Skip to main content

Modeling Biological Neural Networks

  • Reference work entry
Book cover Handbook of Natural Computing

Abstract

In recent years, many new experimental studies on emerging phenomena in neural systems have been reported. The high efficiency of living neural systems to encode, process, and learn information has stimulated an increased interest among theoreticians in developing mathematical approaches and tools to model biological neural networks. In this chapter we review some of the most popular models of neurons and neural networks that help us understand how living systems perform information processing. Beyond the fundamental goal of understanding the function of the nervous system, the lessons learned from these models can also be used to build bio-inspired paradigms of artificial intelligence and robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarbanel HDI, Huerta R, Rabinovich MI, Rulkov NF, Rowat P, Selverston AI (1996) Synchronized action of synaptically coupled chaotic model neurons. Neural Comp 8(8):1567–1602

    Article  Google Scholar 

  • Abbott LF, Valera JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275(5297):220–224

    Article  Google Scholar 

  • Amari S (1972) Characteristics of random nets of analog neuron-like elements. IEEE Trans Syst Man Cybern 2:643–657

    Article  MATH  Google Scholar 

  • Amit D, Tsodyks M (1991) Quantitative study of attractor neural networks retrieving at low spike rates: II. low-rate retrieval in symmetric networks. Network: Comput Neural Syst 2:275–294

    Article  MATH  Google Scholar 

  • Arshavsky YI, Beloozerova IN, Orlovsky GN, Panchin YV, Pavlova GA (1985) Control of locomotion in marine mollusc Clione limacina. i. efferent activity during actual and fictitious swimming. Exp Brain Res 58(2):255–293

    Google Scholar 

  • Arshavsky YI, Grillner S, Orlovsky GN, Panchin YV (1991) Central generators and the spatiotemporal pattern of movements. In: Fagard J, Wolff PH (eds) The development of timing control. Elsevier, Amsterdam, pp 93–115

    Google Scholar 

  • Ashby WR (1960) Design for a brain, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Azouz R, Gray CM (2000) Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc Natl Acad Sci USA 97(14):8110–8115

    Article  Google Scholar 

  • Barrie JM, Freeman WJ, Lenhart MD (1996) Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface EEGs in trained rabbits. J Neurophysiol 76(1):520–539

    Google Scholar 

  • Beenhakker MP, Nusbaum MP (2004) Mechanosensory activation of a motor circuit by coactivation of two projection neurons. J Neurosci 24(30):6741–6750

    Article  Google Scholar 

  • Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23(35):11167–11177

    Google Scholar 

  • Bertram R, Sherman A, Stanley EF (1996) Single-domain/bound calcium hypothesis of transmitter release and facilitation. J Neurophysiol 75(5):1919–1931

    Google Scholar 

  • Brette R et al (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comp Neurosci 23(3):349–398

    Article  MathSciNet  Google Scholar 

  • Buia CI, Tiesinga PHE (2005) Rapid temporal modulation of synchrony in cortical interneuron networks with synaptic plasticity. Computational Neuroscience: Trends in Research 2005. Neurocomputing 6566:809–815

    Article  Google Scholar 

  • Cazelles B, Courbage M, Rabinovich MI (2001) Anti-phase regularization of coupled chaotic maps modelling bursting neurons. Europhys Lett 56(4):504–509

    Article  Google Scholar 

  • Cortes JM, Torres JJ, Marro J, Garrido PL, Kappen HJ (2006) Effects of fast presynaptic noise in attractor neural networks. Neural Comp 18(3):614–633

    Article  MathSciNet  MATH  Google Scholar 

  • Cymbalyuk G, Gaudry O, Masino M, Calabrese R (2002) Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J Neurosci 22(24):10580–10592

    Google Scholar 

  • Destexhe A, Marder E (2004) Plasticity in single neuron and circuit computations. Nature 431(7010):789–795

    Article  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1994) An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comp 6(1):14–18

    Article  Google Scholar 

  • Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18(6):995–1008

    Article  Google Scholar 

  • Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97(2):1566–1587

    Article  Google Scholar 

  • Elson R, Selverston AI, Huerta R, Rabinovich MI, Abarbanel HDI (1998) Synchronous behavior of two coupled biological neurons 81(25):5692–5695

