Skip to main content

Neural Networks in Bioinformatics

  • Reference work entry
Handbook of Natural Computing

Abstract

Over the last two decades, neural networks (NNs) gradually became one of the indispensable tools in bioinformatics. This was fueled by the development and rapid growth of numerous biological databases that store data concerning DNA and RNA sequences, protein sequences and structures, and other macromolecular structures. The size and complexity of these data require the use of advanced computational tools. Computational analysis of these databases aims at exposing hidden information that provides insights which help with understanding the underlying biological principles. The most commonly explored capability of neural networks that is exploited in the context of bioinformatics is prediction. This is due to the existence of a large body of raw data and the availability of a limited amount of data that are annotated and can be used to derive the prediction model. In this chapter we discuss and summarize applications of neural networks in bioinformatics, with a particular focus on applications in protein bioinformatics. We summarize the most often used neural network architectures, and discuss several specific applications including prediction of protein secondary structure, solvent accessibility, and binding residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczak R, Porollo A, Meller J (2005) Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 59:467–475

    Article  Google Scholar 

  • Ahmad S, Gromiha MM, Sarai A (2003) Real value prediction of solvent accessibility from amino acid sequence. Proteins 50:629–635

    Article  Google Scholar 

  • Ahmad S, Gromiha MM, Sarai A (2004) Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information. Bioinformatics 20:477–486

    Article  Google Scholar 

  • Ahmad S, Sarai A (2005) PSSM-based prediction of DNA binding sites in proteins. BMC Bioinformatics 6:33

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 17:3389–3402

    Article  Google Scholar 

  • Blom N, Hansen J, Blaas D, Brunak S (1996) Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5:2203–2216

    Article  Google Scholar 

  • Boguski MS (1998) Bioinformatics – a new era. Trends Guide Bioinformatics (Suppl S):1–3

    Google Scholar 

  • Byvatov E, Schneider G (2003) Support vector machine applications in bioinformatics. Appl Bioinformatics 2(2):67–77

    Google Scholar 

  • Cai YD, Zhou GP (2000) Prediction of protein structural classes by neural network. Biochimie 82:783–785

    Article  Google Scholar 

  • Cai YD, Liu XJ, Chou KC (2002) Artificial neural network model for predicting protein subcellular location. Comput Chem 26:179–182

    Article  Google Scholar 

  • Cai YD, Liu XJ, Chou KC (2003) Prediction of protein secondary structure content by artificial neural network. J Comput Chem 24:727–731

    Article  Google Scholar 

  • Chandonia JM, Karplus M (1995) Neural networks for secondary structure and structural class predictions. Protein Sci 4:275–285

    Article  Google Scholar 

  • Chen J, Chaudhari N (2007) Cascaded bidirectional recurrent neural networks for protein secondary structure prediction. IEEE/ACM Trans Comput Biol Bioinform 4:572–582

    Article  Google Scholar 

  • Dor O, Zhou Y (2007a) Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training. Proteins 66:838–845

    Article  Google Scholar 

  • Dor O, Zhou Y (2007b) Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties. Proteins 68:76–81

    Article  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  Google Scholar 

  • Fogel GB (2008) Computational intelligence approaches for pattern discovery in biological systems. Brief Bioinform 9(4):307–316

    Article  Google Scholar 

  • Fuchs A, Kirschner A, Frishman D (2009) Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks. Proteins 74:857–871

    Article  Google Scholar 

  • Garg A, Kaur H, Raghava GP (2005) Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins 61:318–324

    Article  Google Scholar 

  • Gromiha MM, Ahmad S, Suwa M (2005) TMBETA-NET: discrimination and prediction of membrane spanning beta-strands in outer membrane proteins. Nucleic Acids Res 33:W164–167

    Article  Google Scholar 

  • Hung LH, Samudrala R (2003) PROTINFO: secondary and tertiary protein structure prediction. Nucleic Acids Res 31:3296–3299

    Article  Google Scholar 

  • Ingrell CR, Miller ML, Jensen ON, Blom N (2007) NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23:895–897

    Article  Google Scholar 

  • Jacoboni I, Martelli PL, Fariselli P, De Pinto V, Casadio R (2001) Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor. Protein Sci 10:779–787

    Article  Google Scholar 

  • Jeong E, Chung IF, Miyano S (2004) A neural network method for identification of RNA-interacting residues in protein. Genome Inform 15:105–116

    Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  Google Scholar 

  • Kapetanovic IM, Rosenfeld S, Izmirlian G (2004) Overview of commonly used bioinformatics methods and their applications. Ann NY Acad Sci 1020:10–21

    Article  Google Scholar 

  • Kaur H, Raghava GP (2003) A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Sci 12:923–929

    Article  Google Scholar 

  • Kaur H, Raghava GP (2004) A neural network method for prediction of beta-turn types in proteins using evolutionary information. Bioinformatics 20:2751–2758

    Article  Google Scholar 

  • Kirschner A, Frishman D (2008) Prediction of beta-turns and beta-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN). Gene 422:22–29

    Article  Google Scholar 

  • Kuang R, Leslie CS, Yang AS (2004) Protein backbone angle prediction with machine learning approaches. Bioinformatics 20:1612–1621

    Article  Google Scholar 

  • Kuznetsov IB, Gou Z, Li R, Hwang S (2006) Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins. Proteins 64:19–27

    Article  Google Scholar 

  • Larranaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano JA, Armananzas R, Santafe G, Perez A, Robles V (2006) Machine learning in bioinformatics. Brief Bioinformatics 7(1):86–112

