Skip to main content

Potassium

  • Reference work entry
Pediatric Nephrology
  • 3018 Accesses

Abstract

Potassium is the most abundant intracellular cation. Approximately 98% of the total body potassium content is located within cells, primarily muscle, where its concentration ranges from 100–150 mEq/L; the remaining 2% resides in the extracellular fluid, where the potassium concentration is tightly regulated within a narrow range (3.5–5.0 mEq/L in the adult). The ratio of the intra- to extracellular potassium concentration determines, in large part, the resting membrane potential, and is thus critical for normal function of electrically excitable cells, including nerve and muscle. Maintenance of a high intracellular potassium concentration is essential for many cellular processes, including DNA and protein synthesis, cell growth and apoptosis, mitochondrial enzyme function, and conservation of cell volume and pH (17). Because of the many vital processes dependent on potassium homeostasis, multiple complex and efficient mechanisms have developed to regulate total potassium balance and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler S, Fraley DS. Potassium and intracellular pH. Kidney Int 1977;11:433–442.

    Article  PubMed  CAS  Google Scholar 

  2. Bygrave FL. The ionic environment and metabolic control. Nature 1967;214:667–671.

    Article  PubMed  CAS  Google Scholar 

  3. Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM. Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 2005;205:147–157.

    Article  PubMed  CAS  Google Scholar 

  4. Lopez-Rivas A, Adelberg EA, Rozengurt E. Intracellular K+ and the mitogenic response of 3T3 cells to peptide factors in serum-free medium. Proc Natl Acad Sci USA 1982;79:6275–6279.

    Article  PubMed  CAS  Google Scholar 

  5. Lubin M. Intracellular potassium and macromolecular synthesis in mammalian cells. Nature 1967;213:451–453.

    Article  PubMed  CAS  Google Scholar 

  6. Schmidt-Nielsen B. Comparative physiology of cellular ion and volume regulation. J Exp Zool 1975;194:207–219.

    Article  PubMed  CAS  Google Scholar 

  7. Weiner MW, Sauer LA, Torretti J, Epstein FH. Renal mitochondrial enzymes in potassium depletion. Am J Physiol 1971;221:613–617.

    PubMed  CAS  Google Scholar 

  8. Giebisch G. Renal potassium transport: mechanisms and regulation. Am J Physiol 1998;274:F817–F833.

    PubMed  CAS  Google Scholar 

  9. Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ. Body composition during the first 2 years of life: an updated reference. Pediatr Res 2000;47:578–585.

    Article  PubMed  CAS  Google Scholar 

  10. Flynn MA, Woodruff C, Clark J, Chase G. Total body potassium in normal children. Pediatr Res 1972;6:239–245.

    Article  PubMed  CAS  Google Scholar 

  11. Dickerson JW, Widdowson EM. Chemical changes in skeletal muscle during development. Biochem J 1960;74:247–257.

    PubMed  CAS  Google Scholar 

  12. Rutledge MM, Clark J, Woodruff C, Krause G, Flynn MA. A longitudinal study of total body potassium in normal breastfed and bottle-fed infants. Pediatr Res 1976;10:114–117.

    Article  PubMed  CAS  Google Scholar 

  13. Dorup I, Clausen T. Effects of potassium deficiency on growth and protein synthesis in skeletal muscle and the heart of rats. Br J Nutr 1989;62:269–284.

    Article  PubMed  CAS  Google Scholar 

  14. Wilde WS. Potassium. New York, Academic Press, 1962, pp. 73–107.

    Google Scholar 

  15. Delgado MM, Rohatgi R, Khan S, Holzman IR, Satlin LM. Sodium and potassium clearances by the maturing kidney: clinical-molecular correlates. Pediatr Nephrol 2003;18:759–767.

    Article  PubMed  Google Scholar 

  16. Sulyok E, Nemeth M, Tenyi I, Csaba IF, Varga F, Gyory E, Thurzo V. Relationship between maturity, electrolyte balance and the function of the renin-angiotensin-aldosterone system in newborn infants. Biol Neonate 1979;35:60–65.

    Article  PubMed  CAS  Google Scholar 

  17. Satlin LM. Regulation of potassium transport in the maturing kidney. Semin Nephrol 1999;19:155–165.

    PubMed  CAS  Google Scholar 

  18. Gruskay J, Costarino AT, Polin RA, Baumgart S. Nonoliguric hyperkalemia in the premature infant weighing less than 1000 grams. J Pediatr 1988;113:381–386.

    Article  PubMed  CAS  Google Scholar 

  19. Leslie GI, Carman G, Arnold JD. Early neonatal hyperkalaemia in the extremely premature newborn infant. J Paediatr Child Health 1990;26:58–61.

    Article  PubMed  CAS  Google Scholar 

  20. Lorenz JM, Kleinman LI, Markarian K. Potassium metabolism in extremely low birth weight infants in the first week of life. J Pediatr 1997;131:81–86.

    Article  PubMed  CAS  Google Scholar 

  21. Sato K, Kondo T, Iwao H, Honda S, Ueda K. Internal potassium shift in premature infants: cause of nonoliguric hyperkalemia. J Pediatr 1995;126:109–113.

    Article  PubMed  CAS  Google Scholar 

  22. Shaffer SG, Kilbride HW, Hayen LK, Meade VM, Warady BA. Hyperkalemia in very low birth weight infants. J Pediatr 1992;121:275–279.

    Article  PubMed  CAS  Google Scholar 

  23. Stefano JL, Norman ME, Morales MC, Goplerud JM, Mishra OP, Delivoria-Papadopoulos M. Decreased erythrocyte Na+, K+-ATPase activity associated with cellular potassium loss in extremely low birth weight infants with nonoliguric hyperkalemia. J Pediatr 1993;122:276–284.

    Article  PubMed  CAS  Google Scholar 

  24. Omar SA, DeCristofaro JD, Agarwal BI, LaGamma EF. Effect of prenatal steroids on potassium balance in extremely low birth weight neonates. Pediatrics 2000;106:561–567.

    Article  PubMed  CAS  Google Scholar 

  25. Uga N, Nemoto Y, Ishii T, Kawase Y, Arai H, Tada H. Antenatal steroid treatment prevents severe hyperkalemia in very low-birthweight infants. Pediatr Int 2003;45:656–660.

    Article  PubMed  CAS  Google Scholar 

  26. Mohammed T, Stulc J, Glazier JD, Boyd RD, Sibley CP. Mechanisms of potassium transfer across the dually perfused rat placenta. Am J Physiol 1993;265:R341–R347.

    PubMed  CAS  Google Scholar 

  27. Serrano CV, Talbert LM, Welt LG. Potassium deficiency in the pregnant dog. J Clin Invest 1964;43:27–31.

    Article  PubMed  CAS  Google Scholar 

  28. Dancis J, Springer D. Fetal homeostasis in maternal malnutrition: potassium and sodium deficiency in rats. Pediatr Res 1970;4:345–351.

