Skip to main content

Computing with Spiking Neuron Networks

  • Reference work entry

Abstract

Spiking Neuron Networks (SNNs) are often referred to as the third generation of neural networks. Highly inspired by natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an accurate modeling of synaptic interactions between neurons, taking into account the time of spike firing. SNNs overcome the computational power of neural networks made of threshold or sigmoidal units. Based on dynamic event-driven processing, they open up new horizons for developing models with an exponential capacity to memorize and a strong ability to do fast adaptation. Today, the main challenge is to discover efficient learning rules that might take advantage of the specific features of SNNs while keeping the nice properties (general-purpose, easy-to-use, available simulators, etc.) of traditional connectionist models. This chapter relates the history of the “spiking neuron” in Sect. 1 and summarizes the most currently-in-use models of neurons and synaptic plasticity in Sect. 2. The computational power of SNNs is addressed in Sect. 3 and the problem of learning in networks of spiking neurons is tackled in Sect. 4, with insights into the tracks currently explored for solving it. Finally, Sect. 5 discusses application domains, implementation issues and proposes several simulation frameworks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott LF (1999) Brain Res Bull 50(5/6):303–304

    Article  Google Scholar 

  • Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183

    Article  Google Scholar 

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17

    Article  Google Scholar 

  • Atiya A, Parlos AG (2000) New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans Neural Netw 11(3):697–709

    Article  Google Scholar 

  • Auer P, Burgsteiner H, Maass W (2008) A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Neural Netw 21(5):786–795

    Article  Google Scholar 

  • Azhar H, Iftekharuddin K, Kozma R (2005) A chaos synchronization-based dynamic vision model for image segmentation. In: IJCNN 2005, International joint conference on neural networks. IEEE–INNS, Montreal, pp 3075–3080

    Google Scholar 

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

  • Barber D (2003) Learning in spiking neural assemblies. In: Becker S, Thrun S, Obermayer K (eds) NIPS 2002, Advances in neural information processing systems, vol 15. MIT Press, Cambridge, MA, pp 165–172

    Google Scholar 

  • Barber MJ, Clark JW, Anderson CH (2005) Neural representation of probabilistic information, vol 15. MIT Press, Cambridge, MA

    Google Scholar 

  • Belatreche A, Maguire LP, McGinnity M (2007) Advances in design and application of spiking neural networks. Soft Comput-A Fusion Found Methodol Appl 11:239–248

    Google Scholar 

  • Bell A, Parra L (2005) Maximising information yields spike timing dependent plasticity. In: Saul LK, Weiss Y, Bottou L (eds) NIPS 2004, Advances in neural information processing systems, vol 17. MIT Press, Cambridge, MA, pp 121–128

    Google Scholar 

  • Bi G-q, Poo M-m (1998) Synaptic modification in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and polysynaptic cell type. J Neurosci 18(24):10464–10472

    Google Scholar 

  • Bi G-q, Poo M-m (2001) Synaptic modification of correlated activity: Hebb's postulate revisited. Annu Rev Neurosci 24:139–166

    Article  Google Scholar 

  • Bialek W, Rieke F, de Ruyter R, van Steveninck RR, Warland D (1991) Reading a neural code. Science 252:1854–1857

    Article  Google Scholar 

  • Blum A, Rivest R (1989) Training a 3-node neural net is NP-complete. In: Proceedings of NIPS 1988, advances in neural information processing systems. MIT Press, Cambridge, MA, pp 494–501

    Google Scholar 

  • Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK (1989) Learnability and the Vapnik-Chervonenkis dimension. J ACM 36(4):929–965

    Article  MathSciNet  MATH  Google Scholar 

  • Bobrowski O, Meir R, Shoham S, Eldar YC (2007) A neural network implementing optimal state estimation based on dynamic spike train decoding. In: Schölkopf B, Platt JC, Hoffman T (eds) NIPS 2006, Advances in neural information processing systems, vol 20. MIT Press, Cambridge, MA, pp 145–152

    Google Scholar 

  • Bohte SM, Mozer MC (2007) Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural Comput 19:371–403

    Article  MathSciNet  MATH  Google Scholar 

  • Bohte SM, Kok JN, La Poutre H (2002a) Spike-prop: error-backpropagation in multi-layer networks of spiking neurons. Neurocomputing 48:17–37

    Article  MATH  Google Scholar 

  • Bohte SM, La Poutre H, Kok JN (2002b) Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans Neural Netw 13:426–435