    Google Scholar 

  • Elson R, Huerta R, Abarbanel HDI, Rabinovich MI, Selverston AI (1999) Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. Phys Rev Lett. J Neurophysiol 82(1):115–122

    Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466

    Article  Google Scholar 

  • Franks KM, Stevens CF, Sejnowski TJ (2003) Independent sources of quantal variability at single glutamatergic synapses. J Neurosci 23(8):3186–3195

    Google Scholar 

  • Freeman W (1972) Progress in theoretical biology, vol 2. Academic, New York

    Google Scholar 

  • Fusi S, Abbott L (2007) Limits on the memory storage capacity of bounded synapses. Nat Neurosci 10(4):485–493

    Google Scholar 

  • Garcia-Sanchez M, Huerta R (2003) Design parameters of the fan-out phase of sensory systems. J Comp Neurosci 15(1):5–17

    Article  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Getting PA (1989) Emerging principles governing the operation of neural networks. Ann Rev Neurosci 12:185–204

    Article  Google Scholar 

  • Gutkin BS, Ermentrout GB (1998) Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comp 10(5):1047–1065

    Article  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B 221(1222):87–102

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Google Scholar 

  • Holcman D, Tsodyks M (2006) The emergence of up and down states in cortical networks. PLoS Comput Biol 2(3):174–181

    Article  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79(8):2554–2558

    Article  MathSciNet  Google Scholar 

  • Huerta R, Varona P, Rabinovich MI, Abarbanel HDI (2001) Topology selection by chaotic neurons of a pyloric central pattern generator. Biol Cybern 84(1):L1–L8

    Article  Google Scholar 

  • Izhikevich E (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070

    Article  Google Scholar 

  • Johnson S, Marro J, Torres JJ (2008) Functional optimization in complex excitable networks. EPL 83:46006(1–6)

    Google Scholar 

  • Kamiya H, Zucker RS (1994) Residual Ca2+ and short-term synaptic plasticity. Nature 371(6498):603–606

    Article  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 10–11

    Google Scholar 

  • Kepecs A, Lisman J (2003) Information encoding and computation with spikes and bursts. Network: Comput Neural Syst 14(1):103–118

    Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford University Press, New York

    Google Scholar 

  • Koch C, Segev I (1998) Methods in neuronal modeling: from ions to networks, 2nd edn. MIT Press, London, pp 6–17

    Google Scholar 

  • Korn H, Faure P (2003) Is there chaos in the brain? II. experimental evidence and related models. C R Biol 326(9):787–840

    Article  Google Scholar 

  • Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9:620–635

    Google Scholar 

  • Latorre R, Rodriguez FB, Varona P (2006) Neural signatures: multiple coding in spiking bursting cells. Biol Cybern 95(2):169–183

    Article  MathSciNet  MATH  Google Scholar 

  • Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Volkovskii A, Abarbanel HDO (2001) Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24:263–297

    Google Scholar 

  • Levi R, Camhi JM (2000) Population vector coding by the giant interneurons of the cockroach. J Neurosci 20(10):3822–3829

    Google Scholar 

  • Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI (2004) Dual sensorymotor function for a molluskan statocyst network. J Neurophysiol 91(1):336–345

    Article  Google Scholar 

  • Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI (2005) The role of sensory network dynamics in generating a motor program. J Neurosci 25(42):9807–9815

    Article  Google Scholar 

  • Lewis JE, Kristan WB (1998) Quantitative analysis of a directed behavior in the medicinal leech: implications for organizing motor output. J Neurosci 18(4):1571–1582

    Google Scholar 

  • Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    Article  Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76(3):687–717

    Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci USA 95(9):5323–5328

    Article  Google Scholar 

  • Matveev V, Wang XJ (2000) Differential short-term synaptic plasticity and transmission of complex spike trains: to depress or to facilitate? Cerebral Cortex 10(11):1143–1153

    Article  Google Scholar 

  • McAdams C, Maunsell J (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J Neurosci 19(1):431–441

