Skip to main content

J4 Mixing and Spray Condensation

  • Reference work entry
  • First Online:
  • 24k Accesses

Part of the book series: VDI-Buch ((VDI-BUCH))

1 Introduction

Spray condensers are condensers in which the steam to be condensed is immediately brought into contact with the cooling medium [1].

Compared to surface condensers, mixing condensers offer a number of advantages:

  • low investment costs,

  • large specific heat transfer surface,

  • low fouling,

  • easy maintenance,

  • high operational reliability,

  • low cooling water requirement,

  • can be designed in materials that are not suitable for surface condensers.

The most important disadvantage of a spray condenser is the fact that the applications are limited because in many cases the contact of the condensate with the cooling medium is not allowed.

Mixing condensers are primarily used [29]:

  • in connection with steam jet vacuum pumps,

  • in demineralization systems,

  • in connection with evaporation plants, in particular in the sugar and potash industry,

  • in steam jet cooling systems,

  • as water heaters,

  • to condense the turbine steam in power stations, in connection with dry cooling towers.

    ...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

6 Bibliography

  1. Holland-Merten EL (1953) Handbuch der Vakuumtechnik. VEB Wilhelm Kapp Verlag, Halle (Saale)

    Google Scholar 

  2. GEA Wiegand GmbH (1985) Strahlpumpen und Strahlwäscher, Arbeitsblätter. GEA Wiegand GmbH, Einsteinstraße 9–15, D-76275 Ettlingen

    Google Scholar 

  3. Bow WJ Direct contact steam condenser. US-Schutzrecht 3 814 398

    Google Scholar 

  4. Liebisch H (1968) Bedeutung und Entwicklungsstand der Mischkondensation von Dämpfen. Energietechnik 18(2):S. 67–S. 71

    Google Scholar 

  5. Heller L (1950) Condensation by means of air for steam turbines equipped with injection condensers. 4th world power conference, vol 3, Section E3, Paper 7

    Google Scholar 

  6. Bakay A, Jaszay T (1978) High performance jet condensers for steam turbines. Paper EC10, Sixth international heat transfer conference, Toronto, pp S. 61–S. 65

    Google Scholar 

  7. Heeren H, Holly L (1971) Trockenkühler entlasten Gewässer. Energie 23(10):S. 298–S. 304

    Google Scholar 

  8. Othmer DP, Benenati RP, Goulandris GG (1962) Vapor reheat, sea water desalination without metallic heat surfaces. Dechema-Monographien Nr. 47, S. 73–S. 98, Weinheim/Bergstraße

    Google Scholar 

  9. Kopp JH (1965) Über den Wärme- und Stoffaustausch bei Mischkondensation. Promotionsarb. ETH Zürich, Julius-Verlag, Zürich

    Google Scholar 

  10. Sam RG, Patel BR (1984) An experimental investigation of OC-OTEC direct-contact condensation and evaporation processes. J Solar Energy Eng 106:S. 120–S. 127

    Article  Google Scholar 

  11. Minart P Condenseur à mélange, notament pour l’exploitation de l’énerga thermique des mers. EP-Schutzrecht 0 189 029-AI

    Google Scholar 

  12. Billet R (1973) Zum Wärme- und Stoffaustausch bei der partiellen Gegenstrom-Direktkondensation. Chem Ing Techn 45(13):S. 887–S. 891

    Article  Google Scholar 

  13. Fair JR (1971) Process heat transfer by direct fluid-phase contact. IChE Symp. Series, vol 118(68), pp S. 1–S. 11

    Google Scholar 

  14. GEA Wiegand GmbH. Vakuum durch Kondensation. TKI 7, GEA Wiegand GmbH, Einsteinstra ße 9–15, D-76275 Ettlingen, Germany

    Google Scholar 

  15. Lee SY, Tankin RS (1984) Study of liquid spray (water) in a condensable environment (steam). Int J Heat Transfer 27(3):S. 363–S. 374

    Article  Google Scholar 

  16. Iciek I (1982) The hydrodynamics of a free liquid jet and their influence on direct contact heat transfer. Part I. Int J Multiphase Flow 8(3):S. 239–S. 249

    Article  Google Scholar 

  17. Iciek I (1982) The hydrodynamics of a free liquid jet and their influence on direct contact heat transfer. Part 2. Int J Multiphase Flow 8(3):S. 251–S. 260

    Article  Google Scholar 

  18. Iciek I (1983) The hydrodynamics of a free liquid jet and their influence on direct contact heat transfer. Part 3. Int J Multiphase Flow 9( 2):S. 167–S. 179

    Article  Google Scholar 

  19. De Salve M, Panella B, Scorta G (1986) Heat and mass transfer of steam on a subcooled turbulent water jet. Proceeding of the 8th international Heat Transfer, San Francisco, pp S. 1653–S. 1658

    Google Scholar 

  20. Benedek S (1976) Heat transfer at the condensation of steam on a turbulent water jet. Int J Heat Mass Transfer 19:S. 448–S. 450

    Article  Google Scholar 

  21. Mills AF, Kim S, Leininger T, Ofer S, Pesaran A (1982) Heat and mass transfer in turbulent liquid jets. Int J Heat Mass Transfer 25:S. 889–S. 897

    Article  Google Scholar 

  22. Barathan D, Olson DA, Green HJ, Johnson DH (1982) Measured performance of direct contact jet condensers. Solar Energy Research Inst. Golden, Co. (USA), SERI/TP, pp 252–1437

    Google Scholar 

  23. Sklover GG, Rodivilin MD (1976) Condensation on water jets with a cross flow of steam. Teploenergetika 23:S. 48–S. 51

