Skip to main content

Stochastic Convergence

  • Reference work entry
Handbook of Natural Computing

Abstract

Since the state transitions of an evolutionary algorithm (EA) are of stochastic nature, the deterministic concept of the “convergence to the optimum” is not appropriate. In order to clarify the exact semantic of a phrase like “the EA converges to the global optimum” one has to, at first, establish the connection between EAs and stochastic processes before distinguishing between the various modes of stochastic convergence of stochastic processes. Subsequently, this powerful framework is applied to derive convergence results for EAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts EHL, Korst J (1989) Simulated annealing and Boltzman machines: a stochastic approach to combinatorial optimization and neural computing. Wiley, Chichester

    Google Scholar 

  • Adler D (1993) Genetic algorithms and simulated annealing: A marriage proposal. In: IEEE international conference on neural networks, San Francisco, CA, March–April 1993. IEEE Press, Piscataway, NJ, pp 1104–1109

    Google Scholar 

  • Agapie A (1998a) Genetic algorithms: minimal conditions for convergence. In: Hao JK, Lutton E, Ronald E, Schoenauer M, Snyers D (eds) AE'97: Artificial evolution: Third European conference; selected papers, Nimes, France, October 1997. Springer, Berlin, pp 183–193

    Google Scholar 

  • Agapie A (1998b) Modelling genetic algorithms: from Markov chains to dependance with complete connections. In: Bäck T, Eiben AE, Schoenauer M, Schwefel HP (eds) Parallel problem solving from nature – PPSN V. Springer, Berlin, pp 3–12

    Chapter  Google Scholar 

  • Agapie A (2007) Evolutionary algorithms: modeling and convergence. Editura Academiei Române, Bucarest, Romania

    Google Scholar 

  • Agapie A, Agapie M (2007) Transition functions for evolutionary algorithms on continuous state-space. J Math Model Algorithms 6(2):297–315

    Article  MathSciNet  MATH  Google Scholar 

  • Auger A (2004) Convergence results for the (1,λ)-ES using the theory of φ-irreducible Markov chains. Theor Comput Sci 334(1–3):181–231

    MathSciNet  Google Scholar 

  • Bélisle CJP (1992) Convergence theorems for a class of simulated annealing algorithms on \({\mathbb R}^{d}\). J Appl Probability 29:885–895

    Article  MATH  Google Scholar 

  • Beume N, Naujoks B, Preuss M, Rudolph G, Wagner T (2009) Effects of 1-greedy S-metric-selection on innumerably large pareto fronts. In: Ehrgott M et al. (eds) Proceedings of 5th international conference on evolutionary multi-criterion optimization (EMO 2009), Nantes, France, April 2009. Springer, Berlin, pp 21–35

    Google Scholar 

  • Bienvenüe A, Francois O (2003) Global convergence for evolution strategies in spherical problems: some simple proofs and difficulties. Theor Comput Sci 306(1–3):269–289

    Article  MATH  Google Scholar 

  • Born J (1978) Evolutionsstrategien zur numerischen Lösung von Adaptationsaufgaben. Dissertation A, Humboldt-Universität, Berlin

    Google Scholar 

  • Bucy R (1965) Stability and positive supermartingales. J Differ Equations 1(2):151–155

    Article  MathSciNet  MATH  Google Scholar 

  • Bucy R, Joseph P (1968) Filtering for stochastic processes with applications to guidance. Interscience Publishers, New York

    MATH  Google Scholar 

  • Davis T (1991) Toward an extrapolation of the simulated annealing convergence theory onto the simple genetic algorithm. PhD thesis, University of Florida, Gainesville

    Google Scholar 

  • Davis T, Principe J (1993) A Markov chain framework for the simple genetic algorithm. Evol Comput 1(3):269–288

    Article  Google Scholar 

  • Devroye LP (1976) On the convergence of statistical search. IEEE Trans Syst Man Cybern 6(1):46–56

    MathSciNet  MATH  Google Scholar 

  • Doob J (1967) Stochastic processes, 7th edn. Wiley, New York

    Google Scholar 

  • Dueck G, Scheuer T (1990) Threshold accepting: a general purpose optimization algorithm superior to simulated annealing. J Comput Phys 90(1):161–175

    Article  MathSciNet  MATH  Google Scholar 

  • Eiben AE, Aarts EHL, van Hee KM (1991) Global convergence of genetic algorithms: a Markov chain analysis. In: Schwefel HP, Männer R (eds) Parallel problem solving from nature. Springer, Berlin, pp 4–12

    Google Scholar 

  • Fogel D (1994) Asymptotic convergence properties of genetic algorithms and evolutionary programming: analysis and experiments. Cybern Syst 25(3): 389–407