    Article  Google Scholar 

  • Lin CT, Lin KL, Yang CH, Chung IF, Huang CD, Yang YS (2005) Protein metal binding residue prediction based on neural networks. Int J Neural Syst 15:71–84

    Article  Google Scholar 

  • Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 36:W509–512

    Article  Google Scholar 

  • Luscombe NM, Greenbaum D, Gerstein M (2001) What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med 40:346–358

    Google Scholar 

  • Martelli PL, Fariselli P, Casadio R (2004) Prediction of disulfide-bonded cysteines in proteomes with a hidden neural network. Proteomics 4:1665–1671

    Article  Google Scholar 

  • Miller DJ, Wang Y, Kesidis G (2008) Emergent unsupervised clustering paradigms with potential application to bioinformatics. Front Biosci 13:677–690

    Article  Google Scholar 

  • Muskal SM, Kim SH (1992) Predicting protein secondary structure content. A tandem neural network approach. J Mol Biol 225:713–727

    Article  Google Scholar 

  • Nantasenamat C, Isarankura-Na-Ayudhya C, Tansila N, Naenna T, Prachayasittikul V (2007) Prediction of GFP spectral properties using artificial neural network. J Comput Chem 28:1275–1289

    Article  Google Scholar 

  • Narayanan A, Keedwell EC, Olsson B (2002) Artificial intelligence techniques for bioinformatics. Appl Bioinformatics 1(4):191–222

    Google Scholar 

  • Natt NK, Kaur H, Raghava GP (2004) Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods. Proteins 56:11–18

    Article  Google Scholar 

  • NIH Working Definition of Bioinformatics and Computational Biology (2000) BISTIC Definition Committee, http://www.bisti.nih.gov/

  • Niwa T (2004) Prediction of biological targets using probabilistic neural networks and atom-type descriptors. J Med Chem 47:2645–2650

    Article  Google Scholar 

  • Ofran Y, Rost B (2007) Protein-protein interaction hotspots carved into sequences. PLoS Comput Biol 3:e119

    Article  Google Scholar 

  • Petersen TN, Lundegaard C, Nielsen M, Bohr H, Bohr J, Brunak S, Gippert GP, Lund O (2000) Prediction of protein secondary structure at 80% accuracy. Proteins 41:17–20

    Article  Google Scholar 

  • Plewczynski D, Slabinski L, Ginalski K, Rychlewski L (2008) Prediction of signal peptides in protein sequences by neural networks. Acta Biochim Pol 55:261–267

    Google Scholar 

  • Pollastri G, Baldi P, Fariselli P, Casadio R (2002a) Prediction of coordination number and relative solvent accessibility in proteins. Proteins 47:142–153

    Article  Google Scholar 

  • Pollastri G, Baldi P, Fariselli P, Casadio R (2002b) Prediction of coordination number and relative solvent accessibility in proteins. Proteins 47:142–153

    Article  Google Scholar 

  • Qian N, Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 202:865–884

    Article  Google Scholar 

  • Reinhardt A, Hubbard T (1998) Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res 26:2230–2236

    Article  Google Scholar 

  • Rost B, Sander C (1994) Conservation and prediction of solvent accessibility in protein families. Proteins 20:216–226

    Article  Google Scholar 

  • Rost B, Sander C, Schneider R (1994) PHD – an automatic mail server for protein secondary structure prediction. Comput Appl Biosci 10:53–60

    Google Scholar 

  • Ruan J, Wang K, Yang J, Kurgan LA, Cios KJ (2005) Highly accurate and consistent method for prediction of helix and strand content from primary protein sequences. Artif Intell Med 35:19–35

    Article  Google Scholar 

  • Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517

    Article  Google Scholar 

  • Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48

    Article  Google Scholar 

  • Sidhu A, Yang ZR (2006) Prediction of signal peptides using bio-basis function neural networks and decision trees. Appl Bioinformatics 5:13–19

    Article  Google Scholar 

  • Vedani A, Dobler M (2000) Multi-dimensional QSAR in drug research. Predicting binding affinities, toxicity and pharmacokinetic parameters. Prog Drug Res 55:105–135

    Article  Google Scholar 

  • Wilkinson DJ (2007) Bayesian methods in bioinformatics and computational systems biology. Brief Bioinformatics 8(2):109–116

    Article  Google Scholar 

  • Xue B, Dor O, Faraggi E, Zhou Y (2008) Real-value prediction of backbone torsion angles. Proteins 72:427–433

    Article  Google Scholar 

  • Yang ZR, Thomson R (2005) Bio-basis function neural network for prediction of protease cleavage sites in proteins. IEEE Trans Neural Netw 16:263–274

    Article  MATH  Google Scholar 

  • Ye L, Liu T, Wu Z, Zhou R (2008) Sequence-based protein domain boundary prediction using BP neural network with various property profiles. Proteins 71:300–307

    Article  Google Scholar 

  • Zhang GZ, Huang DS (2004) Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme. J Comput Aided Mol Des 18:797–810

    Article  Google Scholar 

  • Zhou HX, Shan Y (2001) Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins 44:336–343

    Article  Google Scholar 

  • Zou L, Wang Z, Huang J (2007) Prediction of subcellular localization of eukaryotic proteins using position-specific profiles and neural network with weighted inputs. J Genet Genomics 34:1080–1087

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Chen, K., Kurgan, L.A. (2012). Neural Networks in Bioinformatics. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_18

Download citation

Publish with us

Policies and ethics