Skip to main content

Synthesis of Radiolabeled Compounds for Clinical Studies

  • Reference work entry
Drug Discovery and Evaluation: Methods in Clinical Pharmacology

Abstract

During the development of new drugs the candidate’s pharmacokinetic (PK) properties and the absorption, distribution, metabolism, and elimination (ADME) characteristics have to be evaluated first in vitro, then in animals and finally in humans (Caldwell et al. 1995; Roffey et al. 2007). The objectives of human ADME studies are to evaluate mass balance data and, most important, to confirm that the metabolism of the drug is similar to what was described in animal species (Deroubaix and Coquette 2004). In order to keep track of the drug molecules throughout the body and excreta even after their transformation into different metabolites, the administration of radiolabeled drugs is considered essential (Marathe et al. 2004; Dalvie 2000). Usually, 14C is the label of choice for most drug candidates since it can be introduced into a metabolically stable position in the backbone of the compound, the detection is easy and in case of combustion of samples the produced 14CO2 can be nicely absorbed quantitatively (see Scheme B.11-1 ) (Beumer et al. 2006). Generally, 3H-labeled drugs can be prepared more easily and quickly than their 14C counterparts. On the other hand, the 3H-label is often less biologically stable and it is more difficult to predict its metabolic stability and therefore one always needs to bear in mind the potential risk of the in vivo formation of 3H2O (Dueker et al. 1998). The latter is highly toxic and can be distributed in the whole body, which makes radioactivity measurement and quantification even in animal studies more difficult. Therefore, 3H-labeled drug candidates are usually administered less frequently to humans and only if the specific activity of the 14C compound is not sufficiently high enough for the planned investigations, for example, in case of high molecular weight and/or very low dose drugs. For large complex biological molecules, such as proteins, antibodies, etc. a 3H or 14C-labeling by a total synthesis approach could be extremely difficult or even impossible and hence, an iodination with 125I2 or a 125I-precursor could be an alternative approach (Dewanjee 1992). However, the structural changes caused by an additional iodine atom in the molecule have to be considered and both materials (iodinated and non-iodinated) tested for bioequivalence. Other potential radioactive isotopes are 33P and 35S but compared to 14C, these isotopes were much less frequently applied for labeling of drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES AND FURTHER READING

  • Abramson FP, Teffera Y, Kusmierz J, Steenwyck R, Pearson PG (1996) Replacing 14C with stable isotopes in drug metabolism studies. Drug Metab Dispos 24:697–701

    CAS  PubMed  Google Scholar 

  • Allen J, Parent G, Tizot A (1986) Synthesis of [3H]Zolpidem. J Label Compd Radiopharm 23:807–813

    Article  CAS  Google Scholar 

  • Allen J, Parent G, Rivron L (1992) The use of organopalladium chemistry in isotopic carbon incorporation. In: Bunzel E, Kabalka GW (eds) Proceedings of the fourth IIS symposium, Innsbruck, Synthesis and applications of isotopically labelled compounds. Elsevier Science Publishers, Amsterdam, pp 202–206

    Google Scholar 

  • Allen J, Brasseur DM, De Bruin B, Denoux M, Pérard S, Philippe N, Roy S (2006) The use of biocatalysis in the synthesis of labelled compounds. Proceedings of the ninth international symposium on the synthesis and applications of isotopically labelled compounds, Edinburgh, UK, 16–20 July 2006

    Google Scholar 

  • Allen J, Brasseur DM, De Bruin B, Denoux M, Pérard S, Philippe N, Roy S (2007) J Label Compd Radiopharm 50:342–346

    Article  CAS  Google Scholar 

  • Allentoff AJ, Markus B, Duelfer T, Wu A, Jones L, Ciszewska G, Ray T (2000) Palladium-catalyzed aryl cyanations with [14C]KCN: synthesis of [14C]-labelled Fadrozole, a potent aromatase inhibitor. J Label Compd Radiopharm 43:1075–1085

    Article  CAS  Google Scholar 

  • Atzrodt J, Derdau V, Fey T, Zimmermann J (2007) The renaissance of H/D exchange. Angew Chem Int Ed 46:7744–7765

    Article  CAS  Google Scholar 

  • Bayly RJ, Evans EA (1966) Stability and storage of compounds labelled with radioisotopes. J Label Compd 2:1–34

    Article  CAS  Google Scholar 

  • Bayly RJ, Evans EA (1968) Storage and stability of compounds labelled with radioisotopes. Amersham Review No. 7

    Google Scholar 

  • Bayly RJ, Weigel H (1960) Self-decomposition of compounds labelled with radioisotopes. Nature 188:384–387