    Article  Google Scholar 

  • Booij O, tat Nguyen H (2005) A gradient descent rule for spiking neurons emitting multiple spikes. Info Process Lett 95:552–558

    Article  MathSciNet  MATH  Google Scholar 

  • Bouchut Y, Paugam-Moisy H, Puzenat D (2003) Asynchrony in a distributed modular neural network for multimodal integration. In: PDCS 2003, International conference on parallel and distributed computing and systems. ACTA Press, Calgary, pp 588–593

    Google Scholar 

  • Bower JM, Beeman D (1998) The book of GENESIS: exploring realistic neural models with the General Simulation system, 2nd edn. Springer, New York

    Google Scholar 

  • Brette R, Rudolph M, Hines T, Beeman D, Bower JM et al. (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23(3):349–398

    Article  MathSciNet  Google Scholar 

  • Brunel N, Latham PE (2003) Firing rate of the noisy quadratic integrate-and-fire neuron, vol 15. MIT Press, Cambridge

    Google Scholar 

  • Buchs NJ, Senn W (2002) Spike-based synaptic plasticity and the emergence of direction selective simple cells: simulation results. J Comput Neurosci 13:167–186

    Article  Google Scholar 

  • Büsing L, Maass W (2008) Simplified rules and theoretical analysis for information bottleneck optimization and PCA with spiking neurons. In: NIPS 2007, Advances in neural information processing systems, vol 20. MIT Press, Cambridge

    Google Scholar 

  • Câteau H, Fukai T (2003) A stochastic method to predict the consequence of arbitrary forms of spike-timing-dependent plasticity. Neural Comput 15(3):597–620

    Article  MATH  Google Scholar 

  • Cessac B, Paugam-Moisy H, Viéville T (2010) Overview of facts and issues about neural coding by spikes. J Physiol (Paris) 104:5–18

    Article  Google Scholar 

  • Chechik G (2003) Spike-timing dependent plasticity and relevant mutual information maximization. Neural Comput 15(7):1481–1510

    Article  MATH  Google Scholar 

  • Chevallier S, Tarroux P (2008) Covert attention with a spiking neural network. In: ICVS'08, Computer Vision Systems, Santorini, 2008. Lecture notes in computer science, vol 5008. Springer, Heidelberg, pp 56–65

    Google Scholar 

  • Chevallier S, Paugam-Moisy H, Lemaître F (2005) Distributed processing for modelling real-time multimodal perception in a virtual robot. In: PDCN 2005, International conference on parallel and distributed computing and networks. ACTA Press, Calgary, pp 393–398

    Google Scholar 

  • Chevallier S, Tarroux P, Paugam-Moisy H (2006) Saliency extraction with a distributed spiking neuron network. In: Verleysen M (ed) ESANN'06, Advances in computational intelligence and learning. D-Side Publishing, Evere, Belgium, pp 209–214

    Google Scholar 

  • Chicca E, Badoni D, Dante V, d'Andreagiovanni M, Salina G, Carota L, Fusi S, Del Giudice P (2003) A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory. IEEE Trans Neural Netw 14(5):1297–1307

    Article  Google Scholar 

  • Crépet A, Paugam-Moisy H, Reynaud E, Puzenat D (2000) A modular neural model for binding several modalities. In: Arabnia HR (ed) IC-AI 2000, International conference on artificial intelligence. CSREA Press, Las Vegas, pp 921–928

    Google Scholar 

  • Cybenko G (1988) Approximation by superpositions of a sigmoidal function. Math Control Signal Syst 2:303–314

    Article  MathSciNet  Google Scholar 

  • Daw ND, Courville AC (2008) The pigeon as particle filter. In: NIPS 2007, Advances in neural information processing systems, vol 20. MIT Press, Cambridge, MA

    Google Scholar 

  • Delorme A, Gautrais J, Van Rullen R, Thorpe S (1999) SpikeNET: a simulator for modeling large networks of integrate and fire neurons. Neurocomputing 26–27:989–996

    Article  Google Scholar 

  • Deneve S (2008a) Bayesian spiking neurons. I. Inference. Neural Comput 20:91–117

    Article  MathSciNet  MATH  Google Scholar 

  • Deneve S (2008b) Bayesian spiking neurons. II. Learning. Neural Comput 20:118–145

    Article  MathSciNet  MATH  Google Scholar 

  • Devert A, Bredeche N, Schoenauer M (2007) Unsupervised learning of echo state networks: a case study in artificial embryogeny. In: Montmarché N et al. (eds) Artificial evolution, selected papers, Lecture Notes in Computer Science, vol 4926/2008, pp 278–290

