 212–219

    Google Scholar 

  • Hirvensalo M (2004) Quantum computing, 2nd edn. Springer, Heidelberg

    MATH  Google Scholar 

  • Hirvensalo M (2008) Various aspects of finite quantum automata. In: Proceedings of the 12th international conference on developments in language theory, Kyoto, Japan, September 2008. Lecture notes in computer science, vol 5257. Springer, Berlin, pp 21–33

    Google Scholar 

  • Kondacs A, Watrous J (1997) On the power of quantum finite state automata. In: Proceedings of the 38th annual symposium on foundations of computer science, Miami Beach, FL, October 1997, pp 66–75

    Google Scholar 

  • Moore C, Crutchfield JP (2000) Quantum automata and quantum grammars. Theor Comput Sci 237(1–2): 275–306

    Article  MathSciNet  Google Scholar 

  • Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press

    MATH  Google Scholar 

  • Ozawa M (1984) Quantum measuring processes of continuous observables. J Math Phys 25:79–87

    Article  MathSciNet  Google Scholar 

  • Papadimitriou CH (1994) Computational complexity. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  • Paz A (1971) Introduction to probabilistic automata. Academic, New York

    MATH  Google Scholar 

  • Shi Y (2003) Both Toffoli and controlled-NOT need little help to do universal quantum computation. Quantum Info Comput 3(1):84–92

    MATH  Google Scholar 

  • Shor PW (1994) Algorithms for quantum computation: discrete log and factoring. In: Proceedings of the 35th annual IEEE symposium on foundations of computer science, Santa Fe, NM, November 1994, pp 20–22

    Google Scholar 

  • Simon DR (1994) On the power of quantum computation. In: Proceedings of the 35th annual IEEE symposium on foundations of computer science, Santa Fe, NM, November 1994, pp 116–123

    Google Scholar 

  • Stinespring WF (1955) Positive functions on C *-algebras. Proc Am Math Soc 6:211–216

    MathSciNet  MATH  Google Scholar 

  • Stone MH (1932) On one-parameter unitary groups in Hilbert space. Ann Math 33:643–648

    Article  Google Scholar 

  • Turing AM (1936) On computable numbers, with an application to the Entscheidungsproblem. Proc Lond Math Soc 2(42):230–265

    MathSciNet  Google Scholar 

  • von Neumann J (1927) Thermodynamik quantummechanischer Gesamheiten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen 1:273–291

    Google Scholar 

  • von Neumann J (1932) Mathematische Grundlagen der Quantenmechanik. Springer, Berlin

    MATH  Google Scholar 

  • Yu S (1997) Regular languages. In: Rozenberg G, Salomaa A (eds) Handbook of formal languages. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hirvensalo, M. (2012). Mathematics for Quantum Information Processing. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_41

Download citation

Publish with us

Policies and ethics