    Article  CAS  PubMed  Google Scholar 

  • Benakis A (1994) The importance of labelling of bioactive compounds in the development of new drugs. In: Kourounakis PN (ed) Advanced Drug Design And Development: A Medicinal Chemistry Approach. Routledge, New York, pp 123–136

    Google Scholar 

  • Benakis A, Sugnaux FR, Collet FR, Kradolfer GF, Berney JP, Sion C, Necciari J, Cautreels W (1986) Carbon-14 photosynthesis labelling of natural compounds and drugs from plants. Proceedings of the second international symposium Kansas City, synthesis and applications of isotopically labeled compounds, pp 219–224

    Google Scholar 

  • Beumer JH, Beijnen JH, Schellens JHM (2006) Mass balance studies, with a focus on anticancer drugs. Clin Pharmacokinet 45(1):33–58

    Article  CAS  PubMed  Google Scholar 

  • Bonacorsi SJ Jr, Burrell RC, Luke GM, Depue JS, Rinehart JK, Balasubramanian B, Christophers LJ, Iyer RA (2007) Synthesis of the anxiolytic agent [14C] 6-hydroxy-buspirone for use in human ADME study. J Label Compd Radiopharm 50:65–71

    Article  CAS  Google Scholar 

  • Burgos A, Duffin GR, Ellames GJ, Wedge KJ (1996) [14C]-Labelling of benzisothiazolone based inhibitors of human leukocyte elastase. J Label Compd Radiopharm 38:193–201

    Article  CAS  Google Scholar 

  • Caldwell J, Gardner I, Swales N (1995) An introduction to drug disposition: the basic principle of absorption, distribution, metabolism, and excretion. Toxicol Pathol 23(2):102–112

    Article  CAS  PubMed  Google Scholar 

  • Cao K, Bonacorsi SJ Jr, Balasubramanian B, Hanson RL, Manchand P, Godfrey JD Jr, Fox R, Christopher LJ, Su H, Iyer R (2007) Carbon-14 labeling of Saxaliptin (BMS-477118). J Label Compd Radiopharm 50:1224–1229

    Article  CAS  Google Scholar 

  • Catch JR (1961) Carbon-14 compounds. The Radiochemical Centre, Amersham, Bucks

    Google Scholar 

  • Cherry SR (2001) Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 41:482–491

    Article  CAS  PubMed  Google Scholar 

  • Dain JG, Collins JM, Robinson WT (1994) A regulatory and industrial perspective of the use of carbon-14 and tritium isotopes in human ADME studies. Pharm Res 11(6):925–928

    Article  CAS  PubMed  Google Scholar 

  • Dalvie D (2000) Recent advances in the applications of radioisotopes in drug metabolism, toxicology and pharmacokinetics. Curr Pharm Des 6:1009–1028

    Article  CAS  PubMed  Google Scholar 

  • Derdau V, Oekonomopulos R, Schubert G (2003) [14C]-Labeled and large-scale synthesis of the angiotensin-(1–7)-receptor agonist AVE 0991 by cross-coupling reactions. J Org Chem 68:5168–5173

    Article  CAS  PubMed  Google Scholar 

  • Deroubaix X, Coquette A (2004) The ins and outs of human ADME studies. Business Briefing: Pharmatech 1–4, 6th. ed., www.touchbriefings.com, Touch Briefings pLc, London

    Google Scholar 

  • Dewanjee MK (1992) Radioiodination, theory, practice, and biomedical application. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dueker SR, Jones AD, Clifford AJ (1998) Protocol development for biological tracer studies. Adv Exp Med Biol 445:363–378

    CAS  PubMed  Google Scholar 

  • Evans EA (1974) Tritium and its compounds, 2nd edn. Wiley, London

    Google Scholar 

  • Evans EA (1976) Guide to the self-decomposition of radiochemicals. Amersham Review No. 16. The Radiochemical Centre, Amersham; Booklet Amersham International Plc., 1992; Booklet Amersham Biosciences, 2002

    Google Scholar 

  • Evans EA (1981) Synthesis of radiolabelled compounds. J Radioanal Chem 64(1–2):9–32

    Article  CAS  Google Scholar 

  • Filer CN (1989) The analysis of 14C and 3H-labelled compounds. Proceedings of the third international symposium, Innsbruck, Synthesis and applications of isotopically labelled compounds, 1988 pp 225–226

    Google Scholar 

  • Fontana E, Dellavedova P, Gambini L (2000) Carbon-14 and tritium labelled compounds good manufacturing practices for studies in humans. In: Pleiss U, Voges R (eds) Proceedings of the seventh IIS symposium, Dresden, Synthesis and applications of isotopically labelled compounds. Wiley, Chichester, pp 499–502