    Google Scholar 

  • Eguíluz VM, Chialvo GA, Cecchi DR, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94(1):018102

    Article  Google Scholar 

  • Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46:233

    Article  MathSciNet  MATH  Google Scholar 

  • Floreano D, Zufferey JC, Nicoud JD (2005) From wheels to wings with evolutionary spiking neurons. Artif Life 11(1–2):121–138

    Article  Google Scholar 

  • Floreano D, Epars Y, Zufferey J-C, Mattiussi C (2006) Evolution of spiking neural circuits in autonomous mobile robots. Int J Intell Syst 21(9):1005–1024

    Article  Google Scholar 

  • Funahashi K (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2(3):183–192

    Article  Google Scholar 

  • Gerstner W (1995) Time structure of the activity in neural network models. Phys Rev E 51:738–758

    Article  Google Scholar 

  • Gerstner W, Kistler WM (2002a) Mathematical formulations of Hebbian learning. Biol Cybern 87(5–6):404–415

    Article  MATH  Google Scholar 

  • Gerstner W, Kistler W (2002b) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Gerstner W, van Hemmen JL (1994) How to describe neuronal activity: spikes, rates or assemblies? In: Cowan JD, Tesauro G, Alspector J (eds) NIPS 1993, Advances in neural information processing system, vol 6. MIT Press, Cambridge, MA, pp 463–470

    Google Scholar 

  • Gerwinn S, Macke JH, Seeger M, Bethge M (2007) Bayesian inference for spiking neuron models with a sparsity prior. In: NIPS 2006, Advances in neural information processing systems, vol 19. MIT Press, Cambridge, MA

    Google Scholar 

  • Hartland C, Bredeche N (2007) Using echo state networks for robot navigation behavior acquisition. In: ROBIO'07, Sanya, China

    Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Heiligenberg W (1991) Neural nets in electric fish. MIT Press, Cambridge, MA

    Google Scholar 

  • Hellmich HH, Geike M, Griep P, Rafanelli M, Klar H (2005) Emulation engine for spiking neurons and adaptive synaptic weights. In: IJCNN 2005, International joint conference on neural networks. IEEE-INNS, Montreal, pp 3261–3266

    Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209

    Article  Google Scholar 

  • Hines ML, Carnevale NT (2004) Discrete event simulation in the NEURON environment. Neurocomputing 58–60:1117–1122

    Article  Google Scholar 

  • Hines ML, Carnevale NT (2008) Translating network models to parallel hardware in NEURON. J Neurosci Methods 169:425–455

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. J Physiol 117:500–544

    Google Scholar 

  • Holmberg M, Gelbart D, Ramacher U, Hemmert W (2005) Automatic speech recognition with neural spike trains. In: Interspeech 2005 – Eurospeech, 9th European conference on speech communication and technology, Lisbon, pp 1253–1256

    Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554–2558

    Article  MathSciNet  Google Scholar 

  • Hopfield JJ (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376:33–36

    Article  Google Scholar 

  • Hopfield JJ, Brody CD (2000) What is a moment? “Cortical” sensory integration over a brief interval. Proc Natl Acad Sci 97(25):13919–13924

    Article  Google Scholar 

  • Hopfield JJ, Brody CD (2001) What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc Natl Acad Sci 98(3):1282–1287

    Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  • Huys QJM, Zemel RS, Natarajan R, Dayan P (2007) Fast population coding. Neural Comput 19:404–441

    Article  MathSciNet  MATH  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  MathSciNet  Google Scholar 

  • Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070

    Article  Google Scholar 

  • Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18(2):245–282

    Article  MathSciNet  MATH  Google Scholar 

  • Izhikevich EM (2007) Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex 17(10):2443–2452

    Article  Google Scholar 

  • Izhikevich EM, Desai NS (2003) Relating STDP and BCM. Neural Comput 15(7):1511–1523

    Article  MATH  Google Scholar 

  • Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb Cortex 14:933–944

    Article  Google Scholar 

  • Jaeger H (2001) The “echo state” approach to analysing and training recurrent neural networks. Technical Report TR-GMD-148, German National Research Center for Information Technology

    Google Scholar 

  • Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the “echo state network” approach. Technical Report TR-GMD-159, German National Research Center for Information Technology

    Google Scholar 

  • Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless telecommunication. Science 304(5667):78–80