    Article  MATH  Google Scholar 

  • Greenwood G, Zhu Q (2001) Convergence in evolutionary programs with self-adaptation. Evol Comput 9(2):147–157

    Article  Google Scholar 

  • Haario H, Saksman E (1991) Simulated annealing process in general state space. Adv Appl Probability 23:866–893

    Article  MathSciNet  MATH  Google Scholar 

  • Hajek B (1988) Cooling schedules for optimal annealing. Math Oper Res 13(2):311–329

    Article  MathSciNet  MATH  Google Scholar 

  • Hanne T (1999) On the convergence of multiobjective evolutionary algorithms. Eur J Oper Res 117(3): 553–564

    Article  MATH  Google Scholar 

  • He J, Kang K (1999) On the convergence rates of genetic algorithms. Theor Comput Sci 229(1–2):23–39

    Article  MathSciNet  MATH  Google Scholar 

  • He J, Yu X (2001) Conditions for the convergence of evolutionary algorithms. J Syst Archit 47(7): 601–612

    Article  Google Scholar 

  • Iosifescu M (1980) Finite Markov processes and their applications. Wiley, Chichester

    MATH  Google Scholar 

  • Iosifescu M, Grigorescu S (1990) Dependence with complete connections and its applications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Jägersküpper J (2006) How the (1+1) ES using isotropic mutations minimizes positive definite quadratic forms. Theor Comput Sci 361(1):38–56

    Article  MATH  Google Scholar 

  • Jägersküpper J (2007) Algorithmic analysis of a basic evolutionary algorithm for continuous optimization. Theor Comput Sci 379(3):329–347

    Article  MATH  Google Scholar 

  • Lukacs E (1975) Stochastic convergence, 2nd edn. Academic, New York

    MATH  Google Scholar 

  • Mahfoud SW, Goldberg DE (1992) A genetic algorithm for parallel simulated annealing. In: Männer R, Manderick B (eds) Parallel problem solving from nature, vol 2. North Holland, Amsterdam, pp 301–310

    Google Scholar 

  • Mahfoud SW, Goldberg DE (1995) Parallel recombinative simulated annealing: a genetic algorithm. Parallel Comput 21:1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Meyn S, Tweedie R (1993) Markov chains and stochastic stability. Springer, London

    Book  MATH  Google Scholar 

  • Muhammad A, Bargiela A, King G (1999) Fine-grained parallel genetic algorithm: a global convergence criterion. Int J Comput Math 73(2):139–155

    MathSciNet  MATH  Google Scholar 

  • Neveu J (1975) Discrete-parameter martingales. North Holland, Amsterdam

    MATH  Google Scholar 

  • Nix A, Vose M (1992) Modeling genetic algorithms with Markov chains. Ann Math Artif Intell 5:79–88

    Article  MathSciNet  MATH  Google Scholar 

  • Nummelin E (1984) General irreducible Markov chains and non-negative operators. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Oppel U, Hohenbichler M (1978) Auf der Zufallssuche basierende Evolutionsprozesse. In: Schneider B, Ranft U (eds) Simulationsmethoden in der Medizin und Biologie. Springer, Berlin, pp 130–155

    Chapter  Google Scholar 

  • Pintér J (1984) Convergence properties of stochastic optimization procedures. Math Oper Stat Ser Optimization 15:405–427

    MATH  Google Scholar 

  • Rudolph G (1994a) Convergence of non-elitist strategies. In: Proceedings of the first IEEE conference on evolutionary computation, vol 1. Orlando, FL, June 1994. IEEE Press, Piscataway, NJ, pp 63–66

    Google Scholar 

  • Rudolph G (1994b) Convergence properties of canonical genetic algorithms. IEEE Trans Neural Netw 5(1):96–101

    Article  Google Scholar 

  • Rudolph G (1994c) An evolutionary algorithm for integer programming. In: Davidor Y, Schwefel HP, Männer R (eds) Parallel problem solving from nature, vol 3. Springer, Berlin, pp 139–148

    Chapter  Google Scholar 

  • Rudolph G (1996) Convergence of evolutionary algorithms in general search spaces. In: Proceedings of the third IEEE conference on evolutionary computation, Nagoya, Japan, May 1996. IEEE Press, Piscataway, NJ, pp 50–54

    Google Scholar 

  • Rudolph G (1997a) Convergence properties of evolutionary algorithms. Kovač, Hamburg

    Google Scholar 

  • Rudolph G (1997b) Convergence rates of evolutionary algorithms for a class of convex objective functions. Control Cybern 26(3):375–390