    Google Scholar 

  • Fredenhagen A (2002) Radiochemical stability of 14C-labelled compounds on storage: benefits of thioethers. J Label Compd Radiopharm 45:211–220

    Google Scholar 

  • Frederiksen SM, Sörensen GG (2003) Synthesis of tritium labelled mecillinam. J Label Compd Radiopharm 46:773–779

    Article  CAS  Google Scholar 

  • Garner RC (2000) Accelerated mass spectrometry in pharmaceutical research and development – A new analytical method for isotope measurement. Curr Drug Metab 1:205–213

    Article  CAS  PubMed  Google Scholar 

  • Godward MBE (1960) Resistance of algae to radiation. Nature 185:706

    Article  CAS  PubMed  Google Scholar 

  • Hesk D, Bignan G, Lee J, Yang J, Voronin K, Magatti C, McMamara P, Koharski D, Hendershot S, Saluja S, Wang S (2002) Synthesis of 3H, 14C, and 13C6 labelled Sch 58235. J Label Compd Radiopharm 45:145–155

    Article  CAS  Google Scholar 

  • Heys JR (2007) Organoiridium complexes for hydrogen isotope exchange labelling. J Label Compd Radiopharm 50:770–778

    Article  CAS  Google Scholar 

  • Heys JR, Voges R, Moenius T (2009) Preparation of compounds labelled with tritium and carbon-14. Wiley, New York

    Google Scholar 

  • Hong Y, Bonacorsi SJ Jr, Tian Y, Gong S, Zhang D, Humphreys WG, Balasubramanian B, Cheesman EH, Zhang Z, Caster JF, Crane PD (2008) Synthesis of [1, 2-3H]ethylamine hydrochloride and [3H]-labelled apadenoson for a human ADME study. J Label Compd Radiopharm 51:113–117

    Article  CAS  Google Scholar 

  • Jorabchi K, Kahen K, Lecchi P, Montaser A (2005) Chemical reaction interface mass spectroscopy with high efficiency nebulisation. Anal Chem 77:5402–5406

    Article  CAS  PubMed  Google Scholar 

  • Knochel P (2005) Handbook of functionalized organometallics: applications and synthesis. Wiley-VCH, Berlin

    Book  Google Scholar 

  • Ku CC, Hwang SC, Kaplan L, Nallin MK, Jacob TA (1984) The preparation of carbon-14 labeled avermectin B1a. J Label Compd Radiopharm 22:451–459

    Article  Google Scholar 

  • Kurosowa M, Kanamuru N, Nishioka K (1997) [14C]-Labeling of novel prostacyclin I, derivative SM10902. J Label Compd Radiopharm 39:129–138

    Article  Google Scholar 

  • Lappin G, Garner RC (2003) Big physics, small, doses: the use of AMS and PET in human microdosing of development drugs. Nat Rev Drug Discov 2:233–240.

    Google Scholar 

  • Lappin G, Garner RC, Meyers T, Powell J, Varley P (2006) Novel use of accelerated mass spectrometry for the quantification of low levels of systemic therapeutic recombinant protein. J Pharm Biomed Anal 41:1299–1302

    Article  CAS  PubMed  Google Scholar 

  • Lloyd C, Potwin J, Wright C (2003) Radiosynthesis conducted under cGMP compliance. In: Dean DC, Filer CF, McCarthy KE (eds) Proceedings of the eighth IIS symposium, Boston Synthesis and applications of isotopically labelled compounds. Wiley, New York, 2003, pp 251–254

    Google Scholar 

  • Lockley WJS (2007) 30 Years with ortho-directed hydrogen isotope exchange labelling. J Label Compd Radiopharm 50:779–788

    Article  CAS  Google Scholar 

  • Marathe PH, Shyu WC, Humphreys WG (2004) The use of radiolabeled compounds for ADME studies in discovery and exploratory development. Curr Pharm Des 10:2991–3008

    Article  CAS  PubMed  Google Scholar 

  • Markus B, Allentoff AJ, Desai M, Chaudhuri NK, Duelfer T (1997) Synthesis of 14C-labelled CGS 16949A (Fadrazole HCl), a potent aromatase inhibitor. J Label Compd Radiopharm 39:885–890

    Article  CAS  Google Scholar 

  • McCarthy KE (2000) Recent advances in the design and synthesis of carbon-14 labelled pharmaceuticals from small molecule precursors. Curr Pharm Dess 6:1057–1083

    Article  CAS  Google Scholar 

  • Muccino RR (ed) (1983) Organic syntheses with carbon-14. Wiley-Interscience Publication, New York

    Google Scholar 

  • Murray A, Williams D (1958) Organic syntheses with isotopes. Interscience Publishers, Inc., New York