    Article  Google Scholar 

  • Jaeger H, Lukoševičius M, Popovici D, Siewert U (2007) Optimization and applications of echo state networks with leaky-integrator neurons. Neural Netw 20(3):335–352

    Article  MATH  Google Scholar 

  • Jiang F, Berry H, Schoenauer M (2008a) Supervised and evolutionary learning of echo state networks. In: Rudolph G et al. (eds) Proceedings of the 10th international conference on parallel problem solving from nature: PPSN X. Lecture notes in computer science, vol 5199. Springer, pp 215–224

    Google Scholar 

  • Jiang F, Berry H, Schoenauer M (2008b) Unsupervised learning of echo state networks: balancing the double pole. In: GECCO’08: Proceedings of the 10th annual conference on genetic and evolutionary computation, ACM, New York, pp 869–870

    Google Scholar 

  • Johnston S, Prasad G, Maguire L, McGinnity T (2005) Comparative investigation into classical and spiking neuron implementations on FPGAs. In: ICANN 2005, International conference on artificial neural networks. Lecture notes in computer science, vol 3696. Springer, New York, pp 269–274

    Google Scholar 

  • Judd JS (1990) Neural network design and the complexity of learning. MIT Press, Cambridge, MA

    Google Scholar 

  • Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and spiking neurons. Phys Rev E 59(4):4498–4514

    Article  MathSciNet  Google Scholar 

  • Kistler WM (2002) Spike-timing dependent synaptic plasticity: a phenomenological framework. Biol Cyber 87(5–6):416–427

    Article  MATH  Google Scholar 

  • Kistler WM, Gerstner W, van Hemmen JL (1997) Reduction of Hodgkin–Huxley equations to a single-variable threshold model. Neural Comput 9:1015–1045

    Article  Google Scholar 

  • Klampfl S, Legenstein R, Maass W (2009) Spiking neurons can learn to solve information bottleneck problems and extract independent components. Neural Comput 21(4):911–959

    Article  MathSciNet  MATH  Google Scholar 

  • Koerding KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427:244–247

    Article  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Article  MathSciNet  MATH  Google Scholar 

  • Kutch JJ (2004) Neuromorphic approaches to rehabilitation. Neuromorphic Eng 1(2):1–2

    Google Scholar 

  • Kuwabara N, Suga N (1993) Delay lines and amplitude selectivity are created in subthalamic auditory nuclei: the brachium of the inferior colliculus of the mustached bat. J Neurophysiol 69:1713–1724

    Google Scholar 

  • LeCun Y, Jackel LD, Bottou L, Cortes C, Denker JS, Drucker H, Guyon I, Muller UA, Sackinger E, Simard P (1995) Learning algorithms for classification: a comparison on handwritten digit recognition, vol 276. World Scientific, Singapore

    Google Scholar 

  • Legenstein R, Maass W (2005) What makes a dynamical system computationally powerful? In: Haykin S, Principe JC, Sejnowski TJ, McWhirter JG (eds) New directions in statistical signal processing: from systems to brain. MIT Press, Cambridge, MA

    Google Scholar 

  • Legenstein R, Näger C, Maass W (2005) What can a neuron learn with spike-time-dependent plasticity? Neural Comput 17(11):2337–2382

    Article  MathSciNet  MATH  Google Scholar 

  • Legenstein R, Pecevski D, Maass W (2008) Theoretical analysis of learning with reward-modulated spike-timing-dependent plasticity. In: NIPS 2007, Advances in neural information processing systems, vol 20. MIT Press, Cambridge, MA

    Google Scholar 

  • Lewicki MS (2002) Efficient coding of natural sounds. Nat Neurosci 5:356–363

    Article  Google Scholar 

  • Loiselle S, Rouat J, Pressnitzer D, Thorpe S (2005) Exploration of rank order coding with spiking neural networks for speech recognition. In: IJCNN 2005, International joint conference on neural networks. IEEE–INNS Montreal, pp 2076–2080

    Google Scholar 

  • Lukoševičius M, Jaeger H (July 2007) Overview of reservoir recipes. Technical Report 11, Jacobs University Bremen

    Google Scholar 

  • Ma WJ, Beck JM, Pouget A (2008) Spiking networks for Bayesian inference and choice. Curr Opin Neurobiol 18(2):217–222

    Article  Google Scholar 

  • Maass W (1997a) Fast sigmoidal networks via spiking neurons. Neural Comput 10:1659–1671