    Article  PubMed  CAS  Google Scholar 

  29. DeFronzo RA, Sherwin RS, Dillingham M, Hendler R, Tamborlane WV, Felig P. Influence of basal insulin and glucagon secretion on potassium and sodium metabolism. Studies with somatostatin in normal dogs and in normal and diabetic human beings. J Clin Invest 1978;61:472–479.

    Article  PubMed  CAS  Google Scholar 

  30. DeFronzo RA, Taufield PA, Black H, McPhedran P, Cooke CR. Impaired renal tubular potassium secretion in sickle cell disease. Ann Intern Med 1979;90:310–316.

    PubMed  CAS  Google Scholar 

  31. Bia MJ, DeFronzo RA. Extrarenal potassium homeostasis. Am J Physiol 1981;240:F257–F268.

    PubMed  CAS  Google Scholar 

  32. Geering K. The functional role of beta subunits in oligomeric P-type ATPases. J Bioenerg Biomembr 2001;33:425–438.

    Article  PubMed  CAS  Google Scholar 

  33. Benziane B, Chibalin AV. Frontiers: skeletal muscle sodium pump regulation: a translocation paradigm. Am J Physiol Endocrinol Metab 2008;295:E553–E558.

    Article  PubMed  CAS  Google Scholar 

  34. Clausen T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 2003;83:1269–1324.

    PubMed  CAS  Google Scholar 

  35. Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 2000;279:C541–C566.

    PubMed  CAS  Google Scholar 

  36. Horster M. Embryonic epithelial membrane transporters. Am J Physiol Renal Physiol 2000;279:F982–F996.

    PubMed  CAS  Google Scholar 

  37. Schmitt R, Ellison DH, Farman N, Rossier BC, Reilly RF, Reeves WB, Oberbaumer I, Tapp R, Bachmann S. Developmental expression of sodium entry pathways in rat nephron. Am J Physiol 1999;276:F367–F381.

    PubMed  CAS  Google Scholar 

  38. McCaughan D. Hazards of non-prescription potassium supplements. Lancet 1984;1:513–514.

    Article  PubMed  CAS  Google Scholar 

  39. Zierler KL, Rabinowitz D. Effect of very small concentrations of insulin on forearm metabolism. Persistence of its action on potassium and free fatty acids without its effect on glucose. J Clin Invest 1964;43:950–962.

    Article  PubMed  CAS  Google Scholar 

  40. Hundal HS, Marette A, Mitsumoto Y, Ramlal T, Blostein R, Klip A. Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K+-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem 1992;267:5040–5043.

    PubMed  CAS  Google Scholar 

  41. Kanbe M, Kitasato H. Stimulation of Na, K-ATPase activity of frog skeletal muscle by insulin. Biochem Biophys Res Commun 1986;134:609–616.

    Article  PubMed  CAS  Google Scholar 

  42. Lavoie L, Roy D, Ramlal T, Dombrowski L, Martin-Vasallo P, Marette A, Carpentier JL, Klip A. Insulin-induced translocation of Na+-K+-ATPase subunits to the plasma membrane is muscle fiber type specific. Am J Physiol 1996;270:C1421–C1429.

    PubMed  CAS  Google Scholar 

  43. Marette A, Krischer J, Lavoie L, Ackerley C, Carpentier JL, Klip A. Insulin increases the Na+-K+-ATPase alpha 2-subunit in the surface of rat skeletal muscle: morphological evidence. Am J Physiol 1993;265:C1716–C1722.

    PubMed  CAS  Google Scholar 

  44. Omatsu-Kanbe M, Kitasato H. Insulin stimulates the translocation of Na+/K+-dependent ATPase molecules from intracellular stores to the plasma membrane in frog skeletal muscle. Biochem J 1990;272:727–733.

    PubMed  CAS  Google Scholar 

  45. Lytton J. Insulin affects the sodium affinity of the rat adipocyte (Na+, K+)-ATPase. J Biol Chem 1985;260:10075–10080.

    PubMed  CAS  Google Scholar 

  46. Sargeant RJ, Liu Z, Klip A. Action of insulin on Na+-K+-ATPase and the Na+-K+-2Cl- cotransporter in 3T3-L1 adipocytes. Am J Physiol 1995;269:C217–C225.

    PubMed  CAS  Google Scholar 

  47. Sweeney G, Klip A. Regulation of the Na+/K+-ATPase by insulin: why and how? Mol Cell Biochem 1998;182:121–133.

    Article  PubMed  CAS  Google Scholar 

  48. Feraille E, Carranza ML, Rousselot M, Favre H. Insulin enhances sodium sensitivity of Na-K-ATPase in isolated rat proximal convoluted tubule. Am J Physiol 1994;267:F55–F62.

    PubMed  CAS  Google Scholar 

  49. Hiatt N, Davidson MB, Bonorris G. The effect of potassium chloride infusion on insulin secretion in vivo. Horm Metab Res 1972;4:64–68.

    Article  PubMed  CAS  Google Scholar 

  50. Pettit GW, Vick RL, Swander AM. Plasma K plus and insulin: changes during KCl infusion in normal and nephrectomized dogs. Am J Physiol 1975;228:107–109.

    PubMed  CAS  Google Scholar 

  51. DeFronzo RA, Bia M, Birkhead G. Epinephrine and potassium homeostasis. Kidney Int 1981;20:83–91.

    Article  PubMed  CAS  Google Scholar 

  52. Brown RS. Extrarenal potassium homeostasis. Kidney Int 1986;30:116–127.

    Article  PubMed  CAS  Google Scholar 

  53. Salem MM, Rosa RM, Batlle DC. Extrarenal potassium tolerance in chronic renal failure: implications for the treatment of acute hyperkalemia. Am J Kidney Dis 1991;18:421–440.

    PubMed  CAS  Google Scholar 

  54. Todd EP, Vick RL. Kalemotropic effect of epinephrine: analysis with adrenergic agonists and antagonists. Am J Physiol 1971;220:1964–1969.

    PubMed  CAS  Google Scholar 

  55. Williams ME, Gervino EV, Rosa RM, Landsberg L, Young JB, Silva P, Epstein FH. Catecholamine modulation of rapid potassium shifts during exercise. N Engl J Med 1985;312:823–827.

    Article  PubMed  CAS  Google Scholar 

  56. Williams ME, Rosa RM, Silva P, Brown RS, Epstein FH. Impairment of extrarenal potassium disposal by alpha-adrenergic stimulation. N Engl J Med 1984;311:145–149.

    Article  PubMed  CAS  Google Scholar 

  57. Angelopoulous M, Leitz H, Lambert G, MacGilvray S. In vitro analysis of the Na+-K+ ATPase activity in neonatal and adult red blood cells. Biol Neonate 1996;69:140–145.