    Google Scholar 

  • Mutlib AE (2008) Application of stable isotope-labelled compounds in metabolism and in metabolism-mediated toxicity studies. Chem Res Toxicol 21:1672–1689

    Article  PubMed  Google Scholar 

  • Pleiss U (2003) Synthesis of [3H]vardenafil, Levitra®, using a new labelling technique. J Label Compd Radiopharm 46:1241–1247

    Article  CAS  Google Scholar 

  • Putman EW, Hassid WZ (1952) Isolation and purification of radioactive sugars by means of paper chromatography. J Biol Chem 196:749–752

    CAS  PubMed  Google Scholar 

  • Raaen VF, Ropp GA, Raaen HP (1968) Carbon-14 in series in advanced chemistry. McGraw-Hill Book Company, New York

    Google Scholar 

  • Rochlin P (1965) Self-decomposition of carbon-14-labelled organic compounds. Chem Rev 65:685–696

    Article  CAS  Google Scholar 

  • Roffey SJ, Obach RS, Gedge JI, Smith DA (2007) What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabelled drugs. Drug Metabol Rev 39:17–43

    Article  CAS  Google Scholar 

  • Rösch F (2003) Radiochemistry and radiopharmaceutical chemistry in life sciences. In: Vertes A, Nagy S, Klencsar Z (eds) Handbook of nuclear chemistry, vol 4. Kluwer, Dordrecht

    Google Scholar 

  • Saljoughian M (2002) Synthetic tritium labeling: reagents and methodologies. Synthesis 13:1781–1801

    Article  Google Scholar 

  • Saljoughian M, Williams PG (2000) Recent developments in tritium incorporation for radiotracer studies. Curr Pharm Des 6:1029–1056

    Article  CAS  PubMed  Google Scholar 

  • Schulte HR (1966) Synthesen 14C-markierter organischer Verbindungen. Radioactive Isotope in der Organischen Chemie und Biochemie. Weinheim Verlag

    Google Scholar 

  • Sheppard G (1972) The self-decomposition of radioactively labelled compounds. Atom Energy Rev 12:3–66

    Google Scholar 

  • Shu AYL, Heys JR (1994) Synthesis of carbon-14 and tritiated steroidal Sa-reductase inhibitors. J Label Compd Radiopharm 34:578–596

    Article  Google Scholar 

  • Skowera K, Kanska M (2008) Enzymatic synthesis of phenylpyruvic acid labelled with deuterium, tritium, and carbon 14. J Label Compd Radiopharm 51:321–324

    Article  CAS  Google Scholar 

  • Sundermeier M, Zapf A, Beller M (2003) Palladium-catalyzed cyanation of aryl halides: recent developments and perspectives. Eur J Org Chem 19:3513–3526

    Google Scholar 

  • Tovey KC, Spiller GH, Oldham KG, Lucas N (1974) A new method for the preparation of uniformly [14C]-labelled compounds by using Anacystis nidulans. Biochem J 142:47–56

    CAS  PubMed  Google Scholar 

  • Vogel JS (2000) Accelerated mass spectrometry for human biochemistry: the practice and the potential. Nucl Instr Meth Phys Res B 172:884–891

    Google Scholar 

  • Vogel JS, Palmblad NM, Ognibene T, Kabir MM, Buchholz BA, Bench G (2007) Biochemical paths in humans and cells: frontiers of AMS bioanalysis. Nucl Instr Meth Phys Res B 259:745–751

    Google Scholar 

  • Voges R (2002) From chiral bromo [13, 14, Cn]acetyl sultams to complex molecules singly/multiply labelled with isotopic carbon. J Label Compd Radiopharm 45:867–897

    Article  CAS  Google Scholar 

  • Walker AE, Pothuluri JV, Heinze TM, Volmer D, Cerniglia CE (1996) Biosynthetic production of 13C and 14C erythronolide labeled erythromycin A. J Label Compd Radiopharm 29:59–67

    Google Scholar 

  • Wallace MA, Dean DC, Ellsworth RL, Marks T, Mellio DG, Maseurekar P (1994) Studies on the biosynthesis of avermectins using carbon labelled 2-methyl butyric acids. In: Allen J, Voges R (eds) Synthesis and applications of isotopically labelled compounds. Wiley, Chichester, 1995, Paper 108, 605

    Google Scholar 

  • Wilson RJ (1966) The radiochemical manual, 2nd edn. The Radiochemical Centre, Amersham

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Atzrodt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Atzrodt, J., Allen, J. (2011). Synthesis of Radiolabeled Compounds for Clinical Studies. In: Vogel, H.G., Maas, J., Gebauer, A. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89891-7_12

Download citation

Publish with us

Policies and ethics