    Google Scholar 

  • Maass W (1997b) Networks of spiking neurons: the third generation of neural network models. Neural Netw 10:1659–1671

    Article  Google Scholar 

  • Maass W (2001) On the relevance of time in neural computation and learning. Theor Comput Sci 261:157–178 (extended version of ALT'97, in LNAI 1316:364–384)

    Article  MathSciNet  MATH  Google Scholar 

  • Maass W, Bishop CM (eds) (1999) Pulsed neural networks. MIT Press, Cambridge, MA

    Google Scholar 

  • Maass W, Natschläger T (1997) Networks of spiking neurons can emulate arbitrary Hopfield nets in temporal coding. Netw: Comput Neural Syst 8(4):355–372

    Article  MATH  Google Scholar 

  • Maass W, Schmitt M (1997) On the complexity of learning for a spiking neuron. In: COLT'97, Conference on computational learning theory. ACM Press, New York, pp 54–61

    Google Scholar 

  • Maass W, Schmitt M (1999) On the complexity of learning for spiking neurons with temporal coding. Info Comput 153:26–46

    Article  MathSciNet  MATH  Google Scholar 

  • Maass W, Steinbauer G, Koholka R (2002a) Autonomous fast learning in a mobile robot. In: Hager GD, Christensen HI, Bunke H, Klein R (eds) Sensor based intelligent robots, vol 2238. Springer, Berlin, pp 345–356

    Chapter  Google Scholar 

  • Maass W, Natschläger T, Markram H (2002b) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14(11):2531–2560

    Article  MATH  Google Scholar 

  • Makino T (2003) A discrete event neural network simulator for general neuron model. Neural Comput Appl 11(2):210–223

    MATH  Google Scholar 

  • Markram H, Tsodyks MV (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurones. Nature 382:807–809

    Article  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  Google Scholar 

  • Masquelier T, Thorpe SJ, Friston KJ (2007) Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol 3:e31

    Article  Google Scholar 

  • Mattia M, Del Giudice P (2000) Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comput 12: 2305–2329

    Article  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  MATH  Google Scholar 

  • McKennoch S, Voegtlin T, Bushnell L (2009) Spike-timing error backpropagation in theta neuron networks. Neural Comput 21(1):9–45

    Article  MathSciNet  MATH  Google Scholar 

  • Meunier D (2007) Une modélisation évolutionniste du liage temporel (in French). PhD thesis, University Lyon 2, http://demeter.univ-lyon2.fr/sdx/theses/lyon2/2007/meunier_d, 2007

  • Meunier D, Paugam-Moisy H (2004) A “spiking” bidirectional associative memory for modeling intermodal priming. In: NCI 2004, International conference on neural networks and computational intelligence. ACTA Press, Calgary, pp 25–30

    Google Scholar 

  • Meunier D, Paugam-Moisy H (2005) Evolutionary supervision of a dynamical neural network allows learning with on-going weights. In: IJCNN 2005, International joint conference on neural networks. IEEE–INNS, Montreal, pp 1493–1498

    Google Scholar 

  • Meunier D, Paugam-Moisy H (2006) Cluster detection algorithm in neural networks. In: Verleysen M (ed) ESANN'06, Advances in computational intelligence and learning. D-Side Publishing, Evere, Belgium, pp 19–24

    Google Scholar 

  • Mitra S, Fusi S, Indiveri G (2006) A VLSI spike-driven dynamic synapse which learns only when necessary. In: Proceedings of IEEE international symposium on circuits and systems (ISCAS) 2006. IEEE Press, New York, p 4

    Chapter  Google Scholar 

  • Mouraud A, Paugam-Moisy H (2006) Learning and discrimination through STDP in a top-down modulated associative memory. In: Verleysen M (ed) ESANN'06, Advances in computational intelligence and learning. D-Side Publishing, Evere, Belgium, pp 611–616

    Google Scholar 

  • Mouraud A, Paugam-Moisy H, Puzenat D (2006) A distributed and multithreaded neural event driven simulation framework. In: PDCN 2006, International conference on parallel and distributed computing and networks, Innsbruck, Austria, February 2006. ACTA Press, Calgary, 2006

    Google Scholar 

  • Mouraud A, Puzenat D (2009) Simulation of large spiking neuron networks on distributed architectures, the “DAMNED” simulator. In: Palmer-Brown D, Draganova C, Pimenidis E, Mouratidis H (eds) EANN 2009, Engineering applications of neural networks. Communications in computer and information science, vol 43. Springer, pp 359–370