    Article  PubMed  CAS  Google Scholar 

  58. Clausen T, Flatman JA. The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle. J Physiol 1977;270:383–414.

    PubMed  CAS  Google Scholar 

  59. Gillzan KM, Stewart AG. The role of potassium channels in the inhibitory effects of beta 2-adrenoceptor agonists on DNA synthesis in human cultured airway smooth muscle. Pulm Pharmacol Ther 1997;10:71–79.

    Article  PubMed  CAS  Google Scholar 

  60. Rosa RM, Silva P, Young JB, Landsberg L, Brown RS, Rowe JW, Epstein FH. Adrenergic modulation of extrarenal potassium disposal. N Engl J Med 1980;302:431–434.

    Article  PubMed  CAS  Google Scholar 

  61. Blumberg A, Weidmann P, Shaw S, Gnadinger M. Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med 1988;85:507–512.

    Article  PubMed  CAS  Google Scholar 

  62. Helfrich E, de Vries TW, van Roon EN. Salbutamol for hyperkalaemia in children. Acta Paediatr 2001;90:1213–1216.

    Article  PubMed  CAS  Google Scholar 

  63. Mandelberg A, Krupnik Z, Houri S, Smetana S, Gilad E, Matas Z, Priel IE. Salbutamol metered-dose inhaler with spacer for hyperkalemia: how fast? How safe? Chest 1999;115:617–622.

    Article  PubMed  CAS  Google Scholar 

  64. Singh BS, Sadiq HF, Noguchi A, Keenan WJ. Efficacy of albuterol inhalation in treatment of hyperkalemia in premature neonates. J Pediatr 2002;141:16–20.

    Article  PubMed  CAS  Google Scholar 

  65. Allon M. Hyperkalemia in end-stage renal disease: mechanisms and management. J Am Soc Nephrol 1995;6:1134–1142.

    PubMed  CAS  Google Scholar 

  66. McClure RJ, Prasad VK, Brocklebank JT. Treatment of hyperkalaemia using intravenous and nebulised salbutamol. Arch Dis Child 1994;70:126–128.

    Article  PubMed  CAS  Google Scholar 

  67. Semmekrot BA, Monnens LA. A warning for the treatment of hyperkalaemia with salbutamol. Eur J Pediatr 1997;156:420.

    PubMed  CAS  Google Scholar 

  68. Lui K, Thungappa U, Nair A, John E. Treatment with hypertonic dextrose and insulin in severe hyperkalaemia of immature infants. Acta Paediatr 1992;81:213–216.

    Article  PubMed  CAS  Google Scholar 

  69. Shortland D, Trounce JQ, Levene MI. Hyperkalaemia, cardiac arrhythmias, and cerebral lesions in high risk neonates. Arch Dis Child 1987;62:1139–1143.

    Article  PubMed  CAS  Google Scholar 

  70. Yeh TF, Raval D, John E, Pildes RS. Renal response to frusemide in preterm infants with respiratory distress syndrome during the first three postnatal days. Arch Dis Child 1985;60:621–626.

    Article  PubMed  CAS  Google Scholar 

  71. Lei J, Mariash CN, Bhargava M, Wattenberg EV, Ingbar DH. T3 increases Na-K-ATPase activity via a MAPK/ERK1/2-dependent pathway in rat adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008;294:L749–L754.

    Article  PubMed  CAS  Google Scholar 

  72. Lei J, Mariash CN, Ingbar DH. 3,3′,5-Triiodo-L-thyronine up-regulation of Na, K-ATPase activity and cell surface expression in alveolar epithelial cells is Src kinase- and phosphoinositide 3-kinase-dependent. J Biol Chem 2004;279:47589–47600.

    Article  PubMed  CAS  Google Scholar 

  73. Nakhoul F, Thompson CB, McDonough AA. Developmental change in Na, K-ATPase alpha1 and beta1 expression in normal and hypothyroid rat renal cortex. Am J Nephrol 2000;20:225–231.

    Article  PubMed  CAS  Google Scholar 

  74. Adrogue HJ, Madias NE. Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med 1981;71:456–467.

    Article  PubMed  CAS  Google Scholar 

  75. Burnell JM, Scribner BH, Uyeno BT, Villamil MF. The effect in humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J Clin Invest 1956;35:935–939.

    Article  PubMed  CAS  Google Scholar 

  76. Magner PO, Robinson L, Halperin RM, Zettle R, Halperin ML. The plasma potassium concentration in metabolic acidosis: a re-evaluation. Am J Kidney Dis 1988;11:220–224.

    PubMed  CAS  Google Scholar 

  77. Oster JR, Perez GO, Vaamonde CA. Relationship between blood pH and potassium and phosphorus during acute metabolic acidosis. Am J Physiol 1978;235:F345–F351.

    PubMed  CAS  Google Scholar 

  78. Fulop M. Serum potassium in lactic acidosis and ketoacidosis. N Engl J Med 1979;300:1087–1089.

    Article  PubMed  CAS  Google Scholar 

  79. Graber M. A model of the hyperkalemia produced by metabolic acidosis. Am J Kidney Dis 1993;22:436–444.

    PubMed  CAS  Google Scholar 

  80. Fraley DS, Adler S. Correction of hyperkalemia by bicarbonate despite constant blood pH. Kidney Int 1977;12:354–360.

    Article  PubMed  CAS  Google Scholar 

  81. Cooperman LH. Succinylcholine-induced hyperkalemia in neuromuscular disease. JAMA 1970;213:1867–1871.

    Article  PubMed  CAS  Google Scholar 

  82. Martyn JA, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology 2006;104:158–169.

    Article  PubMed  CAS  Google Scholar 

  83. Hertz P, Richardson JA. Arginine-induced hyperkalemia in renal failure patients. Arch Intern Med 1972;130:778–780.

    Article  PubMed  CAS  Google Scholar 

  84. Perazella MA, Biswas P. Acute hyperkalemia associated with intravenous epsilon-aminocaproic acid therapy. Am J Kidney Dis 1999;33:782–785.

    Article  PubMed  CAS  Google Scholar 

  85. Ponce SP, Jennings AE, Madias NE, Harrington JT. Drug-induced hyperkalemia. Medicine (Baltimore) 1985;64:357–370.

    CAS  Google Scholar 

  86. Ethier JH, Kamel KS, Magner PO, Lemann J, Jr., Halperin ML. The transtubular potassium concentration in patients with hypokalemia and hyperkalemia. Am J Kidney Dis 1990;15:309–315.

    PubMed  CAS  Google Scholar 

  87. Rabinowitz L. Aldosterone and potassium homeostasis. Kidney Int 1996;49:1738–1742.

    Article  PubMed  CAS  Google Scholar 

  88. Rodriguez-Soriano J, Vallo A, Castillo G, Oliveros R. Renal handling of water and sodium in infancy and childhood: a study using clearance methods during hypotonic saline diuresis. Kidney Int 1981;20:700–704.