    Google Scholar 

  24. Isachenko VP, Solodov AP, Samoilovich YuZ, Kushnyrev VI, Sotskov SA (1971) Investigation of heat transfer with steam condensation on turbulent liquid jets. Teploenergetika 18(2):S. 7–S. 10

    Google Scholar 

  25. Isachenko VP, Solodov AP (1972) Heat transfer with steam condensation on continuous and on dispersed jets of liquid. Teploenergetika 19(9):S. 24–S. 27

    Google Scholar 

  26. Karapansios TD, Karabelas AJ (1995) Direct-contact condensation in the presence of noncondensables over free-falling films with intermittent liquid feed. Int J Heat Mass Transfer 38(5):S. 795–S. 805

    Article  Google Scholar 

  27. Isachenko VP, Kushnyrev VI (1974) Condensation heat transfer in dispersed liquid spray. 5. International heat transfer conference, vol 3, Tokio, pp S. 217–S. 225

    Google Scholar 

  28. Ford JD, Lekic A (1973) Rate of growth of drops during condensation. Int J Heat Mass Transfer 16:S. 61–S. 64

    Article  Google Scholar 

  29. Lekic A, Bajramovic R, Ford JD (1976) Droplet size distribution: an improved method for fitting experimental data. Can J Chem Eng 54(10):S. 399–S. 402

    Article  Google Scholar 

  30. Maa JR, Hickman K (1972) Direct condensation of steam on a modified oil coolant. Desalination 10:S. 95–S. 111

    Article  Google Scholar 

  31. Lekic A, Ford JD (1980) Direct contact condensation of vapor on a spray of subcooled liquid droplets. Int J Mass Transfer 23:S. 1531–S. 1537

    Article  Google Scholar 

  32. Chung JN, Ayyaswamy PS, Sadhal SS (1984) Laminar condensation on a moving drop. Part 1. J Fluid Mech 139:S. 105–S. 131

    Article  MATH  Google Scholar 

  33. Chung JN, Ayyaswamy PS, Sadhal SS (1984) Laminar condensation on a moving drop. Part 2. J Fluid Mech 139:S. 131–S. 144

    Article  MATH  Google Scholar 

  34. Ohba K, Nishiguchi A, Kitada H (1982) Direct contact condensation of steam on a high speed spray jet of subcooled water. Technol Rep Kansai Univ 23(3):S. 13–S. 30

    Google Scholar 

  35. Hijikata K, Mori Y, Kawaguchi S (1984) Direct contact of vapor to falling cooled droplets. Int J Heat Mass Transfer 27(9):S. 1631–S. 1640

    Article  Google Scholar 

  36. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2. Auflage. Clarendon Press, Oxford

    MATH  Google Scholar 

  37. Schlünder EU (1981) Einführung in die Wärmeübertragung. Skriptum. Braunschweig, Vieweg-Verl

    Google Scholar 

  38. Celata GP, Cumo M, D’Annibale F, Farello GE (1991) Direct contact condensation of steam on droplets. Int J Multiphase Flow 17(2):S. 191–S. 211

    Article  MATH  Google Scholar 

  39. Mason BJ (1957) The physics of clouds. Oxford University Press, Oxford

    Google Scholar 

  40. Dahl HD, Muschelknautz E (1994) Zerstäubung mit Hohlkegeldüsen. VDI-Wärmeatlas, Abschnitt Jda, 7. Auflage. VDI-Verl

    Google Scholar 

  41. Mayinger F, Chávez A (1992) Measurement of direct-contact condensation of pure saturated vapour on an injection spray by applying pulsed laser holography. Int J Heat Mass Transfer 35(3):S. 691–S. 702

    Article  Google Scholar 

  42. Kreyszig E (1968) Statistische Methoden und ihre Anwendungen, 3. Auflage. Vandenhoeck & Ruprecht, Göttingen

    MATH  Google Scholar 

  43. Mugele RA, Evans HD (1951) Droplet size distribution in sprays. Ind Eng Chem 43(6):S. 1317–S. 1324

    Article  Google Scholar 

  44. Dombiowski N, Wolfsolnn DL (1972) The atomization of water by swirl spray pressure nozzles. Trans Inst Chem Eng 50:S. 259–S. 269

    Google Scholar 

  45. Taitel Y, Tamir A (1969) Condensation in the presence of a noncondensable gas in direct contact. Int J Heat Mass Transfer 12:S. 1157–S. 1169

    Article  Google Scholar 

  46. Hassoa D, Luss D, Peck R (1964) Theoretical analyses of vapor condensation on laminar liquid jets. Int J Heat Transfer 7:S. 969–S. 981

    Article  MATH  Google Scholar 

  47. Hassoa D, Luss D, Navoa U (1964) An experimental study of steam condensation on a laminar water sheet. Int J Heat Mass Transfer 7:S. 983–S. 1001

    Article  Google Scholar 

  48. Schlünder EU (1984) Einführung in die Stoffübertragung. G. Thieme-Verl, Stuttgart, New York

    Google Scholar 

  49. Maa JR, Chuang HK (1978) On the design of cooler condenser for mixed vapor contuning uncondensable gas. Lett Heat Mass Transfer 5:S. 379–S. 389

    Article  Google Scholar 

  50. Kashiwagi T, Oketani K (1980) Direct contact condensation on cooled fluid jets. Basic Mech. in two-phase flow and heat transfer. Presented at the winter annual meet of ASME, Chicago, vol III, Nov. 16–21, 1980. Publ. by ASME, New York, pp S. 87–S. 94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Hochberg, U. (2010). J4 Mixing and Spray Condensation. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_62

Download citation

Publish with us

Policies and ethics