    Chapter  Google Scholar 

  • Natschläger T, Ruf B (1998a) Online clustering with spiking neurons using radial basis functions. In: Hamilton A, Smith LS (eds) Neuromorphic systems: engineering silicon from neurobiology. World Scientific, Singapore, Chap 4

    Google Scholar 

  • Natschläger T, Ruf B (1998b) Spatial and temporal pattern analysis via spiking neurons. Netw: Comp Neural Syst 9(3):319–332

    Article  MATH  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  MathSciNet  MATH  Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    Article  Google Scholar 

  • Nowotny T, Zhigulin VP, Selverston AI, Abardanel HDI, Rabinovich MI (2003) Enhancement of synchronization in a hybrid neural circuit by spike-time-dependent plasticity. J Neurosci 23(30):9776–9785

    Google Scholar 

  • Olshausen BA, Fields DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609

    Article  Google Scholar 

  • Oster M, Whatley AM, Liu S-C, Douglas RJ (2005) A hardware/software framework for real-time spiking systems. In: ICANN 2005, International conference on artificial neural networks. Lecture notes in computer science, vol 3696. Springer, New York, pp 161–166

    Google Scholar 

  • Panchev C, Wermter S (2006) Temporal sequence detection with spiking neurons: towards recognizing robot language instructions. Connect Sci 18:1–22

    Article  MATH  Google Scholar 

  • Paugam-Moisy H, Martinez R, Bengio S (2008) Delay learning and polychronization for reservoir computing. Neurocomputing 71(7–9):1143–1158

    Article  Google Scholar 

  • Perrinet L, Samuelides M (2002) Sparse image coding using an asynchronous spiking neural network. In: Verleysen M (ed) ESANN 2002, European symposium on artificial neural networks. D-Side Publishing, Evere, Belgium, pp 313–318

    Google Scholar 

  • Pfister J-P, Gerstner W (2006) Beyond pair-based STDP: a phenomenological rule for spike triplet and frequency effects. In: NIPS 2005, Advances in neural information processing systems, vol 18. MIT Press, Cambridge, MA, pp 1083–1090

    Google Scholar 

  • Pfister J-P, Barber D, Gerstner W (2003) Optimal Hebbian learning: a probabilistic point of view. In: Kaynak O, Alpaydin E, Oja E, Xu L (eds) ICANN/ICONIP 2003, International conference on artificial neural networks. Lecture notes in computer science, vol 2714. Springer, Heidelberg, pp 92–98

    Google Scholar 

  • Pfister J-P, Toyoizumi T, Barber D, Gerstner W (2006) Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural Comput 18(6):1318–1348

    Article  MathSciNet  MATH  Google Scholar 

  • Poggio T, Girosi F (1989) Networks for approximation and learning. Proc IEEE 78(9):1481–1497

    Article  Google Scholar 

  • Rao RPN (2005) Hierarchical Bayesian inference in networks of spiking neurons. In: Saul LK, Weiss Y, Bottou L (eds) NIPS 2004, Advances in neural information processing systems, vol 17. MIT Press, Cambridge, MA, pp 1113–1120

    Google Scholar 

  • Recce M (1999) Encoding information in neuronal activity. In: Maass W, Bishop CM (eds) Pulsed neural networks. MIT Press, Cambridge

    Google Scholar 

  • Reutimann J, Giugliano M, Fusi S (2003) Event-driven simulation of spiking neurons with stochastic dynamics. Neural Comput 15(4):811–830

    Article  MATH  Google Scholar 

  • Rochel O, Martinez D (2003) An event-driven framework for the simulation of networks of spiking neurons. In: Verleysen M (ed) ESANN'03, European symposium on artificial neural networks. D-Side Publishing, Evere, Belgium, pp 295–300

    Google Scholar 

  • Rubin J, Lee DD, Sompolinsky H (2001) Equilibrium properties of temporal asymmetric Hebbian plasticity. Phys Rev Lett 86:364–366

    Article  Google Scholar 

  • Rudolph M, Destexhe A (2006) Event-based simulation strategy for conductance-based synaptic interactions and plasticity. Neurocomputing 69: 1130–1133

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  • Sahani M, Dayan P (2003) Doubly distributional population codes: Simultaneous representation of uncertainty and multiplicity. Neural Comput 15:2255–2279

    Article  MATH  Google Scholar 

  • Salmen M, Plöger PG (2005) Echo state networks used for motor control. In: ICRA 2005, International joint conference on robotics and automation. IEEE, New York, pp 1953–1958