    Article  PubMed  CAS  Google Scholar 

  89. Gurkan S, Estilo GK, Wei Y, Satlin LM. Potassium transport in the maturing kidney. Pediatr Nephrol 2007;22:915–925.

    Article  PubMed  Google Scholar 

  90. Tudvad F, Mc NH, Barnett HL. Renal response of premature infants to administration of bicarbonate and potassium. Pediatrics 1954;13:4–16.

    PubMed  CAS  Google Scholar 

  91. Lorenz JM, Kleinman LI, Disney TA. Renal response of newborn dog to potassium loading. Am J Physiol 1986;251:F513–F519.

    PubMed  CAS  Google Scholar 

  92. McCance R, Widdowson EM. The response of the new-born piglet to an excess of potassium. J Physiol 1958;141:88–96.

    PubMed  CAS  Google Scholar 

  93. Lelievre-Pegorier M, Merlet-Benichou C, Roinel N, de Rouffignac C. Developmental pattern of water and electrolyte transport in rat superficial nephrons. Am J Physiol 1983;245:F15–F21.

    PubMed  CAS  Google Scholar 

  94. Kleinman LI, Banks RO. Segmental nephron sodium and potassium reabsorption in newborn and adult dogs during saline expansion. Proc Soc Exp Biol Med 1983;173:231–237.

    PubMed  CAS  Google Scholar 

  95. Malnic G, Klose RM, Giebisch G. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am J Physiol 1966;211:548–559.

    PubMed  CAS  Google Scholar 

  96. Malnic G, Klose RM, Giebisch G. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol 1966;211:529–547.

    PubMed  CAS  Google Scholar 

  97. Malnic G, Klose RM, Giebisch G. Micropuncture study of renal potassium excretion in the rat. Am J Physiol 1964;206:674–686.

    PubMed  CAS  Google Scholar 

  98. Giebisch GH. A trail of research on potassium. Kidney Int 2002;62:1498–1512. doi:10.1046/j.1523-1755.2002.t01-2-00644.x

    Article  PubMed  CAS  Google Scholar 

  99. Solomon S. Absolute rates of sodium and potassium reabsorption by proximal tubule of immature rats. Biol Neonate 1974;25:340–351.

    Article  PubMed  CAS  Google Scholar 

  100. Bomsztyk K, Wright FS. Dependence of ion fluxes on fluid transport by rat proximal tubule. Am J Physiol 1986;250:F680–F689.

    PubMed  CAS  Google Scholar 

  101. Kibble JD, Wareing M, Wilson RW, Green R. Effect of barium on potassium diffusion across the proximal convoluted tubule of the anesthetized rat. Am J Physiol 1995;268:F778–F783.

    PubMed  CAS  Google Scholar 

  102. Weinstein AM. Modeling the proximal tubule: complications of the paracellular pathway. Am J Physiol 1988;254:F297–F305.

    PubMed  CAS  Google Scholar 

  103. Wilson RW, Wareing M, Green R. The role of active transport in potassium reabsorption in the proximal convoluted tubule of the anaesthetized rat. J Physiol 1997;500(Pt 1): 155–164.

    PubMed  CAS  Google Scholar 

  104. Fromter E, Gessner K. Free-flow potential profile along rat kidney proximal tubule. Pflugers Arch 1974;351:69–83.

    Article  PubMed  CAS  Google Scholar 

  105. Edelman A, Curci S, Samarzija I, Fromter E. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflugers Arch 1978;378:37–45.

    Article  PubMed  CAS  Google Scholar 

  106. Yao X, Tian S, Chan HY, Biemesderfer D, Desir GV. Expression of KCNA10, a voltage-gated K channel, in glomerular endothelium and at the apical membrane of the renal proximal tubule. J Am Soc Nephrol 2002;13:2831–2839.

    Article  PubMed  CAS  Google Scholar 

  107. Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, Volkl H, Warth R. Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol 2001;12:2003–2011.

    PubMed  CAS  Google Scholar 

  108. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996;12:17–23.

    Article  PubMed  Google Scholar 

  109. Boim MA, Ho K, Shuck ME, Bienkowski MJ, Block JH, Slightom JL, Yang Y, Brenner BM, Hebert SC. ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am J Physiol 1995;268:F1132–1140.

    PubMed  CAS  Google Scholar 

  110. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 1993;362:31–38.

    Article  PubMed  CAS  Google Scholar 

  111. Zhou H, Tate SS, Palmer LG. Primary structure and functional properties of an epithelial K channel. Am J Physiol 1994;266:C809–C824.

    PubMed  CAS  Google Scholar 

  112. International Collaborative Study Group for Bartter-like Syndromes, Konrad M, Köckerling A, Ziegler A, Zimmermann DK, Roth B, Wieg C, Grzeschik K-H, Koch MC, Seyberth HW, Group 2: Vargas R, Forestier L, Jean G, Deschaux M, Rizzoni GF, Niaudet P, Antignac C, Group 3: Feldmann D, Lorridon F, Cougoureux E, Laroze F, Alessandri J-L, David L, Saunier P, Deschenes G, Group 4: Hildebrandt F, Vollmer M, Proesmans W, Brandis M, Group 5: van den Heuvel LP, Lemmink HH, Nillesen W, Monnens LAH, Knoers NVAM, Group 6: Guay-Woodford LM, Wright CJ, Madrigal G, Hebert SC. Mutations in the gene encoding the inwardly-rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: evidence for genetic heterogeneity. International Collaborative Study Group for Bartter-like Syndromes. Hum Mol Genet 1997;6:17–26.

    Google Scholar 

  113. Simon DB, Lifton RP. The molecular basis of inherited hypokalemic alkalosis: Bartter’s and Gitelman’s syndromes. Am J Physiol 1996;271:F961–F966.

    PubMed  CAS  Google Scholar 

  114. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 1997;17:171–178.

    Article  PubMed  CAS  Google Scholar 

  115. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 1996;13:183–188.

    Article  PubMed  CAS  Google Scholar 

  116. Zink H, Horster M. Maturation of diluting capacity in loop of Henle of rat superficial nephrons. Am J Physiol 1977;233:F519–F524.

    PubMed  CAS  Google Scholar 

  117. Yasui M, Marples D, Belusa R, Eklof AC, Celsi G, Nielsen S, Aperia A. Development of urinary concentrating capacity: role of aquaporin-2. Am J Physiol 1996;271:F461–F468.

    PubMed  CAS  Google Scholar 

  118. Schmidt U, Horster M. Na-K-activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol 1977;233:F55–F60.

    PubMed  CAS  Google Scholar 

  119. Smith FG, Abraham J. Renal and renin responses to furosemide in conscious lambs during postnatal maturation. Can J Physiol Pharmacol 1995;73:107–112.

    Article  PubMed  CAS  Google Scholar 

  120. Imai M, Nakamura R. Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int 1982;22:465–472.

    Article  PubMed  CAS  Google Scholar 

  121. Satlin LM. Postnatal maturation of potassium transport in rabbit cortical collecting duct. Am J Physiol 1994;266:F57–F65.