    MathSciNet  MATH  Google Scholar 

  • Rudolph G (1998a) Evolutionary search for minimal elements in partially ordered finite sets. In: Porto VW, Saravanan N, Waagen D, Eiben AE (eds) Evolutionary programming VII, Proceedings of the 7th annual conference on evolutionary programming, San Diego, CA, March 1998. Springer, Berlin, pp 345–353

    Google Scholar 

  • Rudolph G (1998b) Finite Markov chain results in evolutionary computation: a tour d’horizon. Fund Inform 35(1–4):67–89

    MathSciNet  MATH  Google Scholar 

  • Rudolph G (1998c) On a multi-objective evolutionary algorithm and its convergence to the Pareto set. In: Proceedings of the 1998 IEEE international conference on evolutionary computation, Anchorage, AK, May 1998. IEEE Press, Piscataway, NJ, pp 511–516

    Google Scholar 

  • Rudolph G (1999) Global convergence and self-adaptation: A counter-example. In: CEC'99: Proceedings of the 1999 congress of evolutionary computation, vol 1. Washington, DC, July 1999. IEEE Press, Piscataway, NJ, pp 646–651

    Google Scholar 

  • Rudolph G (2001a) Evolutionary search under partially ordered fitness sets. In: Sebaaly MF (ed) ISI 2001: Proceedings of the international NAISO congress on information science innovations, Dubai, UAE, March 2001. ICSC Academic Press, Millet and Sliedrecht, pp 818–822

    Google Scholar 

  • Rudolph G (2001b) Self-adaptive mutations may lead to premature convergence. IEEE Trans Evol Comput 5(4):410–414

    Article  Google Scholar 

  • Rudolph G (2005) Analysis of a non-generational mutationless evolutionary algorithm for separable fitness functions. Int J Comput Intell Res 1(1):77–84

    MathSciNet  Google Scholar 

  • Rudolph G, Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Zalzala A, Fonseca C, Kim JH, Smith A, Yao X (eds) CEC 2000: Proceedings of the 2000 congress on evolutionary computation, vol 2. La Jolla, CA, July 2000. IEEE Press, Piscataway, NJ, pp 1010–1016

    Google Scholar 

  • Schmitt L (2001) Theory of genetic algorithms. Theor Comput Sci 259(1–2):1–61

    Article  MATH  Google Scholar 

  • Schmitt L (2004) Theory of genetic algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness functions under scaling. Theor Comput Sci 310(1–3):181–231

    Article  MATH  Google Scholar 

  • Schmitt LM, Nehaniv CL, Fujii RH (1998) Linear analysis of genetic algorithms. Theor Comput Sci 200(1–2):101–134

    Article  MathSciNet  MATH  Google Scholar 

  • Schütze O, Laumanns M, Tantar E, Coello Coello C, Talbi EG (2007) Convergence of stochastic search algorithms to gap-free Pareto front approximations. In: GECCO 2007: Proceedings of the 9th annual conference on genetic and evolutionary computation, London, July 2007. ACM, New York, pp 892–901

    Chapter  Google Scholar 

  • Semenov M, Terkel D (2003) Analysis of convergence of an evolutionary algorithm with self-adaptation using a stochastic Lyapunov function. Evol Comput 11(4):363–379

    Article  Google Scholar 

  • Seneta E (1981) Non-negative matrices and Markov chains, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Solis FJ, Wets RJB (1981) Minimization by random search techniques. Math Oper Res 6(1):19–30

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki J (1993) A Markov chain analysis on a genetic algorithm. In: Forrest S (ed) Proceedings of the fifth international conference on genetic algorithms, Urbana-Champaign, IL, June 1993. Morgan Kaufmann, San Mateo, CA, pp 146–153

    Google Scholar 

  • Suzuki J (1995) A Markov chain analysis on simple genetic algorithms. IEEE Trans Syst Man Cybern 25(4):655–659

    Article  Google Scholar 

  • Suzuki J (1998) A further result on the Markov chain model of genetic algorithm and its application to a simulated annealing-like strategy. IEEE Trans Syst Man Cybern B 28(1):95–102

    Article  Google Scholar 

  • Williams D (1991) Probability with martingales. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms: comparative case study. In: Eiben A et al. (eds) Parallel problem solving from nature (PPSN V). Springer, Berlin, pp 292–301

    Google Scholar 

  • Zitzler E, Thiele L, Bader J (2008) On set-based multiobjective optimization. Technical Report 300, Computer Engineering and Networks Laboratory, ETH Zurich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rudolph, G. (2012). Stochastic Convergence. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_27

Download citation

Publish with us

Policies and ethics