    Chapter  Google Scholar 

  • Saudargiene A, Porr B, Wörgötter F (2004) How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comput 16(3): 595–625

    Article  MATH  Google Scholar 

  • Schmidhuber J, Wiestra D, Gagliolo D, Gomez M (2007) Training recurrent networks by Evolino. Neural Comput 19(3):757–779

    Article  MATH  Google Scholar 

  • Schmitt M (1998) On computing Boolean functions by a spiking neuron. Ann Math Artif Intell 24: 181–191

    Article  MATH  Google Scholar 

  • Schmitt M (2004) On the sample complexity of learning for networks of spiking neurons with nonlinear synaptic interactions. IEEE Trans Neural Netw 15(5): 995–1001

    Article  Google Scholar 

  • Schrauwen B, Van Campenhout J (2004a) Extending SpikeProp. In: Proceedings of the international joint conference on neural networks, vol 1. IEEE Press, New York, pp 471–476

    Google Scholar 

  • Schrauwen B, Van Campenhout J (2004b) Improving spikeprop: enhancements to an error-backpropagation rule for spiking neural networks. In: Proceedings of the 15th ProRISC workshop, vol 11

    Google Scholar 

  • Schrauwen B, D'Haene M, Verstraeten D, Van Campenhout J (2007a) Compact hardware for real-time speech recognition using a liquid state machine. In: IJCNN 2007, International joint conference on neural networks, 2007, pp 1097–1102

    Google Scholar 

  • Schrauwen B, Verstraeten D, Van Campenhout J (2007b) An overview of reservoir computing: theory, applications and implementations. In: Verleysen M (ed) ESANN'07, Advances in computational intelligence and learning. D-Side Publishing, Evere, Belgium, pp 471–482

    Google Scholar 

  • Schrauwen B, Büsing L, Legenstein R (2009) On computational power and the order-chaos phase transition in reservoir computing. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) NIPS'08, advances in neural information processing systems, vol 21. MIT Press, Cambridge, MA, pp 1425–1432

    Google Scholar 

  • Séguie R, Mercier D (2002) Audio-visual speech recognition one pass learning with spiking neurons. In: ICANN'02, International conference on artificial neural networks. Springer, Berlin, pp 1207–1212

    Google Scholar 

  • Senn W, Markram H, Tsodyks M (2001) An algorithm for modifying neurotransmitter release probability based on pre- and post-synaptic spike timing. Neural Comput 13(1):35–68

    Article  MATH  Google Scholar 

  • Siegelmann HT (1999) Neural networks and analog computation, beyond the Turing limit. Birkhauser, Boston, MA

    MATH  Google Scholar 

  • Sima J, Sgall J (2005) On the nonlearnability of a single spiking neuron. Neural Comput 17(12):2635–2647

    Article  MathSciNet  MATH  Google Scholar 

  • Smith EC, Lewicki MS (2006) Efficient auditory coding. Nature 439:978–982

    Article  Google Scholar 

  • Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-time dependent synaptic plasticity. Nat Neurosci 3(9):919–926

    Article  Google Scholar 

  • Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comp Biol 1(4):e42

    Article  Google Scholar 

  • Standage DI, Trappenberg TP (2005) Differences in the subthreshold dynamics of leaky integrate-and-fire and Hodgkin-Huxley neuron models. In: IJCNN 2005, International joint conference on neural networks. IEEE–INNS, Montreal, pp 396–399

    Google Scholar 

  • Steil JJ (2004) Backpropagation-decorrelation: Online recurrent learning with O(n) complexity. In: IJCNN 2004, International joint conference on neural networks, vol 1. IEEE–INNS, Montreal, pp 843–848

    Google Scholar 

  • Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5:173–194

    Article  Google Scholar 

  • Tenore F (2004) Prototyping neural networks for legged locomotion using custom aVLSI chips. Neuromorphic Eng 1(2):4, 8

    Google Scholar 

  • Thorpe SJ, Gautrais J (1997) Rapid visual processing using spike asynchrony. In: Mozer M, Jordan MI, Petsche T (eds) NIPS 1996, Advances in neural information processing systems, volume 9. MIT Press, Cambridge, MA, pp 901–907

    Google Scholar 

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381(6582):520–522

    Article  Google Scholar 

  • Thorpe S, Delorme A, Van Rullen R (2001) Spike-based strategies for rapid processing. Neural Netw 14:715–725