    PubMed  CAS  Google Scholar 

  122. Schnermann J, Steipe B, Briggs JP. In situ studies of distal convoluted tubule in rat. II. K secretion. Am J Physiol 1987;252:F970–F976.

    PubMed  CAS  Google Scholar 

  123. Constantinescu A, Silver RB, Satlin LM. H-K-ATPase activity in PNA-binding intercalated cells of newborn rabbit cortical collecting duct. Am J Physiol 1997;272:F167–F177.

    PubMed  CAS  Google Scholar 

  124. Satlin LM, Matsumoto T, Schwartz GJ. Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells. Am J Physiol 1992;262:F199–F208.

    PubMed  CAS  Google Scholar 

  125. Velazquez H, Ellison DH, Wright FS. Chloride-dependent potassium secretion in early and late renal distal tubules. Am J Physiol 1987;253:F555–F562.

    PubMed  CAS  Google Scholar 

  126. Wingo CS. Reversible chloride-dependent potassium flux across the rabbit cortical collecting tubule. Am J Physiol 1989;256:F697–F704.

    PubMed  CAS  Google Scholar 

  127. Frindt G, Palmer LG. Apical potassium channels in the rat connecting tubule. Am J Physiol Renal Physiol 2004;287:F1030–F1037.

    Article  PubMed  CAS  Google Scholar 

  128. Frindt G, Palmer LG. Low-conductance K channels in apical membrane of rat cortical collecting tubule. Am J Physiol 1989;256:F143–F151.

    PubMed  CAS  Google Scholar 

  129. Wang WH, Giebisch G. Dual modulation of renal ATP-sensitive K+ channel by protein kinases A and C. Proc Natl Acad Sci USA 1991;88:9722–9725.

    Article  PubMed  CAS  Google Scholar 

  130. Wang WH. Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects. Am J Physiol Renal Physiol 2006;290:F14–F19.

    Article  PubMed  CAS  Google Scholar 

  131. Wang WH, Giebisch G. Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 2009;458:157–168.

    Google Scholar 

  132. Xu ZC, Yang Y, Hebert SC. Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase. J Biol Chem 1996;271:9313–9319.

    Article  PubMed  CAS  Google Scholar 

  133. Schafer JA, Troutman SL. Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubules. Am J Physiol 1986;250:F1063–F1072.

    PubMed  CAS  Google Scholar 

  134. Lin DH, Sterling H, Wang WH. The protein tyrosine kinase-dependent pathway mediates the effect of K intake on renal K secretion. Physiology (Bethesda) 2005;20:140–146.

    Article  CAS  Google Scholar 

  135. Lin DH, Sterling H, Yang B, Hebert SC, Giebisch G, Wang WH. Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct. Am J Physiol Renal Physiol 2004;286:F881–F892.

    Article  PubMed  CAS  Google Scholar 

  136. Zeng WZ, Babich V, Ortega B, Quigley R, White SJ, Welling PA, Huang CL. Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles. Am J Physiol Renal Physiol 2002;283:F630–F639.

    PubMed  Google Scholar 

  137. Wang W. Regulation of renal K transport by dietary K intake. Annu Rev Physiol 2004;66:547–569.

    Article  PubMed  CAS  Google Scholar 

  138. Kahle KT, Ring AM, Lifton RP. Molecular physiology of the WNK kinases. Annu Rev Physiol 2008;70:329–355.

    Article  PubMed  CAS  Google Scholar 

  139. Wilson FH, Kahle KT, Sabath E, Lalioti MD, Rapson AK, Hoover RS, Hebert SC, Gamba G, Lifton RP. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 2003;100:680–684.

    Article  PubMed  CAS  Google Scholar 

  140. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 2003;35:372–376.

    Article  PubMed  CAS  Google Scholar 

  141. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science 2001;293:1107–1112.

    Article  PubMed  CAS  Google Scholar 

  142. Xie J, Craig L, Cobb MH, Huang CL. Role of with-no-lysine [K] kinases in the pathogenesis of Gordon’s syndrome. Pediatr Nephrol 2006;21:1231–1236.

    Article  PubMed  Google Scholar 

  143. Liu W, Morimoto T, Woda C, Kleyman TR, Satlin LM. Ca2+ dependence of flow-stimulated K secretion in the mammalian cortical collecting duct. Am J Physiol Renal Physiol 2007;293:F227–F235.

    Article  PubMed  CAS  Google Scholar 

  144. Woda CB, Bragin A, Kleyman TR, Satlin LM. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol 2001;280:F786–F793.

    PubMed  CAS  Google Scholar 

  145. Li D, Wang Z, Sun P, Jin Y, Lin DH, Hebert SC, Giebisch G, Wang WH. Inhibition of MAPK stimulates the Ca2+-dependent big-conductance K channels in cortical collecting duct. Proc Natl Acad Sci USA 2006;103:19569–19574.

    Article  PubMed  CAS  Google Scholar 

  146. Pacha J, Frindt G, Sackin H, Palmer LG. Apical maxi K channels in intercalated cells of CCT. Am J Physiol 1991;261:F696–F705.

    PubMed  CAS  Google Scholar 

  147. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 2003;285:F998–F1012.

    PubMed  CAS  Google Scholar 

  148. Palmer LG, Frindt G. High-conductance K channels in intercalated cells of the rat distal nephron. Am J Physiol Renal Physiol 2007;292:F966–F973.

    Article  PubMed  CAS  Google Scholar 

  149. Taniguchi J, Takeda M, Yoshitomi K, Imai M. Pressure- and parathyroid-hormone-dependent Ca2+ transport in rabbit connecting tubule: role of the stretch-activated nonselective cation channel. J Membr Biol 1994;140:123–132.

    PubMed  CAS  Google Scholar 

  150. Pluznick JL, Wei P, Carmines PK, Sansom SC. Renal fluid and electrolyte handling in BKCa-beta1−/− mice. Am J Physiol Renal Physiol 2003;284:F1274–F1279.

    PubMed  CAS  Google Scholar 

  151. Bailey MA, Cantone A, Yan Q, MacGregor GG, Leng Q, Amorim JB, Wang T, Hebert SC, Giebisch G, Malnic G. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter’s syndrome and in adaptation to a high-K diet. Kidney Int 2006;70:51–59.

    Article  PubMed  CAS  Google Scholar 

  152. Finer G, Shalev H, Birk OS, Galron D, Jeck N, Sinai-Treiman L, Landau D. Transient neonatal hyperkalemia in the antenatal (ROMK defective) Bartter syndrome. J Pediatr 2003;142:318–323.

    Article  PubMed  CAS  Google Scholar 

  153. Rodriguez-Soriano J. Bartter and related syndromes: the puzzle is almost solved. Pediatr Nephrol 1998;12:315–327.

    Article  PubMed  CAS  Google Scholar 

  154. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 1996;14:152–156.