    Google Scholar 

  • McCulloch WS, Pitts WH (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  MATH  Google Scholar 

  • McGraw PM, Menzinger M (2003) Topology and computational performance of attractor neural networks. Phys Rev E 68(4 Pt 2):047102

    Article  Google Scholar 

  • Mejias JF, Torres JJ (2008) The role of synaptic facilitation in spike coincidence detection. J Comp Neurosci 24(2):222–234

    Article  Google Scholar 

  • Mejias JF, Torres JJ (2009) Maximum memory capacity on neural networks with short-term synaptic depression and facilitation. Neural Comput 21(3):851–871

    Article  MathSciNet  MATH  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1):193–213

    Article  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070

    Article  Google Scholar 

  • Nowotny T, Huerta R (2003) Explaining synchrony in feed-forward networks: are McCulloch-Pitts neurons good enough? Biol Cybern 89(4):237–241

    Article  MATH  Google Scholar 

  • Panchin YV, Arshavsky YI, Deliagina TG, Popova LB, Orlovsky GN (1995) Control of locomotion in marine mollusk Clione limacina. ix. neuronal mechanisms of spatial orientation. J Neurophysiol 75(5):1924–1936

    Google Scholar 

  • Pantic L, Torres JJ, Kappen HJ, Gielen SCA (2002) Associative memory with dynamic synapses. Neural Comp 14(12):2903–2923

    Article  MATH  Google Scholar 

  • Peretto P (1992) An introduction to the modeling of neural networks. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Pinault D, Smith Y, Deschnes M (1997) Dendrodendritic and axoaxonic synapses in the thalamic reticular nucleus of the adult rat. J Neurosci 17(9):3215–3233

    Google Scholar 

  • Pinto RD, Varona P, Volkovskii AR, Szucs A, Abarbanel HD, Rabinovich MI (2000) Synchronous behavior of two coupled electronic neurons. Phys Rev E 62(2 Pt B):2644–2656

    Article  Google Scholar 

  • Prinz A (2006) Insights from models of rhythmic motor systems. Curr Opin Neurobiol 16(6):615–620

    Article  Google Scholar 

  • Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI (2006) Dynamical principles in neuroscience. Rev Mod Phys 78:1213–1265

    Article  Google Scholar 

  • Rabinovich MI, Huerta R, Varona P, Afraimovich VS (2008) Transient cognitive dynamics, metastability, and decision making. PLoS Comput Biol 4(5):e1000072

    Article  MathSciNet  Google Scholar 

  • Ramirez J, Tryba A, Pena F (2004) Pacemaker neurons and neuronal networks: an integrative view. Curr Opin Neurobiol 6(6):665–674

    Article  Google Scholar 

  • Reyes MB, Huerta R, Rabinovich MI, Selverston AI (2003) Artificial synaptic modification reveals a dynamical invariant in the pyloric CPG. Eur J Appl Physiol 102(6):667–675

    Article  Google Scholar 

  • Rosenblatt F (1962) Principles of neurodynamics: perceptions and the theory of brain mechanisms. Spartan Books, New York

    Google Scholar 

  • Roxin A, Riecke H, Solla SA (2004) Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett 92(19):198101

    Article  Google Scholar 

  • Rulkov NF (2001) Regularization of synchronized chaotic bursts. Phys Rev Lett 86(1):183–186

    Article  Google Scholar 

  • Rulkov NF (2002) Modeling of spiking-bursting neural behavior using two-dimensional map. Phys Rev E 65(4 Pt 1):041922

    Article  MathSciNet  Google Scholar 

  • Selverston A (2005) A neural infrastructure for rhythmic motor patterns. Cell Mol Neurobiol 25(2):223–244

    Article  Google Scholar 

  • Selverston AI, Moulins M (eds) (1987) The crustacean stomatogastric system. Springer, Berlin

    Google Scholar 

  • Selverston AI, Rabinovich MI, Abarbanel HDI, Elson R, Szcs A, Pinto RD, Huerta R, Varona P (2000) Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators. J Physiol (Paris) 94(5–6):357–374