    Article  Google Scholar 

  • Toyoizumi T, Pfister J-P, Aihara K, Gerstner W (2005a) Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission. Proc Natl Acad Sci USA 102(14):5239–5244

    Article  Google Scholar 

  • Toyoizumi T, Pfister J-P, Aihara K, Gerstner W (2005b) Spike-timing dependent plasticity and mutual information maximization for a spiking neuron model. In: Saul LK, Weiss Y, Bottou L (eds) NIPS 2004, Advances in neural information processing systems, vol 17. MIT Press, Cambridge, MA, pp 1409–1416

    Google Scholar 

  • Turing AM (1939) Systems of logic based on ordinals. Proc Lond Math Soc 45(2):161–228

    Article  MathSciNet  Google Scholar 

  • Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460

    Article  MathSciNet  Google Scholar 

  • Upegui A, Peña Reyes CA, Sanchez E (2004) An FPGA platform for on-line topology exploration of spiking neural networks. Microprocess Microsyst 29:211–223

    Article  Google Scholar 

  • Valiant LG (1984) A theory of the learnable. Commun ACM 27(11):1134–1142

    Article  MATH  Google Scholar 

  • van Hulle M (2000) Faithful representations and topographic maps: from distortion- to information-based self-organization. Wiley, New York

    Google Scholar 

  • Van Rullen R, Thorpe S (2001) Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput 13: 1255–1283

    Article  MATH  Google Scholar 

  • Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  • Verstraeten D, Schrauwen B, Stroobandt D (2005) Isolated word recognition using a liquid state machine. In: Verleysen M (ed) ESANN'05, European symposium on artificial neural networks. D-Side Publishing, Evere, Belgium, pp 435–440

    Google Scholar 

  • Verstraeten D, Schrauwen B, D'Haene M, Stroobandt D (2007) An experimental unification of reservoir computing methods. Neural Netw 20(3):391–403

    Article  MATH  Google Scholar 

  • Viéville T, Crahay S (2004) Using an Hebbian learning rule for multi-class SVM classifiers. J Comput Neurosci 17(3):271–287

    Article  Google Scholar 

  • Volkmer M (2004) A pulsed neural network model of spectro-temporal receptive fields and population coding in auditory cortex. Nat Comput 3: 177–193

    Article  MathSciNet  Google Scholar 

  • Wang G, Pavel M (2005) A spiking neuron representation of auditory signals. In: IJCNN 2005, International joint conference on neural networks. IEEE–INNS, Montreal, pp 416–421

    Google Scholar 

  • Watts L (1994) Event-driven simulation of networks of spiking neurons. In: Cowan JD, Tesauro G, Alspector J (eds) NIPS 1993, Advances in neural information processing systems, vol 6. MIT Press, Cambridge, MA, pp 927–934

    Google Scholar 

  • Watts D, Strogatz S (1998) Collective dynamics of “small-world” networks. Nature 393:440–442

    Article  Google Scholar 

  • Wennekers T, Sommer F, Aertsen A (2003) Editorial: cell assemblies. Theory Biosci (special issue) 122:1–4

    Google Scholar 

  • Wu S, Chen D, Niranjan M, Amari S (2003) Sequential Bayesian decoding with a population of neurons. Neural Comput 15:993–1012

    Article  MATH  Google Scholar 

  • Wysoski SG, Benuskova L, Kasabov N (2008) Fast and adaptive network of spiking neurons for multi-view visual pattern recognition. Neurocomputing 71(13–15):2563–2575

    Article  Google Scholar 

  • Xie X, Seung HS (2004) Learning in neural networks by reinforcement of irregular spiking. Phys Rev E 69(041909)

    MathSciNet  Google Scholar 

  • Xin J, Embrechts MJ (2001) Supervised learning with spiking neuron networks. In: Proceedings of the IJCNN 2001 IEEE international joint conference on neural networks, Washington, DC, vol 3. IEEE Press, New York, pp 1772–1777

    Google Scholar 

  • Zador AM, Pearlmutter BA (1996) VC dimension of an integrate-and-fire neuron model. Neural Comput 8(3):611–624

    Article  Google Scholar 

  • Zemel RS, Dayan P, Pouget A (1998) Probabilistic interpretation of population codes. Neural Comput 10:403–430

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hélène Paugam-Moisy or Sander Bohte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Paugam-Moisy, H., Bohte, S. (2012). Computing with Spiking Neuron Networks. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_10

Download citation

Publish with us

Policies and ethics