    Article  PubMed  CAS  Google Scholar 

  155. Buffin-Meyer B, Younes-Ibrahim M, Barlet-Bas C, Cheval L, Marsy S, Doucet A. K depletion modifies the properties of Sch-28080-sensitive K-ATPase in rat collecting duct. Am J Physiol 1997;272:F124–F131.

    PubMed  CAS  Google Scholar 

  156. Codina J, DuBose TD, Jr. Molecular regulation and physiology of the H+, K+-ATPases in kidney. Semin Nephrol 2006;26:345–351.

    Article  PubMed  CAS  Google Scholar 

  157. Zhou X, Nakamura S, Xia SL, Wingo CS. Increased CO2 stimulates K/Rb reabsorption mediated by H-K-ATPase in CCD of potassium-restricted rabbit. Am J Physiol Renal Physiol 2001;281:F366–F373.

    PubMed  CAS  Google Scholar 

  158. Ahn KY, Turner PB, Madsen KM, Kone BC. Effects of chronic hypokalemia on renal expression of the “gastric” H+-K+-ATPase alpha-subunit gene. Am J Physiol 1996;270:F557–F566.

    PubMed  CAS  Google Scholar 

  159. Silver RB, Mennitt PA, Satlin LM. Stimulation of apical H-K-ATPase in intercalated cells of cortical collecting duct with chronic metabolic acidosis. Am J Physiol 1996;270:F539–F547.

    PubMed  CAS  Google Scholar 

  160. Palmer LG, Frindt G. Regulation of apical K channels in rat cortical collecting tubule during changes in dietary K intake. Am J Physiol 1999;277:F805–F812.

    PubMed  CAS  Google Scholar 

  161. Wang W, Lerea KM, Chan M, Giebisch G. Protein tyrosine kinase regulates the number of renal secretory K channels. Am J Physiol Renal Physiol 2000;278:F165–F171.

    PubMed  CAS  Google Scholar 

  162. Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS, Liu W, Kleyman TR, Satlin LM. Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct. Am J Physiol Renal Physiol 2005;289:F922–F932.

    Article  PubMed  CAS  Google Scholar 

  163. Silver RB, Soleimani M. H+-K+-ATPases: regulation and role in pathophysiological states. Am J Physiol 1999;276:F799–F811.

    PubMed  CAS  Google Scholar 

  164. Evan AP, Satlin LM, Gattone VH, 2nd, Connors B, Schwartz GJ. Postnatal maturation of rabbit renal collecting duct. II. Morphological observations. Am J Physiol 1991;261:F91–F107.

    PubMed  CAS  Google Scholar 

  165. Satlin LM, Evan AP, Gattone VH, 3rd, Schwartz GJ. Postnatal maturation of the rabbit cortical collecting duct. Pediatr Nephrol 1988;2:135–145.

    Article  PubMed  CAS  Google Scholar 

  166. Minuth WW, Gross P, Gilbert P, Kashgarian M. Expression of the alpha-subunit of Na/K-ATPase in renal collecting duct epithelium during development. Kidney Int 1987;31:1104–1112.

    Article  PubMed  CAS  Google Scholar 

  167. Constantinescu AR, Lane JC, Mak J, Zavilowitz B, Satlin LM. Na+-K+-ATPase-mediated basolateral rubidium uptake in the maturing rabbit cortical collecting duct. Am J Physiol Renal Physiol 2000;279:F1161–F1168.

    PubMed  CAS  Google Scholar 

  168. Satlin LM, Palmer LG. Apical K+ conductance in maturing rabbit principal cell. Am J Physiol 1997;272:F397–F404.

    PubMed  CAS  Google Scholar 

  169. Benchimol C, Zavilowitz B, Satlin LM. Developmental expression of ROMK mRNA in rabbit cortical collecting duct. Pediatr Res 2000;47:46–52.

    Article  PubMed  CAS  Google Scholar 

  170. Zolotnitskaya A, Satlin LM. Developmental expression of ROMK in rat kidney. Am J Physiol 1999;276:F825–F836.

    PubMed  CAS  Google Scholar 

  171. Woda CB, Miyawaki N, Ramalakshmi S, Ramkumar M, Rojas R, Zavilowitz B, Kleyman TR, Satlin LM. Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: functional and molecular aspects. Am J Physiol Renal Physiol 2003;285:F629–F639.

    PubMed  CAS  Google Scholar 

  172. Good DW, Wright FS. Luminal influences on potassium secretion: sodium concentration and fluid flow rate. Am J Physiol 1979;236:F192–F205.

    PubMed  CAS  Google Scholar 

  173. Stokes JB. Potassium secretion by cortical collecting tubule: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol 1981;241:F395–F402.

    PubMed  CAS  Google Scholar 

  174. Aperia A, Elinder G. Distal tubular sodium reabsorption in the developing rat kidney. Am J Physiol 1981;240:F487–F491.

    PubMed  CAS  Google Scholar 

  175. Garty H, Palmer LG. Epithelial sodium channels: function, structure, and regulation. Physiol Rev 1997;77:359–396.

    PubMed  CAS  Google Scholar 

  176. Satlin LM, Sheng S, Woda CB, Kleyman TR. Epithelial Na+ channels are regulated by flow. Am J Physiol Renal Physiol 2001;280:F1010–F1018.

    PubMed  CAS  Google Scholar 

  177. Kleyman TR, Roberts C, Ling BN. A mechanism for pentamidine-induced hyperkalemia: inhibition of distal nephron sodium transport. Ann Intern Med 1995;122:103–106.

    PubMed  CAS  Google Scholar 

  178. Schlanger LE, Kleyman TR, Ling BN. K+-sparing diuretic actions of trimethoprim: inhibition of Na+ channels in A6 distal nephron cells. Kidney Int 1994;45:1070–1076.

    Article  PubMed  CAS  Google Scholar 

  179. Muto S. Potassium transport in the mammalian collecting duct. Physiol Rev 2001;81:85–116.

    PubMed  CAS  Google Scholar 

  180. Stapleton FB, Nelson B, Vats TS, Linshaw MA. Hypokalemia associated with antibiotic treatment. Evidence in children with malignant neoplasms. Am J Dis Child 1976;130:1104–1108.

    PubMed  CAS  Google Scholar 

  181. Morimoto T, Liu W, Woda C, Carattino MD, Wei Y, Hughey RP, Apodaca G, Satlin LM, Kleyman TR. Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol 2006;291:F663–F669.

    Article  PubMed  CAS  Google Scholar 

  182. Malnic G, Berliner RW, Giebisch G. Flow dependence of K+ secretion in cortical distal tubules of the rat. Am J Physiol 1989;256:F932–F941.

    PubMed  CAS  Google Scholar 

  183. Frindt G, Zhou H, Sackin H, Palmer LG. Dissociation of K channel density and ROMK mRNA in rat cortical collecting tubule during K adaptation. Am J Physiol 1998;274:F525–F531.