    Article  Google Scholar 

  • Simmers AJ, Moulins M (1988) A disynaptic sensorimotor pathway in the lobster stomatogastric system. J Neurophysiol 59(3):740–756

    Google Scholar 

  • Stein SG, Grillner S, Selverston AI, Douglas GS (eds) (1997) Neurons, networks, and motor behavior. MIT Press, Cambridge

    Google Scholar 

  • Stiesberg GR, Reyes MB, Varona P, Pinto RD, Huerta R (2007) Connection topology selection in central pattern generators by maximizing the gain of information. Neural Comp 19(4):974–993

    Article  MATH  Google Scholar 

  • Swiercz W, Cios KJ, Staley K, Kurgan L, Accurso F, Sagel S (2006) A new synaptic plasticity rule for networks of spiking neurons. IEEE Trans Neural Netw 17(1):94–105

    Article  Google Scholar 

  • Szucs A, Varona P, Volkovskii AR, Abarbanel HD, Rabinovich MI, Selverston AI (2000) Interacting biological and electronic neurons generate realistic oscillatory rhythms. Neuroreport 11(11):563–569

    Article  Google Scholar 

  • Szucs A, Pinto RD, Rabinovich MI, Abarbanel HD, Selverston AI (2003) Synaptic modulation of the interspike interval signatures of bursting pyloric neurons. J Neurophysiol 89(3):1363–1377

    Article  Google Scholar 

  • Torres JJ, Garrido PL, Marro J (1997) Neural networks with fast time-variation of synapses. J Phys A: Math Gen 30:7801–7816

    Article  MathSciNet  MATH  Google Scholar 

  • Torres JJ, Munoz MA, Marro J, Garrido PL (2004) Influence of topology on the performance of a neural network. Computational Neuroscience: Trends in Research. 58–60:229–234

    Article  Google Scholar 

  • Torres JJ, Cortes JM, Marro J (2007a) Information processing with unstable memories. Neurocomputing AIP Conf Proc 887:115–128

    Article  MathSciNet  Google Scholar 

  • Torres JJ, Cortes JM, Marro J, Kappen HJ (2007b) Competition between synaptic depression and facilitation in attractor neural networks. Neural Comp 19(10):2739–2755

    Article  MathSciNet  MATH  Google Scholar 

  • Tsodyks M, Feigelman M (1988) The enhanced storage capacity in neural networks with low activity level. Europhys Lett 6:101–105

    Article  Google Scholar 

  • Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94(2):719–723

    Article  Google Scholar 

  • Tsodyks MV, Pawelzik K, Markram H (1998) Neural networks with dynamic synapses. Neural Comp 10(4):821–835

    Article  Google Scholar 

  • Varona P, Ibarz JM, López L, Herreras O (2000) Macroscopic and subcellular factors shaping population spikes. J Neurophysiol 83(4):2192–2208

    Google Scholar 

  • Varona P, Torres JJ, Huerta R, Abarbanel HDI, Rabinovich MI (2001a) Regularization mechanisms of spiking-bursting neurons. Neural Netw 14(6–7):865–875

    Article  Google Scholar 

  • Varona P, Torres JJ, Abarbanel HDI, Rabinovich MI, Elson RC (2001b) Dynamics of two electrically coupled chaotic neurons: experimental observations and model analysis. Biol Cybern 84(2):91–101

    Article  Google Scholar 

  • Varona P, Rabinovich MI, Selverston AI, Arshavsky YI (2002) Winnerless competition between sensory neurons generates chaos: a possible mechanism for molluscan hunting behavior. Chaos 12(3):672–677

    Article  MathSciNet  MATH  Google Scholar 

  • von der Malsburg C (1981) The correlation theory of brain function. MPI Biophysical Chemistry, Internal Report

    Google Scholar 

  • Zeck GM, Masland RH (2007) Spike train signatures of retinal ganglion cell types. Eur J Neurosci 26(2):367–380

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Torres, J.J., Varona, P. (2012). Modeling Biological Neural Networks. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_17

Download citation

Publish with us

Policies and ethics