    PubMed  CAS  Google Scholar 

  184. Brandis M, Keyes J, Windhager EE. Potassium-induced inhibition of proximal tubular fluid reabsorption in rats. Am J Physiol 1972;222:421–427.

    PubMed  CAS  Google Scholar 

  185. Sufit CR, Jamison RL. Effect of acute potassium load on reabsorption in Henle’s loop in the rat. Am J Physiol 1983;245:F569–F576.

    PubMed  CAS  Google Scholar 

  186. Youn JH, McDonough AA. Recent advances in understanding integrative control of potassium homeostasis. Annu Rev Physiol 2008. Aug 29[Epub ahead of print].

    Google Scholar 

  187. Morita H, Fujiki N, Miyahara T, Lee K, Tanaka K. Hepatoportal bumetanide-sensitive K+-sensor mechanism controls urinary K+ excretion. Am J Physiol Regul Integr Comp Physiol 2000;278:R1134–R1139.

    PubMed  CAS  Google Scholar 

  188. Ahloulay M, Dechaux M, Laborde K, Bankir L. Influence of glucagon on GFR and on urea and electrolyte excretion: direct and indirect effects. Am J Physiol 1995;269:F225–F235.

    PubMed  CAS  Google Scholar 

  189. Pullman TN, Lavender AR, Aho I. Direct effects of glucagon on renal hemodynamics and excretion of inorganic ions. Metabolism 1967;16:358–373.

    Article  PubMed  CAS  Google Scholar 

  190. Blachley JD, Crider BP, Johnson JH. Extrarenal potassium adaptation: role of skeletal muscle. Am J Physiol 1986;251:F313–F318.

    PubMed  CAS  Google Scholar 

  191. Hayslett JP, Binder HJ. Mechanism of potassium adaptation. Am J Physiol 1982;243:F103–112.

    PubMed  CAS  Google Scholar 

  192. Alexander EA, Levinsky NG. An extrarenal mechanism of potassium adaptation. J Clin Invest 1968;47:740–748.

    Article  PubMed  CAS  Google Scholar 

  193. Young DB, Smith MJ, Jr., Jackson TE, Scott RE. Multiplicative interaction between angiotensin II and K concentration in stimulation of aldosterone. Am J Physiol 1984;247:E328–E335.

    PubMed  CAS  Google Scholar 

  194. Engbretson BG, Stoner LC. Flow-dependent potassium secretion by rabbit cortical collecting tubule in vitro. Am J Physiol 1987;253:F896–F903.

    PubMed  CAS  Google Scholar 

  195. Schwartz GJ, Burg MB. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol 1978;235:F576–585.

    PubMed  CAS  Google Scholar 

  196. Ikeda U, Hyman R, Smith TW, Medford RM. Aldosterone-mediated regulation of Na+, K+-ATPase gene expression in adult and neonatal rat cardiocytes. J Biol Chem 1991;266:12058–12066.

    PubMed  CAS  Google Scholar 

  197. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone-mediated regulation of ENaC alpha, beta, gamma subunit proteins in rat kidney. J Clin Invest 1999;104:R19–R23.

    Article  PubMed  CAS  Google Scholar 

  198. O’Neil RG, Hayhurst RA. Sodium-dependent modulation of the renal Na-K-ATPase: influence of mineralocorticoids on the cortical collecting duct. J Membr Biol 1985;85:169–179.

    Article  PubMed  Google Scholar 

  199. Pacha J, Frindt G, Antonian L, Silver RB, Palmer LG. Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J Gen Physiol 1993;102:25–42.

    Article  PubMed  CAS  Google Scholar 

  200. Palmer LG, Antonian L, Frindt G. Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K. J Gen Physiol 1994;104:693–710.

    Article  PubMed  CAS  Google Scholar 

  201. Summa V, Mordasini D, Roger F, Bens M, Martin PY, Vandewalle A, Verrey F, Feraille E. Short term effect of aldosterone on Na,K-ATPase cell surface expression in kidney collecting duct cells. J Biol Chem 2001;276:47087–47093.

    Article  PubMed  CAS  Google Scholar 

  202. Garg LC, Knepper MA, Burg MB. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol 1981;240:F536–F544.

    PubMed  CAS  Google Scholar 

  203. Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D. Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci USA 1999;96:2514–2519.

    Article  PubMed  CAS  Google Scholar 

  204. Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O. Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. Embo J 2001;20:7052–7059.

    Article  PubMed  CAS  Google Scholar 

  205. Wulff P, Vallon V, Huang DY, Volkl H, Yu F, Richter K, Jansen M, Schlunz M, Klingel K, Loffing J, Kauselmann G, Bosl MR, Lang F, Kuhl D. Impaired renal Na+ retention in the sgk1-knockout mouse. J Clin Invest 2002;110:1263–1268.

    PubMed  CAS  Google Scholar 

  206. Vallon V, Wulff P, Huang DY, Loffing J, Volkl H, Kuhl D, Lang F. Role of Sgk1 in salt and potassium homeostasis. Am J Physiol Regul Integr Comp Physiol 2005;288:R4–R10.

    Article  PubMed  CAS  Google Scholar 

  207. Huang DY, Wulff P, Volkl H, Loffing J, Richter K, Kuhl D, Lang F, Vallon V. Impaired regulation of renal K+ elimination in the sgk1-knockout mouse. J Am Soc Nephrol 2004;15:885–891.

    Article  PubMed  CAS  Google Scholar 

  208. Attali B, Latter H, Rachamim N, Garty H. A corticosteroid-induced gene expressing an “IsK-like” K+ channel activity in Xenopus oocytes. Proc Natl Acad Sci USA 1995;92:6092–6096.

    Article  PubMed  CAS  Google Scholar 

  209. Capurro C, Coutry N, Bonvalet JP, Escoubet B, Garty H, Farman N. Cellular localization and regulation of CHIF in kidney and colon. Am J Physiol 1996;271:C753–C762.

    PubMed  CAS  Google Scholar 

  210. Garty H, Lindzen M, Scanzano R, Aizman R, Fuzesi M, Goldshleger R, Farman N, Blostein R, Karlish SJ. A functional interaction between CHIF and Na-K-ATPase: implication for regulation by FXYD proteins. Am J Physiol Renal Physiol 2002;283:F607–F615.

    PubMed  Google Scholar 

  211. Wald H, Goldstein O, Asher C, Yagil Y, Garty H. Aldosterone induction and epithelial distribution of CHIF. Am J Physiol 1996;271:F322–F329.

    PubMed  CAS  Google Scholar 

  212. Van Acker KJ, Scharpe SL, Deprettere AJ, Neels HM. Renin-angiotensin-aldosterone system in the healthy infant and child. Kidney Int 1979;16:196–203.

    Article  PubMed  CAS  Google Scholar 

  213. Aperia A, Broberger O, Herin P, Zetterstrom R. Sodium excretion in relation to sodium intake and aldosterone excretion in newborn pre-term and full-term infants. Acta Paediatr Scand 1979;68:813–817.

    Article  PubMed  CAS  Google Scholar 

  214. Robillard JE, Nakamura KT, Lawton WJ. Effects of aldosterone on urinary kallikrein and sodium excretion during fetal life. Pediatr Res 1985;19:1048–1052.

    Article  PubMed  CAS  Google Scholar 

  215. Stephenson G, Hammet M, Hadaway G, Funder JW. Ontogeny of renal mineralocorticoid receptors and urinary electrolyte responses in the rat. Am J Physiol 1984;247:F665–F671.

    PubMed  CAS  Google Scholar 

  216. Field MJ, Giebisch GJ. Hormonal control of renal potassium excretion. Kidney Int 1985;27:379–387.

    Article  PubMed  CAS  Google Scholar 

  217. West ML, Bendz O, Chen CB, Singer GG, Richardson RM, Sonnenberg H, Halperin ML. Development of a test to evaluate the transtubular potassium concentration gradient in the cortical collecting duct in vivo. Miner Electrolyte Metab 1986;12:226–233.

    PubMed  CAS  Google Scholar 

  218. West ML, Marsden PA, Richardson RM, Zettle RM, Halperin ML. New clinical approach to evaluate disorders of potassium excretion. Miner Electrolyte Metab 1986;12:234–238.

    PubMed  CAS  Google Scholar 

  219. Rodriguez-Soriano J, Ubetagoyena M, Vallo A. Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children. Pediatr Nephrol 1990;4:105–110.

    Article  PubMed  CAS  Google Scholar 

  220. Malnic G, De Mello Aires M, Giebisch G. Potassium transport across renal distal tubules during acid-base disturbances. Am J Physiol 1971;221:1192–1208.

    PubMed  CAS  Google Scholar 

  221. Boudry JF, Stoner LC, Burg MB. Effect of acid lumen pH on potassium transport in renal cortical collecting tubules. Am J Physiol 1976;230:239–244.

    PubMed  CAS  Google Scholar 

  222. Tabei K, Muto S, Furuya H, Sakairi Y, Ando Y, Asano Y. Potassium secretion is inhibited by metabolic acidosis in rabbit cortical collecting ducts in vitro. Am J Physiol 1995;268:F490–F495.

    PubMed  CAS  Google Scholar 

  223. Wang WH, Schwab A, Giebisch G. Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule. Am J Physiol 1990;259:F494–F502.

    PubMed  CAS  Google Scholar 

  224. Beck FX, Dorge A, Rick R, Schramm M, Thurau K. The distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells: effect of acute metabolic alkalosis. Pflugers Arch 1988;411:259–267.

    Article  PubMed  CAS  Google Scholar 

  225. Stone DK, Seldin DW, Kokko JP, Jacobson HR. Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium-independent effect. J Clin Invest 1983;72:77–83.

    Article  PubMed  CAS  Google Scholar 

  226. Kone BC, Higham SC. A novel N-terminal splice variant of the rat H+-K+-ATPase alpha2 subunit. Cloning, functional expression, and renal adaptive response to chronic hypokalemia. J Biol Chem 1998;273:2543–2552.

    Article  PubMed  CAS  Google Scholar 

  227. Aizman RI, Celsi G, Grahnquist L, Wang ZM, Finkel Y, Aperia A. Ontogeny of K+ transport in rat distal colon. Am J Physiol 1996;271:G268–G274.

    PubMed  CAS  Google Scholar 

  228. Foster ES, Hayslett JP, Binder HJ. Mechanism of active potassium absorption and secretion in the rat colon. Am J Physiol 1984;246:G611–G617.

    PubMed  CAS  Google Scholar 

  229. Butterfield I, Warhurst G, Jones MN, Sandle GI. Characterization of apical potassium channels induced in rat distal colon during potassium adaptation. J Physiol 1997;501(Pt 3):537–547.

    Article  PubMed  CAS  Google Scholar 

  230. Dawson DC. Ion channels and colonic salt transport. Annu Rev Physiol 1991;53:321–339.

    Article  PubMed  CAS  Google Scholar 

  231. Pacha J, Popp M, Capek K. Corticosteroid regulation of Na+ and K+ transport in the rat distal colon during postnatal development. J Dev Physiol 1988;10:531–540.

    PubMed  CAS  Google Scholar 

  232. Sausbier M, Matos JE, Sausbier U, Beranek G, Arntz C, Neuhuber W, Ruth P, Leipziger J. Distal colonic K+ secretion occurs via BK channels. J Am Soc Nephrol 2006;17:1275–1282.

    Article  PubMed  CAS  Google Scholar 

  233. Warth R, Bleich M. K+ channels and colonic function. Rev Physiol Biochem Pharmacol 2000;140:1–62.

    Article  PubMed  CAS  Google Scholar 

  234. Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 2002;82:245–289.

    PubMed  CAS  Google Scholar 

  235. Binder HJ, McGlone F, Sandle GI. Effects of corticosteroid hormones on the electrophysiology of rat distal colon: implications for Na+ and K+ transport. J Physiol 1989;410:425–441.

    PubMed  CAS  Google Scholar 

  236. Rechkemmer G, Frizzell RA, Halm DR. Active potassium transport across guinea-pig distal colon: action of secretagogues. J Physiol 1996;493(Pt 2):485–502.

    PubMed  CAS  Google Scholar 

  237. Agarwal R, Afzalpurkar R, Fordtran JS. Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology 1994;107:548–571.

    PubMed  CAS  Google Scholar 

  238. Hayes CP, Jr., McLeod ME, Robinson RR. An extrarenal mechanism for the maintenance of potassium balance in severe chronic renal failure. Trans Assoc Am Physicians 1967;80:207–216.

    PubMed  Google Scholar 

  239. Sandle GI, Gaiger E, Tapster S, Goodship TH. Enhanced rectal potassium secretion in chronic renal insufficiency: evidence for large intestinal potassium adaptation in man. Clin Sci (Lond) 1986;71:393–401.

    CAS  Google Scholar 

  240. Sandle GI, Gaiger E, Tapster S, Goodship TH. Evidence for large intestinal control of potassium homoeostasis in uraemic patients undergoing long-term dialysis. Clin Sci (Lond) 1987;73:247–252.

    CAS  Google Scholar 

  241. Mathialahan T, Maclennan KA, Sandle LN, Verbeke C, Sandle GI. Enhanced large intestinal potassium permeability in end-stage renal disease. J Pathol 2005;206:46–51.

    Article  PubMed  CAS  Google Scholar 

  242. Aizman R, Aizman O, Celsi G. Beta-adrenergic stimulation of cellular K+ uptake in rat distal colon. Acta Physiol Scand 1998;164:309–315.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Satlin, L.M. (2009). Potassium. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics