Skip to main content

Tubular Disorders of Electrolyte Regulation

  • Reference work entry
Pediatric Nephrology

Abstract

In this section, we will discuss the inherited disorders associated with defective tubular handling of NaCl, causing secondary aldosteronism and hypokalemia (Bartter-like syndromes), abnormal handling of calcium and magnesium, the states of low-renin hypertension with hypokalemia, and the two forms of pseudohypoaldosteronism (type I and type II). We will not address other types of inherited tubulopathies, such as renal Fanconi syndrome, diabetes insipidus, or renal tubular acidosis, which are detailed elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartter F, Pronove P, Gill J Jr, MacCardle R. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med 1962;33:811–828.

    Article  PubMed  CAS  Google Scholar 

  2. Jeck N, Schlingmann KP, Reinalter SC, Kömhoff M, Peters M, Waldegger S, Seyberth HW. Salt handling in the distal nephron: lessons learned from inherited human disorders. Am J Physiol Regul Integr Comp Physiol 2005;288(4):R782–R795.

    Article  PubMed  CAS  Google Scholar 

  3. Greger R. Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron. Physiol Rev 1985;65:760–797.

    PubMed  CAS  Google Scholar 

  4. Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology and molecular anatomy. Physiol Rev 2000;80:277–313.

    PubMed  CAS  Google Scholar 

  5. Hoenderop JG. Bindels RJ. Epithelial Ca2+ and Mg2+ channels in health and disease. J Am Soc Nephrol 2005;16:15–26.

    Article  PubMed  CAS  Google Scholar 

  6. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 1996;13:183–188.

    Article  PubMed  CAS  Google Scholar 

  7. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K_ channel, ROMK. Nat Genet 1996;14:152–156.

    Article  PubMed  CAS  Google Scholar 

  8. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 2001;29:310–314.

    Article  PubMed  CAS  Google Scholar 

  9. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 1997;17:171–178.

    Article  PubMed  CAS  Google Scholar 

  10. Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza FJ, Gitelman HJ, Lifton RP. Gitelman’s variant of Bartter’s syndrome, inherited hypokalemic alkalosis, is caused by mutations in the thiazide sensitive Na-Cl cotransporter. Nat Genet 1996;12:24–30.

    Article  PubMed  CAS  Google Scholar 

  11. Konrad M, Vollmer M, Lemmink HH, Van Den Heuvel LP, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschenes G, Antignac C, Guay-Woodford L, Knoers NV, Seyberth HW, Feldmann D, Hildebrandt F. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 2000;11:1449–1459.

    PubMed  CAS  Google Scholar 

  12. McCredie DA, Rotenberg E, Williams AL. Hypercalciuria in potassium-losing nephropathy: a variant of Bartter’s syndrome. Aust Paediatr J 1974;10(5):286–295.

    PubMed  CAS  Google Scholar 

  13. Proesmans W. Bartter syndrome and its neonatal variant. Eur J Pediatr 1997;156(9):669–679.

    Article  PubMed  CAS  Google Scholar 

  14. Vargas-Poussou R, Feldmann D, Vollmer M, Konrad M, Kelly L et al. Novel molecular variants of the Na-K-2Cl cotransporter gene are responsible for antenatal Bartter syndrome. Am J Hum Genet 1998;62:1332–1340.

    Article  PubMed  CAS  Google Scholar 

  15. Seyberth HW, Koniger SJ, Rascher W, Kuhl PG, and Schweer H. Role of prostaglandins in hyperprostaglandin E syndrome and in selected renal tubular disorders. Pediatr Nephrol 1987;1:491–497.

    Article  PubMed  CAS  Google Scholar 

  16. Kockerling A, Reinalter SC, Seyberth HW. Impaired response to furosemide in hyperprostaglandin E syndrome: evidence for a tubular defect in the loop of Henle. J Pediatr 1996;129:519–528.

    Article  PubMed  CAS  Google Scholar 

  17. International Collaborative Study Group for Bartter-like Syndromes. Mutations in the gene encoding the inwardly-rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: evidence for genetic heterogeneity. Hum Mol Genet 1997;6(1):17–26.

    Article  Google Scholar 

  18. Bettinelli A, Ciarmatori S, Cesareo L, Tedeschi S, Ruffa G et al. Phenotypic variability in Bartter syndrome type I. Pediatr Nephrol 2000. 14:940–945.

    Article  PubMed  CAS  Google Scholar 

  19. Nielsen S, Maunsbach AB, Ecelbarger CA, Knepper MA. Ultrastructural localization of Na-K-2Cl cotransporter in thick ascending limb and macula densa of rat kidney. Am J Physiol Renal Physiol 1998;275:F885–F893.

    CAS  Google Scholar 

  20. Shankar SS, Brater DC. Loop diuretics: from the Na-K-2Cl transporter to clinical use. Am J Physiol Renal Physiol 2003;284:F11–F21.

    PubMed  CAS  Google Scholar 

  21. Adachi M, Asakura Y, Sato Y, Tajima T, Nakajima T, Yamamoto T, Fujieda K. Novel SLC12A1 (NKCC2) mutations in two families with Bartter syndrome type 1. Endocr J 2007;54:1003–1007.

    Article  PubMed  CAS  Google Scholar 

  22. Kurtz CL, Karolyi L, Seyberth HW, Koch MC, Vargas R, Feldmann D, Vollmer M, Knoers NV, Madrigal G, Guay-Woodford LM. A common NKCC2 mutation in Costa Rican Bartter’s syndrome patients: evidence for a founder effect. J Am Soc Nephrol 1997;8(11):1706–1711.

    PubMed  CAS  Google Scholar 

  23. Castrop H, Schnermann JB. Isoforms of the renal Na/K/2Cl cotransporter NKCC2: expression and functional significance. Am J Physiol Renal Physiol 2008;21 PMID: 18495801.

    Google Scholar 

  24. Wang W, Sackin H, Giebisch G. Renal potassium channels and their regulation. Annu Rev Physiol 1992;54:81–96.

    Article  PubMed  CAS  Google Scholar 

  25. Nichols CG, Lopatin AN. Inward rectifier potassium channels. Annu Rev Physiol 1997;59:171–191.

    Article  PubMed  CAS  Google Scholar 

  26. Feldmann D, Alessandri JL, Deschênes G. Large deletion of the 5′ end of the ROMK1 gene causes antenatal Bartter syndrome. J Am Soc Nephrol 1998;9(12):2357–2359.

    PubMed  CAS  Google Scholar 

  27. Flagg TP, Tate M, Merot J, Welling PA. A mutation linked with Bartter’s syndrome locks Kir 1.1a (ROMK1) channels in a closed state. J Gen Physiol 1999;114(5):685–700.

    Article  PubMed  CAS  Google Scholar 

  28. Schulte U, Hahn H, Konrad M, Jeck N, Derst C, Wild K, Weidemann S, Ruppersberg JP, Fakler B, Ludwig J. pH gating of ROMK (K(ir)1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome. Proc Natl Acad Sci USA 1999;96(26):15298–15303.

    Article  PubMed  CAS  Google Scholar 

  29. Jeck N, Derst C, Wischmeyer E, Ott H, Weber S et al. Functional heterogeneity of ROMK mutations linked to hyperprostaglandin E syndrome. Kidney Int 2001;59:1803–1811.

    Article  PubMed  CAS  Google Scholar 

  30. Starremans PG, van der Kemp AW, Knoers NV, van den Heuvel LP, Bindels RJ. Functional implications of mutations in the human renal outer medullary potassium channel (ROMK2) identified in Bartter syndrome. Pflugers Arch 2002;443(3):466–472.

    Article  PubMed  CAS  Google Scholar 

  31. Peters M, Jeck N, Reinalter S, Leonhardt A, Tonshoff B, Klaus G, Konrad M, Seyberth HW. Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med 2002;112:183–190.

    Article  PubMed  Google Scholar 

  32. Madrigal G, Saborio P, Mora F, Rincon G, Guay-Woodford LM. Bartter syndrome in Costa Rica: a description of 20 cases. Pediatr Nephrol 1997;11(3):296–301.

    Article  PubMed  CAS  Google Scholar 

  33. Vaisbich MH, Fujimura MD, Koch VH. Bartter syndrome: benefits and side effects of long-term treatment. Pediatr Nephrol 2004;19(8):858–863.

    Article  PubMed  Google Scholar 

  34. Seyberth HW, Rascher W, Schweer H, Kühl PG, Mehls O, Schärer K. Congenital hypokalemia with hypercalciuria in preterm infants: a hyperprostaglandinuric tubular syndrome different from Bartter syndrome. J Pediatr 1985;107(5):694–701.

    Article  PubMed  CAS  Google Scholar 

  35. Shoemaker L, Welch TR, Bergstrom W, Abrams SA, Yergey AL, Vieira N. Calcium kinetics in the hyperprostaglandin E syndrome. Pediatr Res 1993;33(1):92–96.

    Article  PubMed  CAS  Google Scholar 

  36. Rodríguez-Soriano J, Vallo A, Aguirre M. Bone mineral density and bone turnover in patients with Bartter syndrome. Pediatr Nephrol 2005;20(8):1120–1125.

    Article  PubMed  Google Scholar 

  37. Pressler CA, Heinzinger J, Jeck N, Waldegger P, Pechmann U, Reinalter S, Konrad M, Beetz R, Seyberth HW, Waldegger S. Late-onset manifestation of antenatal Bartter syndrome as a result of residual function of the mutated renal Na+-K+-2Cl- co-transporter. J Am Soc Nephrol 2006;17(8):2136–2142.

    Article  PubMed  CAS  Google Scholar 

  38. Schachter AD, Arbus GS, Alexander RJ, Balfe JW. Non-steroidal antiinflammatory drug-associated nephrotoxicity in Bartter syndrome. Pediatr Nephrol 1998;12:775–777.

    Article  PubMed  CAS  Google Scholar 

  39. Chaudhuri A, Salvatierra O Jr, Alexander SR, Sarwal MM. Option of pre-emptive nephrectomy and renal transplantation for Bartter’s syndrome. Pediatr Transplant 2006;10(2):266–270.

    Article  PubMed  Google Scholar 

  40. Rudin A. Bartter’s syndrome: a review of 28 patients followed for 10 years. Acta Med Scand 1988;224:165–171.

    Article  PubMed  CAS  Google Scholar 

  41. Reinalter SC, Grone HJ, Konrad M, Seyberth HW, Klaus G. Evaluation of long-term treatment with indomethacin in hereditary hypokalemic salt-losing tubulopathies. J Pediatr 2001;139:398–406.

    Article  PubMed  CAS  Google Scholar 

  42. Taugner R, Waldherr R, Seyberth HW, Erdös EG, Menard J, Schneider D. The juxtaglomerular apparatus in Bartter’s syndrome and related tubulopathies. An immunocytochemical and electron microscopic study. Virchows Arch A Pathol Anat Histopathol 1988;412(5):459–470.

    Article  PubMed  CAS  Google Scholar 

  43. Okada M, Lertprasertsuke N, Tsutsumi Y. Quantitative estimation of rennin-containing cells in the juxtaglomerular apparatus in Bartter’s and pseudo-Bartter’s syndromes. Pathol Int 2000;50:166–168.

    Article  PubMed  CAS  Google Scholar 

  44. Finer G, Shalev H, Birk OS, Galron D, Jeck N, Sinai-Treiman L, Landau D. Transient neonatal hyperkalemia in the antenatal (ROMK defective) Bartter syndrome. J Pediatr 2003;142(3):318–323.

    Article  PubMed  CAS  Google Scholar 

  45. Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 2008;40(5):592–599.

    Article  PubMed  CAS  Google Scholar 

  46. Tobin MD, Tomaszewski M, Braund PS, Hajat C, Raleigh SM, Palmer TM, Caulfield M, Burton PR, Samani NJ. Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension 2008;51(6):1658–1664.

    Article  PubMed  CAS  Google Scholar 

  47. Devuyst O. Salt wasting and blood pressure. Nat Genet 2008;40(5):495–496.

    Article  PubMed  CAS  Google Scholar 

  48. Mourani CC, Sanjad SA, Akatcherian CY. Bartter syndrome in a neonate: early treatment with indomethacin. Pediatr Nephrol 2000;14(2):143–145.

    Article  PubMed  CAS  Google Scholar 

  49. Starremans PG, Kersten FF, Knoers NV, van den Heuvel LP, Bindels RJ. Mutations in the human Na-K-2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters. J Am Soc Nephrol 2003;14(6):1419–1426.

    Article  PubMed  Google Scholar 

  50. Schwalbe RA, Bianchi L, Accili EA, Brown AM. Functional consequences of ROMK mutants linked to antenatal Bartter’s syndrome and implications for treatment. Hum Mol Genet 1998;7(6):975–980.

    Article  PubMed  CAS  Google Scholar 

  51. Peters M, Ermert S, Jeck N, Derst C, Pechmann U, Weber S, Schlingmann KP, Seyberth HW, Waldegger S, Konrad M. Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int 2003;64(3):923–932.

    Article  PubMed  CAS  Google Scholar 

  52. Massa G, Proesmans W, Devlieger H, Vandenberghe K, Van Assche A, Eggermont E. Electrolyte composition of the amniotic fluid in Bartter syndrome. Eur J Obstet Gynecol Reprod Biol 1987;24(4):335–340.

    Article  PubMed  CAS  Google Scholar 

  53. Shalev H, Ohaly M, Meizner I, Carmi R. Prenatal diagnosis of Bartter syndrome. Prenat Diagn 1994;14:996–998.

    Article  PubMed  CAS  Google Scholar 

  54. Yang T, Park JM, Arend L, Huang Y, Topaloglu R, Pasumarthy A, Praetorius H, Spring K, Briggs JP, Schnermann J. Low chloride stimulation of prostaglandin E2 release and cyclooxygenase-2 expression in a mouse macula densa cell line. J Biol Chem 2000;275(48):37922–37929.

    Article  PubMed  CAS  Google Scholar 

  55. Kömhoff M, Jeck ND, Seyberth HW, Gröne HJ, Nüsing RM, Breyer MD. Cyclooxygenase-2 expression is associated with the renal macula densa of patients with Bartter-like syndrome. Kidney Int 2000;58(6):2420–2424.

    Article  PubMed  Google Scholar 

  56. Reinalter SC, Jeck N, Brochhausen C, Watzer B, Nüsing RM,Seyberth HW, Kömhoff M. Role of cyclooxygenase-2 in hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int 2002;62(1):253–260.

    Article  PubMed  CAS  Google Scholar 

  57. Konrad M, Weber S. Recent advances in molecular genetics of hereditary magnesium-losing disorders. J Am Soc Nephrol 2003;14(1):249–260.

    Article  PubMed  Google Scholar 

  58. Dai LJ, Bapty B, Ritchie G, Quamme GA. PGE2 stimulates Mg2_ uptake in mouse distal convoluted tubule cells. Am J Physiol 1998;275:F833–F839.

    PubMed  CAS  Google Scholar 

  59. Leonhardt A, Timmermanns G, Roth B, Seyberth HW. Calcium homeostasis and hypercalciuria in hyperprostaglandin E syndrome. J Pediatr 1992;120(4 Pt 1):546–554.

    PubMed  CAS  Google Scholar 

  60. Schurman SJ, Bergstrom WH, Shoemaker LR, Welch TR. Angiotensin II reduces calcium uptake into bone. Pediatr Nephrol 2004;19(1):33–35.

    Article  PubMed  Google Scholar 

  61. Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O. Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci USA 2000;97:5434–5439.

    Article  PubMed  CAS  Google Scholar 

  62. Lorenz JN, Baird NR, Judd LM, Noonan WT, Andringa A, Doetschman T, Manning PA, Liu LH, Miller ML, Shull GE. Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem 2002;277:37871–37880.

    Article  PubMed  CAS  Google Scholar 

  63. Wagner CA, Loffing-Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J. Mouse model of type II Bartter’s syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol 2008;294(6):F1373–F1380.

    Article  PubMed  CAS  Google Scholar 

  64. Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. J Clin Invest 2006;116(3):797–807.

    Article  PubMed  CAS  Google Scholar 

  65. Rodriguez-Soriano J. Bartter’s syndrome comes of age. Pediatrics 1999;103:663–664.

    Article  PubMed  CAS  Google Scholar 

  66. Kleta R, Basoglu C, Kuwertz-Bröking E. New treatment options for Bartter’s syndrome. N Engl J Med 2000;343:661–662.

    Article  PubMed  CAS  Google Scholar 

  67. Haas NA, Nossal R, Schneider CH, Lewin MA, Ocker V, Holder M, Uhlemann F. Successful management of an extreme example of neonatal hyperprostaglandin-E syndrome (Bartter’s syndrome) with the new cyclooxygenase-2 inhibitor rofecoxib. Pediatr Crit Care Med 2003;4(2):249–251.

    Article  PubMed  Google Scholar 

  68. Fletcher JT, Graf N, Scarman A, Saleh H, Alexander SI. Nephrotoxicity with cyclooxygenase 2 inhibitor use in children. Pediatr Nephrol 2006;21(12):1893–1897.

    Article  PubMed  Google Scholar 

  69. Wong W, Hulton SA, Taylor CM, Raafat F, Lote CJ, Lindop G. A case of neonatal Bartter’s syndrome. Pediatr Nephrol 1996;10(4):414–418.

    Article  PubMed  CAS  Google Scholar 

  70. Landau D, Shalev H, Ohaly M, Carmi R. Infantile variant of Bartter syndrome and sensorineural deafness: a new autosomal recessive disorder. Am J Med Genet 1995;59:454–459.

    Article  PubMed  CAS  Google Scholar 

  71. Jeck N, Reinalter SC, Henne T, Marg W, Mallmann R, Pasel K, Vollmer M, Klaus G, Leonhardt A, Seyberth HW, Konrad M. Hypokalemic salt-losing tubulopathy with chronic renal failure and sensorineural deafness. Pediatrics 2001;108:E5.

    Article  PubMed  CAS  Google Scholar 

  72. Brennan TM, Landau D, Shalev H, Lamb F, Schutte BC, Walder RY, Mark AL, Carmi R, Sheffield VC. Linkage of infantile Bartter syndrome with sensorineural deafness to chromosome 1p. Am J Hum Genet 1998;62:355–361.

    Article  PubMed  CAS  Google Scholar 

  73. Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ. Barttin is a Cl- channel beta-subunit crucial for renal Cl-reabsorption and inner ear K_ secretion. Nature 2001;414: 558–561.

    Article  PubMed  CAS  Google Scholar 

  74. Shalev H, Ohali M, Kachko L, Landau D. The neonatal variant of Bartter syndrome and deafness: preservation of renal function. Pediatrics 2003;112(3 Pt 1):628–633.

    Article  PubMed  Google Scholar 

  75. Zaffanello M, Taranta A, Palma A, Bettinelli A, Marseglia GL, Emma F. Type IV Bartter syndrome: report of two new cases. Pediatr Nephrol 2006;21(6):766–770.

    Article  PubMed  Google Scholar 

  76. Miyamura N, Matsumoto K, Taguchi T, Tokunaga H, Nishikawa T, Nishida K, Toyonaga T, Sakakida M, Araki E. Atypical Bartter syndrome with sensorineural deafness with G47R mutation of the beta-subunit for ClC-Ka and ClC-Kb chloride channels, barttin. J Clin Endocrinol Metab 2003;88(2):781–786.

    Article  PubMed  CAS  Google Scholar 

  77. García-Nieto V, Flores C, Luis-Yanes MI, Gallego E, Villar J, Claverie-Martín F. Mutation G47R in the BSND gene causes Bartter syndrome with deafness in two Spanish families. Pediatr Nephrol 2006;21(5):643–648.

    Article  PubMed  Google Scholar 

  78. Kitanaka S, Sato U, Maruyama K, Igarashi T. A compound heterozygous mutation in the BSND gene detected in Bartter syndrome type IV. Pediatr Nephrol 2006;21(2):190–193.

    Article  PubMed  Google Scholar 

  79. Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW. Barttin increases expression and changes current properties of ClC-K channels. Pflugers Arch 2002;444:411–418.

    Article  PubMed  CAS  Google Scholar 

  80. Jentsch TJ, Poet M, Fuhrmann JC, Zdebik AA. Physiological functions of CLC Cl – channels gleaned from human genetic disease and mouse models. Annu Rev Physiol 2005;67:779–807.

    Article  PubMed  CAS  Google Scholar 

  81. Schlingmann KP, Konrad M, Jeck N et al. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 2004;350:1314–1319.

    Article  PubMed  CAS  Google Scholar 

  82. Nozu K, Inagaki T, Fu XJ, Nozu Y, Kaito H, Kanda K, Sekine T, Igarashi T, Nakanishi K, Yoshikawa N, Iijima K, Matsuo M. Molecular analysis of digenic inheritance in Bartter syndrome with sensorineural deafness. J Med Genet 2008;45(3):182–186.

    Article  PubMed  CAS  Google Scholar 

  83. Nozu K, Fu XJ, Nakanishi K, Yoshikawa N, Kaito H, Kanda K, Krol RP, Miyashita R, Kamitsuji H, Kanda S, Hayashi Y, Satomura K, Shimizu N, Iijima K, Matsuo M. Molecular analysis of patients with type III Bartter syndrome: picking up large heterozygous deletions with semiquantitative PCR. Pediatr Res 2007;62(3):364–369.

    Article  PubMed  CAS  Google Scholar 

  84. Rodríguez-Soriano J, Vallo A, Pérez de Nanclares G, Bilbao JR, Castaño L. A founder mutation in the CLCNKB gene causes Bartter syndrome type III in Spain. Pediatr Nephrol 2005;20(7):891–896.

    Article  PubMed  Google Scholar 

  85. Zelikovic I, Szargel R, Hawash A, Labay V, Hatib I, Cohen N, Nakhoul F. A novel mutation in the chloride channel gene CLCNKB as a cause of Gitelman and Bartter syndromes. Kidney Int 2003;63:24–32.

    Article  PubMed  CAS  Google Scholar 

  86. Matsumura Y, Uchida S, Kondo Y, Miyazaki H, Ko SB, Hayama A, Morimoto T, Liu W, Arisawa M, Sasaki S, Marumo F. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat Genet 1999;21(1):95–98.

    Article  PubMed  CAS  Google Scholar 

  87. Barlassina C, Dal Fiume C, Lanzani C, Manunta P, Guffanti G, Ruello A, Bianchi G, Del Vecchio L, Macciardi F, Cusi D. Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension. Hum Mol Genet 2007;16(13):1630–1638.

    Article  PubMed  CAS  Google Scholar 

  88. Bettinelli A, Borsa N, Bellantuono R, Syrèn ML, Calabrese R, Edefonti A, Komninos J, Santostefano M, Beccaria L, Pela I, Bianchetti MG, Tedeschi S. Patients with biallelic mutations in the chloride channel gene CLCNKB: long-term management and outcome. Am J Kidney Dis 2007;49(1):91–98.

    Article  PubMed  CAS  Google Scholar 

  89. Schurman SJ, Perlman SA, Sutphen R, Campos A, Garin EH, Cruz DN, Shoemaker LR. Genotype/phenotype observations in African Americans with Bartter syndrome. J Pediatr 2001;139(1):105–110.

    Article  PubMed  CAS  Google Scholar 

  90. Jeck N, Konrad M, Peters M, Weber S, Bonzel KE, Seyberth HW. Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr Res 2000;48:754–758.

    Article  PubMed  CAS  Google Scholar 

  91. Fukuyama S, Hiramatsu M, Akagi M, Higa M, Ohta T. Novel mutations of the chloride channel Kb gene in two Japanese patients clinically diagnosed as Bartter syndrome with hypocalciuria. J Clin Endocrinol Metab 2004;89(11):5847–5850.

    Article  PubMed  CAS  Google Scholar 

  92. Sun H, Demirci H, Shields CL, Shields JA. Sclerochoroidal calcification in a patient with classic Bartter’s syndrome. Am. J. Ophthal 2005;139:365–366.

    Article  PubMed  Google Scholar 

  93. Walker SH. Severe Bartter syndrome in blacks. N Engl J Med 1971;285(20):1150.

    PubMed  CAS  Google Scholar 

  94. Calò LA. Vascular tone control in humans: insights from studies in Bartter’s/Gitelman’s syndromes. Kidney Int 2006;69(6):963–966.

    Article  PubMed  Google Scholar 

  95. Stoff JS, Stemerman M, Steer M, Salzman E, Brown RS. A defect in platelet aggregation in Bartter’s syndrome. Am J Med 1980;68(2):171–180.

    Article  PubMed  CAS  Google Scholar 

  96. Clive DM, Stoff JS, Cardi M, MacIntyre DE, Brown RS, Salzman EW. Evidence that circulating 6keto prostaglandin E1 causes the platelet defect of Bartter’s syndrome. Prostagland Leukot Essent Fatty Acids 1990;41(4):251–258.

    Article  CAS  Google Scholar 

  97. Sardani Y, Qin K, Haas M, Aronson AJ, Rosenfield RL. Bartter syndrome complicated by immune complex nephropathy. Case report and literature review. Pediatr Nephrol 2003;18:913–918.

    Article  PubMed  Google Scholar 

  98. Blethen SL, Van Wyck JJ, Lorentz WB, Jennette JC. Reversal of Bartter’s syndrome by renal transplantation in a child with focal, segmental glomerular sclerosis. Am J Med Sci 1985;289:31–36.

    Article  PubMed  CAS  Google Scholar 

  99. Su IH, Frank R, Gauthier BG, Valderrama E, Simon DB, Lifton RP, Trachtman H. Bartter syndrome and focal segmental glomerulosclerosis: a possible link between two diseases. Pediatr Nephrol 2000;14:970–972.

    Article  PubMed  CAS  Google Scholar 

  100. Bartter FC. So-called Bartter’s syndrome. N Engl J Med 1969;281(26):1483–1484.

    Article  PubMed  CAS  Google Scholar 

  101. Takahashi M, Yanagida N, Okano M, Ishizaki A, Meguro J, Kukita K, Tamaki T, Yonekawa M, Kawamura A, Yokoyama T. A first report: living related kidney transplantation on a patient with Bartter’s syndrome. Transplant Proc 1996;28(3):1588.

    PubMed  CAS  Google Scholar 

  102. Watanabe T, Tajima T. Renal cysts and nephrocalcinosis in a patient with Bartter syndrome type III. Pediatr Nephrol 2005;20(5):676–678.

    Article  PubMed  Google Scholar 

  103. Torres VE, Young WF Jr, Offord KP, Hattery RR. Association of hypokalemia, aldosteronism, and renal cysts. N Engl J Med 1990;322(6):345–351.

    Article  PubMed  CAS  Google Scholar 

  104. Jeck N, Waldegger P, Doroszewicz J, Seyberth H, Waldegger S. A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity. Kidney Int 2004;65:190–197.

    Article  PubMed  CAS  Google Scholar 

  105. Jeck N, Waldegger S, Lampert A, Boehmer C, Waldegger P, Lang PA, Wissinger B, Friedrich B, Risler T, Moehle R, Lang UE, Zill P, Bondy B, Schaeffeler E, Asante-Poku S, Seyberth H, Schwab M, Lang F. Activating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension. Hypertension 2004;43(6):1175–1181.

    Article  PubMed  CAS  Google Scholar 

  106. Geller DS. A genetic predisposition to hypertension? Hypertension 2004;44:27–28.

    Article  PubMed  CAS  Google Scholar 

  107. Kokubo Y, Iwai N, Tago N, Inamoto N, Okayama A, Yamawaki H, Naraba H, Tomoike H. Association analysis between hypertension and CYBA, CLCNKB, and KCNMB1 functional polymorphisms in the Japanese population – the Suita Study. Circ J 2005;69(2):138–142.

    Article  PubMed  CAS  Google Scholar 

  108. Meyers AM, Feldman C, Sonnekus MI, Ninin DT, Margolius LP, Whalley NA. Chronic laxative abusers with pseudo-idiopathic oedema and autonomous pseudo-Bartter’s syndrome. A spectrum of metabolic madness, or new lights on an old disease? S Afr Med J 1990;78(11):631–636.

    PubMed  CAS  Google Scholar 

  109. D’Avanzo M, Santinelli R, Tolone C, Bettinelli A, Bianchetti MG. Concealed administration of frusemide simulating Bartter syndrome in a 4.5-year-old boy. Pediatr Nephrol 1995;9(6):749–750.

    Article  PubMed  Google Scholar 

  110. Ramos E, Hall-Craggs M, Demers LM. Surreptitious habitual vomiting simulating Bartter’s syndrome. JAMA 1980;243(10):1070–1072.

    Article  PubMed  CAS  Google Scholar 

  111. Colussi G, Rombolà G, Airaghi C, De Ferrari ME, Minetti L. Pseudo-Bartter’s syndrome from surreptitious diuretic intake: differential diagnosis with true Bartter’s syndrome. Nephrol Dial Transplant 1992;7(9):896–901.

    PubMed  CAS  Google Scholar 

  112. Gladziwa U, Schwarz R, Gitter AH, Bijman J, Seyberth H, Beck F, Ritz E, Gross P. Chronic hypokalaemia of adults: Gitelman’s syndrome is frequent but classical Bartter’s syndrome is rare. Nephrol Dial Transplant 1995;10(9):1607–1613.

    PubMed  CAS  Google Scholar 

  113. Whyte MP, Shaheb S, Schnaper HW. Cystinosis presenting with features suggesting Bartter syndrome. Case report and literature review. Clin Pediatr (Phila)1985;24(8):447–451.

    Article  CAS  Google Scholar 

  114. Emma F, Pizzini C, Tessa A, Di Giandomenico S, Onetti-Muda A, Santorelli FM, Bertini E, Rizzoni G. “Bartter-like” phenotype in Kearns-Sayre syndrome. Pediatr Nephrol 2006;21(3):355–360.

    Article  PubMed  Google Scholar 

  115. Walker SH, Firminger HI. Familial renal dysplasia with sodium wasting and hypokalemic alkalosis. Am J Dis Child 1974;127(6):882–887.

    PubMed  CAS  Google Scholar 

  116. Kennedy JD, Dinwiddie R, Daman-Willems C, Dillon MJ, Matthew DJ. Pseudo-Bartter’s syndrome in cystic fibrosis. Arch Dis Child 1990;65(7):786–787.

    Article  PubMed  CAS  Google Scholar 

  117. Bates CM, Baum M, Quigley R. Cystic fibrosis presenting with hypokalemia and metabolic alkalosis in a previously healthy adolescent. J Am Soc Nephrol 1997;8(2):352–355.

    PubMed  CAS  Google Scholar 

  118. Koshida R, Sakazume S, Maruyama H, Okuda N, Ohama K, Asano S. A case of pseudo-Bartter’s syndrome due to intestinal malrotation. Acta Paediatr Jpn 1994;36(1):107–111.

    Article  PubMed  CAS  Google Scholar 

  119. Vanhaesebrouck S, Van Laere D, Fryns JP, Theyskens C. Pseudo-Bartter syndrome due to Hirschsprung disease in a neonate with an extra ring chromosome 8. Am J Med Genet A 2007;143A(20):2469–2472.

    Article  PubMed  Google Scholar 

  120. Langhendries JP, Thiry V, Bodart E, Delfosse G, Whitofs L, Battisti O, Bertrand JM. Exogenous prostaglandin administration and pseudo-Bartter syndrome. Eur J Pediatr 1989;149(3):208–209.

    Article  PubMed  CAS  Google Scholar 

  121. Landau D, Kher KK. Gentamicin-induced Bartter-like syndrome. Pediatr Nephrol 1997;11(6):737–740.

    Article  PubMed  CAS  Google Scholar 

  122. Chou CL, Chen YH, Chau T, Lin SH. Acquired Bartter-like syndrome associated with gentamicin administration. Am J Med Sci 2005;329:144–149.

    Article  PubMed  Google Scholar 

  123. Lieber IH, Stoneburner SD, Floyd M, McGuffin WL. Potassium-wasting nephropathy secondary to chemotherapy simulating Bartter’s syndrome. Cancer 1984;54(5):808–810.

    Article  PubMed  CAS  Google Scholar 

  124. Pedro-Botet J, Tomas S, Soriano JC, Coll J. Primary Sjögren’s syndrome associated with Bartter’s syndrome. Clin Exp Rheumatol 1991;9(2):210–212.

    PubMed  CAS  Google Scholar 

  125. Casatta L, Ferraccioli GF, Bartoli E. Hypokalaemic alkalosis, acquired Gitelman’s and Bartter’s syndrome in chronic sialoadenitis. Br J Rheumatol 1997;36(10):1125–1128.

    Article  PubMed  CAS  Google Scholar 

  126. Ertekin V, Selimoglu AM, Orbak Z. Association of Bartter’s syndrome and empty sella. J Pediatr Endocrinol Metab 2003;16(7):1065–1068.

    Article  PubMed  Google Scholar 

  127. Addolorato G, Ancarani F, Leggio L, Abenavoli L, de Lorenzi G, Montalto M, Staffolani E, Zannoni GF, Costanzi S, Gasbarrini G. Hypokalemic nephropathy in an adult patient with partial empty sella: a classic Bartter’s syndrome, a Gitelman’s syndrome or both? Panminerva Med 2006;48(2):137–142.

    PubMed  CAS  Google Scholar 

  128. Güllner HG, Bartter FC, Gill JR Jr, Dickman PS, Wilson CB, Tiwari JL. A sibship with hypokalemic alkalosis and renal proximal tubulopathy. Arch Intern Med 1983;143(8):1534–1540.

    Article  PubMed  Google Scholar 

  129. Jest P, Pedersen KE, Klitgaard NA, Thomsen N, Kjaer K, Simonsen E. Angiotensin-converting enzyme inhibition as a therapeutic principle in Bartter’s syndrome. Eur J Clin Pharmacol 1991;41(4):303–305.

    Article  PubMed  CAS  Google Scholar 

  130. Kim JY, Kim GA, Song JH, Lee SW, Han JY, Lee JS, Kim MJ. A case of living-related kidney transplantation in Bartter’s syndrome. Yonsei Med J 2000;41(5):662–665.

    PubMed  CAS  Google Scholar 

  131. Brimacombe JR, Breen DP. Anesthesia and Bartter’s syndrome: a case report and review. AANA J 1993;61(2):193–197.

    PubMed  CAS  Google Scholar 

  132. Vetrugno L, Cheli G, Bassi F, Giordano F. Cardiac anesthesia management of a patient with Bartter’s syndrome. J Cardiothorac Vasc Anesth 2005;19(3):373–376.

    Article  PubMed  Google Scholar 

  133. Gitelman HJ, Graham JB, Welt LG. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Phys 1966;79:221–235.

    PubMed  CAS  Google Scholar 

  134. Bettinelli A, Bianchetti MG, Girardin E, Caringella A, Cecconi M, Appiani AC, Pavanello L, Gastaldi R, Isimbaldi C, Lama G et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: Bartter and Gitelman syndromes. J Pediatr 1992;120:38–43.

    Article  PubMed  CAS  Google Scholar 

  135. Sutton RA, Mavichak V, Halabe A, Wilkins GE. Bartter’s syndrome: evidence suggesting a distal tubular defect in a hypocalciuric variant of the syndrome. Miner Electrolyte Metab 1992;18(1):43–51.

    PubMed  CAS  Google Scholar 

  136. Tsukamoto T, Kobayashi T, Kawamoto K, Fukase M, Chihara K. Possible discrimination of Gitelman’s syndrome from Bartter’s syndrome by renal clearance study: report of two cases. Am J Kidney Dis 1995;25(4):637–641.

    Article  PubMed  CAS  Google Scholar 

  137. Hebert SC, Mount DB, Gamba G. Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family. Pflugeers Arch 2004;447:580–593.

    Article  CAS  Google Scholar 

  138. Gamba G, Saltzberg SN, Lombardi M, Miyanoshita A, Lytton J, Hediger Ma, Brenner BM, Hebert SC. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci USA 1993;90:2749–2753.

    Article  PubMed  CAS  Google Scholar 

  139. Moreno E, Cristóbal PS, Rivera M, Vázquez N, Bobadilla NA, Gamba G. Affinity-defining domains in the Na-Cl cotransporter: a different location for Cl- and thiazide binding. J Biol Chem 2006;281(25):17266–17275.

    Article  PubMed  CAS  Google Scholar 

  140. Lemmink HH, Knoers NV, Karolyi L, van Dijk H, Niaudet P, Antignac C, Guay-Woodford LM, Goodyer PR, Carel JC, Hermes A, Seyberth HW, Monnens LA, van den Heuvel LP. Novel mutations in the thiazide-sensitive NaCl cotransporter gene in patients with Gitelman syndrome with predominant localization to the C-terminal domain. Kidney Int 1998;54:720–730.

    Article  PubMed  CAS  Google Scholar 

  141. Reissinger A, Ludwig M, Utsch B, Prömse A, Baulmann J, Weisser B, Vetter H, Kramer HJ, Bokemeyer D. Novel NCCT gene mutations as a cause of Gitelman’s syndrome and a systematic review of mutant and polymorphic NCCT alleles. Kidney Blood Press Res 2002;25:354–362.

    Article  PubMed  Google Scholar 

  142. Riveira-Munoz E, Chang Q, Godefroid N, Hoenderop JG, Bindels RJ, Dahan K, Devuyst O; Belgian Network for Study of Gitelman Syndrome. Transcriptional and functional analyses of SLC12A3 mutations: new clues for the pathogenesis of Gitelman syndrome. J Am Soc Nephrol 2007;18(4):1271–1283.

    Article  PubMed  CAS  Google Scholar 

  143. Riveira-Munoz E, Devuyst O, Belge H, Jeck N, Strompf L, Vargas-Poussou R, Jeunemaître X, Blanchard A, Knoers NV, Konrad M, Dahan K. Evaluating PVALB as a candidate gene for SLC12A3-negative cases of Gitelman’s syndrome. Nephrol Dial Transplant 2008;23:3120–3125.

    Article  PubMed  CAS  Google Scholar 

  144. Kunchaparty S, Palcso M, Berkman J, Velazquez H, Desir GV, Bernstein P, Reilly RF, Ellison DH. Defective processing and expression of thiazide-sensitive Na-Cl cotransporter as a cause of Gitelman’s syndrome. Am J Physiol 1999;277:F643–F649.

    PubMed  CAS  Google Scholar 

  145. de Jong JC, van der Vliet WA, van den Heuvel L, Willems PHGM, Knoers NVAM, Bindels RJM. Functional expression of mutations in the human NaCl cotransporter: evidence for impaired routing mechanisms in Gitelman’s syndrome. J Am Soc Nephrol 2002;13:1442–1448.

    Article  PubMed  CAS  Google Scholar 

  146. Sabath E, Meade P, Berkman J, de los Heros P, Moreno E, Bobadilla NA, Vazquez N, Ellison DH, Gamba G. Pathophysiology of functional mutations of the thiazide-sensitive Na-Cl cotransporter in Gitelman disease. Am J Physiol Renal Physiol 2004;287:F195–F203.

    Article  PubMed  CAS  Google Scholar 

  147. Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM, Flagella M, Duffy JJ, Doetschman T, Miller ML, Shull GE. Phenotype resembling Gitelman’s syndrome in mice lacking the apical Na+-Cl- cotransporter of the distal convoluted tubule. J Biol Chem 1998;273:29150–29155.

    Article  PubMed  CAS  Google Scholar 

  148. Loffing J, Vallon V, Loffing-Cueni D, Aregger F, Richter K, Pietri L, Bloch-Faure M, Hoenderop JG, Shull GE, Meneton P, Kaissling B. Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman’s syndrome. J Am Soc Nephrol 2004;15:2276–2288.

    Article  PubMed  CAS  Google Scholar 

  149. Morris RG, Hoorn EJ, Knepper MA. Hypokalemia in a mouse model of Gitelman’s syndrome. Am J Physiol Renal Physiol 2006;290:F1416–F1420.

    Article  PubMed  CAS  Google Scholar 

  150. Belge H, Gailly P, Schwaller B, Loffing J, Debaix H, Riveira-Munoz E, Beauwens R, Devogelaer JP, Hoenderop JG, Bindels RJ, Devuyst O. Renal expression of parvalbumin is critical for NaCl handling and response to diuretics. Proc Natl Acad Sci USA 2007;104(37):14849–14854.

    Article  PubMed  CAS  Google Scholar 

  151. Nijenhuis T, Hoenderop JG, Loffing J, van der Kemp AW, van Os CH, Bindels RJ. Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca2+ transport proteins in kidney. Kidney Int 2003;64(2):555–564.

    Article  PubMed  CAS  Google Scholar 

  152. Hoenderop JG, van der Kemp AW, Hartog A, van Os CH, Willems PH, Bindels RJ. The epithelial calcium channel, ECaC, is activated by hyperpolarization and regulated by cytosolic calcium. Biochem Biophys Res Commun 1999;261(2):488–492.

    Article  PubMed  CAS  Google Scholar 

  153. Ellison DH. Divalent cation transport by the distal nephron: insights from Bartter’s and Gitelman’s syndromes. Am J Physiol Renal Physiol 2000;279(4):F616–F625.

    PubMed  CAS  Google Scholar 

  154. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 2005;115:1651–1658.

    Article  PubMed  CAS  Google Scholar 

  155. Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev 2001;81:51–84.

    PubMed  CAS  Google Scholar 

  156. Schlingmann KP, Weber S, Peters M, Nejsum LN, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 2002;31:166–170.

    Article  PubMed  CAS  Google Scholar 

  157. Loffing J, Loffing-Cueni D, Hegyi I, Kaplan MR, Hebert SC, Le Hir M, Kaissling B. Thiazide treatment of rats provokes apoptosis in distal tubule cells. Kidney Int 1996;50:1180–1190.

    Article  PubMed  CAS  Google Scholar 

  158. Godefroid N, Riveira-Munoz E, Saint-Martin C, Nassogne MC, Dahan K, Devuyst O. A novel splicing mutation in SLC12A3 associated with Gitelman syndrome and idiopathic intracranial hypertension. Am J Kidney Dis 2006;48(5):e73–e79.

    Article  PubMed  Google Scholar 

  159. Knoers NV. Gitelman syndrome. Adv Chronic Kidney Dis 2006;13(2):148–154.

    Article  PubMed  Google Scholar 

  160. Cruz DN, Simon DB, Nelson-Williams C, Farhi A, Finberg K, Burleson L, Gill JR, Lifton RP. Mutations in the Na-Cl cotransporter reduce blood pressure in humans. Hypertension 2001;37(6):1458–1464.

    Article  PubMed  CAS  Google Scholar 

  161. Punzi L, Calò L, Schiavon F, Pianon M, Rosada M, Todesco S. Chondrocalcinosis is a feature of Gitelman’s variant of Bartter’s syndrome. A new look at the hypomagnesemia associated with calcium pyrophosphate dihydrate crystal deposition disease. Rev Rheum Engl Ed 1998;65(10):571–574.

    CAS  Google Scholar 

  162. Bourcier T, Blain P, Massin P, Grünfeld JP, Gaudric A. Sclerochoroidal calcification associated with Gitelman syndrome. Am J Ophthalmol 1999;128(6):767–768.

    Article  PubMed  CAS  Google Scholar 

  163. Nicolet-Barousse L, Blanchard A, Roux C, Pietri L, Bloch-Faure M, Kolta S, Chappard C, Geoffroy V, Morieux C, Jeunemaitre X, Shull GE, Meneton P, Paillard M, Houillier P, De Vernejoul MC. Inactivation of the Na-Cl co-transporter (NCC) gene is associated with high BMD through both renal and bone mechanisms: analysis of patients with Gitelman syndrome and Ncc null mice. J Bone Miner Res 2005;20(5):799–808.

    Article  PubMed  CAS  Google Scholar 

  164. Bettinelli A, Tosetto C, Colussi G, Tommasini G, Edefonti A, Bianchetti MG. Electrocardiogram with prolonged QT interval in Gitelman disease. Kidney Int 2002;62(2):580–584.

    Article  PubMed  Google Scholar 

  165. Foglia PE, Bettinelli A, Tosetto C, Cortesi C, Crosazzo L, Edefonti A, Bianchetti MG. Cardiac work up in primary renal hypokalaemia-hypomagnesaemia (Gitelman syndrome). Nephrol Dial Transplant 2004;19(6):1398–1402.

    Article  PubMed  Google Scholar 

  166. Pachulski RT, Lopez F, Sharaf R. Gitelman’s not so benign syndrome. N Engl J Med 2005;353:850–851.

    Article  PubMed  CAS  Google Scholar 

  167. Srinivas SK, Sukhan S, Elovitz MA. Nausea, emesis, and muscle weakness in a pregnant adolescent. Obstet Gynecol 2006;107(2 Pt 2):481–484.

    Article  PubMed  Google Scholar 

  168. Ducarme G, Davitian C, Uzan M, Belenfant X, Poncelet C. Pregnancy in a patient with Gitelman syndrome: a case report and review of literature. J Gynecol Obstet Biol Reprod 2007;36(3):310–313.

    Article  CAS  Google Scholar 

  169. Bianchetti MG, Edefonti A, Bettinelli A. The biochemical diagnosis of Gitelman disease and the definition of “hypocalciuria”. Pediatr Nephrol 2003;18(5):409–411.

    PubMed  Google Scholar 

  170. Colussi G, Bettinelli A, Tedeschi S, De Ferrari ME, Syrén ML, Borsa N, Mattiello C, Casari G, Bianchetti MG. A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin J Am Soc Nephrol 2007;2(3):454–460.

    Article  PubMed  CAS  Google Scholar 

  171. Joo KW, Lee JW, Jang HR, Heo NJ, Jeon US, Oh YK, Lim CS, Na KY, Kim J, Cheong HI, Han JS. Reduced urinary excretion of thiazide-sensitive Na-Cl cotransporter in Gitelman syndrome: preliminary data. Am J Kidney Dis 2007;50(5):765–773.

    Article  PubMed  CAS  Google Scholar 

  172. Hanevold C, Mian A, Dalton R. C1q nephropathy in association with Gitelman syndrome: a case report. Pediatr Nephrol 2006;21(12):1904–1908.

    Article  PubMed  Google Scholar 

  173. Cruz DN, Shaer AJ, Bia MJ, Lifton RP, Simon DB; Yale Gitelman’s and Bartter’s Syndrome Collaborative Study Group. Gitelman’s syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int 2001;59:710–717.

    Article  PubMed  CAS  Google Scholar 

  174. Coto E, Rodriguez J, Jeck N, Alvarez V, Stone R, Loris C, Rodriguez LM, Fischbach M, Seybert HW, Santos F. A new mutation (intron 9 + 1 G > T) in the SLC12A3 gene is linked to Gitelman syndrome in Gypsies. Kidney Int 2004;65:25–29.

    Article  PubMed  CAS  Google Scholar 

  175. Lin SH, Cheng NL, Hsu YJ, Halperin ML Intrafamilial phenotype variability in patients with Gitelman syndrome having the same mutations in their thiazide-sensitive sodium/chloride cotransporter. Am J Kidney Dis (2004) 43:304–312.

    Article  PubMed  CAS  Google Scholar 

  176. Riveira-Munoz E, Chang Q, Bindels RJ, Devuyst O. Gitelman syndrome: towards genotype-phenotype correlations? Pediatr Nephrol 2007;22:326–332.

    Article  PubMed  Google Scholar 

  177. Hu DC, Burtner C, Hong A, Lobo PI, Okusa MD. Correction of renal hypertension after kidney transplantation from a donor with Gitelman syndrome. Am J Med Sci 2006;331(2):105–109.

    Article  PubMed  Google Scholar 

  178. Sassen MC, Jeck N, Klaus G. Can renal tubular hypokalemic disorders be accurately diagnosed on the basis of the diuretic response to thiazide? Nat Clin Pract Nephrol 2007;3(10):528–529.

    Article  PubMed  Google Scholar 

  179. Panichpisal K, Angulo-Pernett F, Selhi S, Nugent KM. Gitelman-like syndrome after cisplatin therapy: a case report and literature review. BMC Nephrol 2006;7:10.

    Article  PubMed  CAS  Google Scholar 

  180. Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol 2003;23(5):460–464.

    Article  PubMed  CAS  Google Scholar 

  181. Ren H, Wang WM, Chen XN, Zhang W, Pan XX, Wang XL, Lin Y, Zhang S, Chen N. Renal involvement and followup of 130 patients with primary Sjögren’s syndrome. J Rheumatol 2008;35(2):278–284.

    PubMed  CAS  Google Scholar 

  182. Persu A, Lafontaine JJ, Devuyst O. Chronic hypokalaemia in young women – it is not always abuse of diuretics. Nephrol Dial Transplant 1999;14(4):1021–1025.

    Article  PubMed  CAS  Google Scholar 

  183. Schwarz C, Barisani T, Bauer E, Druml W. A woman with red eyes and hypokalemia: a case of acquired Gitelman syndrome. Wien Klin Wochenschr 2006;118(7–8):239–242.

    Article  PubMed  Google Scholar 

  184. Rodríguez-Soriano J. Bartter and related syndromes: the puzzle is almost solved. Pediatr Nephrol 1998;12(4):315–327.

    Article  PubMed  Google Scholar 

  185. Shaer AJ. Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes. Am J Med Sci 2001;322(6):316–332.

    Article  PubMed  CAS  Google Scholar 

  186. Colussi G, Rombolà G, De Ferrari ME, Macaluso M, Minetti L. Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am J Nephrol 1994;14(2):127–135.

    Article  PubMed  CAS  Google Scholar 

  187. Liaw LC, Banerjee K, Coulthard MG. Dose related growth response to indometacin in Gitelman syndrome. Arch Dis Child 1999;81(6):508–510.

    Article  PubMed  CAS  Google Scholar 

  188. Mayan H, Gurevitz O, Farfel Z. Successful treatment by cyclooxyenase-2 inhibitor of refractory hypokalemia in a patient with Gitelman’s syndrome. Clin Nephrol 2002;58(1):73–76.

    PubMed  CAS  Google Scholar 

  189. Bettinelli A, Metta MG, Perini A, Basilico E, Santeramo C. Long-term follow-up of a patient with Gitelman’s syndrome. Pediatr Nephrol 1993;7(1):67–68.

    Article  PubMed  CAS  Google Scholar 

  190. Bonfante L, Davis PA, Spinello M, Antonello A, D’Angelo A, Semplicini A, Calò L. Chronic renal failure, end-stage renal disease, and peritoneal dialysis in Gitelman’s syndrome. Am J Kidney Dis 2001;38(1):165–168.

    Article  PubMed  CAS  Google Scholar 

  191. Calò LA, Marchini F, Davis PA, Rigotti P, Pagnin E, Semplicini A. Kidney transplant in Gitelman’s syndrome. Report of the first case. J Nephrol 2003;16(1):144–147.

    PubMed  Google Scholar 

  192. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 1993;366(6455):575–580.

    Article  PubMed  CAS  Google Scholar 

  193. Garrett JE, Capuano IV, Hammerland LG, Hung BC, Brown EM, Hebert SC et al. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J Biol Chem 1995;270(21):12919–12925.

    Article  PubMed  CAS  Google Scholar 

  194. Bai M, Trivedi S, Kifor O, Quinn SJ, Brown EM. Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function. Proc Natl Acad Sci USA 1999;96:2834–2839.

    Article  PubMed  CAS  Google Scholar 

  195. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 2001;81:239–297.

    PubMed  CAS  Google Scholar 

  196. Bapty BW, Dai LJ, Ritchie G, Canaff L, Hendy GN, Quamme GA. Mg2+/Ca2+ sensing inhibits hormone-stimulated Mg2+ uptake in mouse distal convoluted tubule cells. Am J Physiol 1998;275:F353–F360.

    PubMed  CAS  Google Scholar 

  197. Quamme GA. Control of magnesium transport in the thick ascending limb. Am J Physiol 1989;256(2 Pt 2):197–210.

    Google Scholar 

  198. Hebert SC, Brown EM, Harris HW. Role of the Ca(2+)-sensing receptor in divalent mineral ion homeostasis. J Exp Biol 1997;200(Pt 2):295–302.

    PubMed  CAS  Google Scholar 

  199. Thakker RV. Diseases associated with the extracellular calcium-sensing receptor. Cell Calcium 2004;35(3):275–282.

    Article  PubMed  CAS  Google Scholar 

  200. Chou YH, Brown EM, Levi T, Crowe G, Atkinson AB, Arnqvist HJ, Toss G, Fuleihan GE, Seidman JG, Seidman CE. The gene responsible for familial hypocalciuric hypercalcemia maps to chromosome 3q in four unrelated families. Nat Genet 1992;1(4):295–300.

    Article  PubMed  CAS  Google Scholar 

  201. Pollak MR, Brown EM, Chou YH, Hebert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993;75:1297–1303.

    Article  PubMed  CAS  Google Scholar 

  202. Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, Hebert SC, Seidman CE, Seidman JG. Autosomal dominant hypocalcaemia caused by a Ca(2_)-sensing receptor gene mutation. Nat Genet 1994;8:303–307.

    Article  PubMed  CAS  Google Scholar 

  203. Pearce SH, Williamson C, Kifor O, Bai M, Coulthard MG, Davies M, Lewis-Barned N, McCredie D, Powell H, Kendall- Taylor P, Brown EM, Thakker RV. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med 1996;335:1115–1122.

    Article  PubMed  CAS  Google Scholar 

  204. Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, Chikatsu N, Fujita T. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 2002;360:692–694.

    Article  PubMed  CAS  Google Scholar 

  205. Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaitre X, Paillard M, Planelles G, Dechaux M, Miller RT, Antignac C. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartterlike syndrome. J Am Soc Nephrol 2002;13:2259–2266.

    Article  PubMed  CAS  Google Scholar 

  206. Gunn IR, Gaffney D. Clinical and laboratory features of calcium-sensing receptor disorders: a systematic review. Ann Clin Biochem 2004;41(Pt 6):441–458.

    Article  PubMed  CAS  Google Scholar 

  207. Foley TP Jr, Harrison HC, Arnaud CD, Harrison HE. Familial benign hypercalcemia. J Pediatr 1972;81(6):1060–1067.

    Article  PubMed  Google Scholar 

  208. Marx SJ, Attie MF, Levine MA, Spiegel AM, Downs RW Jr, Lasker RD. The hypocalciuric or benign variant of familial hypercalcemia: clinical and biochemical features in fifteen kindreds. Medicine 1981;60:397–412.

    Article  PubMed  CAS  Google Scholar 

  209. Heath H 3rd. Familial benign (hypocalciuric) hypercalcemia. A troublesome mimic of mild primary hyperparathyroidism. Endocrinol Metab Clin North Am 1989;18(3):723–740.

    PubMed  Google Scholar 

  210. Bilezikian JP, Potts JT Jr, Fuleihan Gel-H, Kleerekoper M, Neer R, Peacock M, Rastad J, Silverberg SJ, Udelsman R, Wells SA. Summary statement from a workshop on asymptomatic primary hyperparathyroidism: a perspective for the 21st century. J Clin Endocrinol Metab 2002;87(12):5353–5361.

    Article  PubMed  CAS  Google Scholar 

  211. Auwerx J, Demedts M, Bouillon R. Altered parathyroid set point to calcium in familial hypocalciuric hypercalcaemia. Acta Endocrinol 1984;106(2):215–218.

    PubMed  CAS  Google Scholar 

  212. Pearce SH, Trump D, Wooding C, Besser GM, Chew SL, Grant DB, Heath DA, Hughes IA, Paterson CR, Whyte MP et al. Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J Clin Invest 1995;96(6):2683–2692.

    Article  PubMed  CAS  Google Scholar 

  213. Hendy GN, D’Souza-Li L, Yang B, Canaff L, Cole DE. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 2000;16(4):281–296.

    Article  PubMed  CAS  Google Scholar 

  214. Sarli M, Fradinger E, Zanchetta J. Hypocalciuric hypercalcemia due to de novo mutation of the calcium sensing receptor. Medicina (B Aires) 2004;64(4):337–339.

    Google Scholar 

  215. Timmers HJ, Karperien M, Hamdy NA, de Boer H, Hermus AR. Normalization of serum calcium by cinacalcet in a patient with hypercalcaemia due to a de novo inactivating mutation of the calcium-sensing receptor. J Intern Med 2006;260(2):177–182.

    Article  PubMed  CAS  Google Scholar 

  216. Attie MF, Gill JR Jr, Stock JL, Spiegal AM, Downs RW Jr, Levine MA, Marx SJ. Urinary calcium excretion in familial hypocalciuric hypercalcemia: persistence of relative hypocalciuria after induction of hypoparathyroidism. J Clin Invest 1983;72:667–676.

    Article  PubMed  CAS  Google Scholar 

  217. Kifor O, Moore FD Jr, Delaney M, Garber J, Hendy GN, Butters R, Gao P, Cantor TL, Kifor I, Brown EM, Wysolmerski J. A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor. J Clin Endocrinol Metab 2003;88(1):60–72.

    Article  PubMed  CAS  Google Scholar 

  218. Hillman DA, Scriver CR, Pedvis S, Shragovitch I. Neonatal familial primary hyperparathyroidism, N Engl J Med 1964;270:483–490.

    Article  PubMed  CAS  Google Scholar 

  219. Waller S, Kurzawinski T, Spitz L, Thakker R, Cranston T, Pearce S, Cheetham T, van’t Hoff WG. Neonatal severe hyperparathyroidism: genotype/phenotype correlation and the use of pamidronate as rescue therapy. Eur J Pediatr 2004;163(10):589–594.

    PubMed  CAS  Google Scholar 

  220. Ho C, Conner DA, Pollak MR, Ladd DJ, Kifor O, Warren HB, Brown EM, Seidman JG, Seidman CE. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 1995;11(4):389–394.

    Article  PubMed  CAS  Google Scholar 

  221. Tu Q, Pi M, Karsenty G, Simpson L, Liu S, Quarles LD. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. J Clin Invest 2003;111(7):1029–1037.

    PubMed  CAS  Google Scholar 

  222. Günther T, Chen ZF, Kim J, Priemel M, Rueger JM, Amling M, Moseley JM, Martin TJ, Anderson DJ, Karsenty G. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 2000;406(6792):199–203.

    Article  PubMed  Google Scholar 

  223. Carling T, Udelsman R. Parathyroid surgery in familial hyperparathyroid disorders. J Intern Med 2005;257:27–37.

    Article  PubMed  CAS  Google Scholar 

  224. Brown EM. Familial hypocalciuric hypercalcemia and other disorders with resistance to extracellular calcium. Endocrinol Metab Clin North Am 2000;29:503–522.

    Article  PubMed  CAS  Google Scholar 

  225. Brown EM. The calcium-sensing receptor: physiology, pathophysiology and CaR-based therapeutics. Subcell Biochem 2007;45: 139–167.

    Article  PubMed  CAS  Google Scholar 

  226. Sato K, Hasegawa Y, Nakae J, Nanao K, Takahashi I, Tajima T, Shinohara N, Fujieda K. Hydrochlorothiazide effectively reduces urinary calcium excretion in two Japanese patients with gain-of-function mutations of the calcium-sensing receptor gene. J Clin Endocrinol Metab 2002;87(7):3068–3073.

    Article  PubMed  CAS  Google Scholar 

  227. Vezzoli G, Arcidiacono T, Paloschi V, Terranegra A, Biasion R, Weber G, Mora S, Syren ML, Coviello D, Cusi D, Bianchi G, Soldati L. Autosomal dominant hypocalcemia with mild type 5 Bartter syndrome. J Nephrol 2006;19(4):525–528.

    PubMed  CAS  Google Scholar 

  228. Fine KD, Santa Ana CA, Porter JL, Fordtran JS. Intestinal absorption of magnesium from food and supplements. J Clin Invest 1991;2:396–402.

    Article  Google Scholar 

  229. Quamme GA. Recent developments in intestinal magnesium absorption. Curr Opin Gastroenterol 2008;2:230–235.

    Article  CAS  Google Scholar 

  230. de Rouffignac C, Quamme G. Renal magnesium handling and its hormonal control. Physiol Rev 1994;2:305–322.

    Google Scholar 

  231. Quamme GA. Renal magnesium handling: new insights in understanding old problems. Kidney Int 1997;5:1180–1195.

    Article  Google Scholar 

  232. Meij IC, Koenderink JB, van Bokhoven H, Assink KF, Groenestege WT, de Pont JJ, Bindels RJ, Monnens LA, van den Heuvel LP, Knoers NV. Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit. Nat Genet 2000;3:265–226.

    Google Scholar 

  233. Geven WB, Monnens LA, Willems HL, Buijs WC, ter Haar BG. Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int 1987;5:1140–1144.

    Article  Google Scholar 

  234. Meij IC, Van Den Heuvel LP, Hemmes S, Van Der Vliet WA, Willems JL, Monnens LA, and Knoers NV. Exclusion of mutations in FXYD2, CLDN16 and SLC12A3 in two families with primary renal Mg(2+) loss. Nephrol Dial Transplant 2003;3:512–56.

    Article  Google Scholar 

  235. Meij IC, Saar K, van den Heuvel LP, Nuernberg G, Vollmer M, Hildebrandt F, Reis A, Monnens LA, Knoers NV. Hereditary isolated renal magnesium loss maps to chromosome 11q23. Am J Hum Genet 1999;1:180–188.

    Article  Google Scholar 

  236. Sweadner KJ, Arystarkhova E, Donnet C. Wetzel RK. FXYD proteins as regulators of the Na,K-ATPase in the kidney. Ann N Y Acad Sci 2003;382–387.

    Google Scholar 

  237. Arystarkhova E, Wetzel RK, Sweadner KJ. Distribution and oligomeric association of splice forms of Na(+)-K(+)-ATPase regulatory gamma-subunit in rat kidney. Am J Physiol Renal Physiol 2002;3:F393–F407.

    Google Scholar 

  238. Jones DH, Li TY, Arystarkhova E, Barr KJ, Wetzel RK, Peng J, Markham K, Sweadner KJ, Fong GH, Kidder GM. Na,K-ATPase from mice lacking the gamma subunit (FXYD2) exhibits altered Na+ affinity and decreased thermal stability. J Biol Chem 2005;19:19003–19011.

    Article  CAS  Google Scholar 

  239. Geven WB, Monnens LA, Willems JL, Buijs W, Hamel CJ. Isolated autosomal recessive renal magnesium loss in two sisters. Clin Genet 1987;6:398–402.

    Google Scholar 

  240. Groenestege WM, Thebault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S, van den Heuvel LP, van Cutsem E, Hoenderop JG, Knoers NV et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest 2007;8:2260–2267.

    Article  CAS  Google Scholar 

  241. Michelis MF, Drash AL, Linarelli LG, De Rubertis FR, Davis BB. Decreased bicarbonate threshold and renal magnesium wasting in a sibship with distal renal tubular acidosis. (Evaluation of the pathophysiological role of parathyroid hormone). Metab Clin Exp 1972;10:905–920.

    Article  Google Scholar 

  242. Manz F, Scharer K, Janka P, Lombeck J. Renal magnesium wasting, incomplete tubular acidosis, hypercalciuria and nephrocalcinosis in siblings. Eur J Pediatr 1978;2:67–79.

    Article  Google Scholar 

  243. Rodriguez-Soriano J, Vallo A, Garcia-Fuentes M. Hypomagnesaemia of hereditary renal origin. Pediatr Nephrol 1987;3:465–472.

    Article  Google Scholar 

  244. Rodriguez-Soriano J, Vallo A. Pathophysiology of the renal acidification defect present in the syndrome of familial hypomagnesaemia-hypercalciuria. Pediatr Nephrol 1994;4:431–435.

    Article  Google Scholar 

  245. Praga M, Vara J, Gonzalez-Parra E, Andres A, Alamo C, Araque A, Ortiz A, Rodicio JL. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 1995;5:1419–1425.

    Article  Google Scholar 

  246. Benigno V, Canonica CS, Bettinelli A, von Vigier RO, Truttmann AC, Bianchetti MG. Hypomagnesaemia-hypercalciuria-nephrocalcinosis: a report of nine cases and a review. Nephrol. Dial. Transplant.(2000). 5:605–610.

    Article  Google Scholar 

  247. Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, Bonzel KE, Seeman T, Sulakova T, Kuwertz-Broking E et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 2001;9:1872–1181.

    Google Scholar 

  248. Zimmermann B, Plank C, Konrad M, Stohr W, Gravou-Apostolatou C, Rascher W, Dotsch J. Hydrochlorothiazide in CLDN16 mutation. Nephrol Dial Transplant 2006;8:2127–2132.

    Article  CAS  Google Scholar 

  249. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 1999;285(5424):103–106.

    Article  PubMed  CAS  Google Scholar 

  250. Blanchard A, Jeunemaitre X, Coudol P, Dechaux M, Froissart M, May A, Demontis R, Fournier A, Paillard M, Houillier P. Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int 2001;6:2206–2215.

    Google Scholar 

  251. Muller D, Kausalya PJ, Claverie-Martin F, Meij IC, Eggert P, Garcia-Nieto V, and Hunziker W. A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J Hum Genet 2003;6:1293–1301.

    Article  Google Scholar 

  252. Wong V, Goodenough DA. Paracellular channels! Science 1999;5424:62.

    Article  Google Scholar 

  253. Hou J, Paul DL, Goodenough DA. Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci (2005). 2005;5109–5118.

    Article  Google Scholar 

  254. Lee DB, Huang E, Ward HJ. Tight junction biology and kidney dysfunction. Am J Physiol Renal Physiol 2006;1:F20–F34.

    Google Scholar 

  255. Hirano T, Kobayashi N, Itoh T, Takasuga A, Nakamaru T, Hirotsune S, Sugimoto Y. Null mutation of PCLN-1/Claudin-16 results in bovine chronic interstitial nephritis. Genome Res 2000;5:659–663.

    Article  Google Scholar 

  256. Ohba Y, Kitagawa H, Kitoh K, Sasaki Y, Takami M, Shinkai Y, Kunieda T. A deletion of the paracellin-1 gene is responsible for renal tubular dysplasia in cattle. Genomics 2000;3:229–236.

    Article  CAS  Google Scholar 

  257. Sasaki Y, Kitagawa H, Kitoh K, Okura Y, Suzuki K, Mizukoshi M, Ohba Y, Masegi T (2002). Pathological changes of renal tubular dysplasia in Japanese black cattle. Vet Rec 2002;20:628–632.

    Article  Google Scholar 

  258. Konrad M, Hou J, Weber S, Dotsch J, Kari JA, Seeman T, Kuwertz-Broking E, Peco-Antic A, Tasic V, Dittrich K et al. CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 2008;1:171–181.

    Article  CAS  Google Scholar 

  259. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 2006;5:949–957.

    Article  Google Scholar 

  260. Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE, Paul DL, Waldegger S, Goodenough DA. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 2008;2:619–628.

    Google Scholar 

  261. Paunier L, Radde IC, Kooh SW, Conen PE, Fraser D. Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics 1968;2:385–402.

    Google Scholar 

  262. Anast CS, Mohs JM, Kaplan SL, Burns TW. Evidence for parathyroid failure in magnesium deficiency. Science 1972;49:606–668.

    Article  Google Scholar 

  263. Shalev H, Phillip M, Galil A, Carmi R, Landau D. Clinical presentation and outcome in primary familial hypomagnesaemia. Arch Dis Child 1998;2:127–130.

    Article  Google Scholar 

  264. Milla PJ, Aggett PJ, Wolff OH, Harries JT. Studies in primary hypomagnesaemia: evidence for defective carrier-mediated small intestinal transport of magnesium. Gut 1979;11:1028–1133.

    Article  Google Scholar 

  265. Matzkin H, Lotan D, Boichis H. Primary hypomagnesemia with a probable double magnesium transport defect. Nephron 1989;1:83–86.

    Article  Google Scholar 

  266. Walder RY, Shalev H, Brennan TM, Carmi R, Elbedour K, Scott DA, Hanauer A, Mark AL, Patil S, Stone EM et al. Familial hypomagnesemia maps to chromosome 9q, not to the X chromosome: genetic linkage mapping and analysis of a balanced translocation breakpoint. Hum Mol Genet 1997;9:1491–1497.

    Article  Google Scholar 

  267. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 2002;2:171–174.

    Article  CAS  Google Scholar 

  268. Schlingmann KP, Sassen MC, Weber S, Pechmann U, Kusch K, Pelken L, Lotan D, Syrrou M, Prebble JJ, Cole DE et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J Am Soc Nephrol 2005;10:3061–3069.

    Article  Google Scholar 

  269. Jalkanen R, Pronicka E, Tyynismaa H, Hanauer A, Walder R, Alitalo T. Genetic background of HSH in three Polish families and a patient with an X;9 translocation. Eur J Hum Genet 2006;1:55–62.

    Google Scholar 

  270. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 2001;6837:590–595.

    Article  CAS  Google Scholar 

  271. Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG. TRPM6 for ms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 2004;279:19–25.

    Article  PubMed  CAS  Google Scholar 

  272. Cole DE, Quamme GA. Inherited disorders of renal magnesium handling. J. Am. Soc. Nephrol 2000;10:1937–1947.

    Google Scholar 

  273. Chubanov V, Waldegger S, Mederos y Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci USA 2004;9:2894–2899.

    Article  CAS  Google Scholar 

  274. Schmitz C, Dorovkov MV, Zhao X, Davenport BJ, Ryazanov AG, Perraud AL. The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem 2005;45:37763–37771.

    Article  CAS  Google Scholar 

  275. Groenestege WM, Hoenderup JG, van den Heuvel L, Knoers N, Bindels RJ. The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ contents and estrogens. J Am Soc Nephrol 2006;17:1035–1043.

    Article  PubMed  CAS  Google Scholar 

  276. Nijenhuis T, Hoenderup JG, Bindels RJ. Downregulation of Ca2+ and Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol 2004;15:549–557.

    Article  PubMed  CAS  Google Scholar 

  277. Ikari A, Okude C, Sawada H, Takahashi T, Sugatani J, Miwa M. Downregulation of TRPM6-mediated magnesium influx by cyclosporine A. Naunyn Schmiedebergs Arch Pharmacol 2008;377:333–343.

    Article  PubMed  CAS  Google Scholar 

  278. Wilson FH, Hariri A, Farhi A, Zhao H, Petersen KF, Toka HR, Nelson-Williams C, Raja KM, Kashgarian M, Shulman GI et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science 2004;5699:1190–1194.

    Article  CAS  Google Scholar 

  279. Agus ZS. Hypomagnesemia. J Am Soc Nephrol (1999) 10:1616–1622.

    PubMed  CAS  Google Scholar 

  280. Schlingmann KP, Konrad M, Seyberth HW. Genetics of hereditary disorders of magnesium homeostasis. Pediatr Nephrol 2004;19:13–25.

    Article  PubMed  Google Scholar 

  281. Gal P, Reed MD. Medications. In Textbook of Pediatrics. Behrman RE, Kliegman R, Jenson HB (eds.). Philadelphia, Saunders, 2000, p 2270.

    Google Scholar 

  282. Ranade VV, Somberg JC. Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to human. Am J Ther (2001) 8:345–357.

    Article  PubMed  CAS  Google Scholar 

  283. Ryan MP. Magnesium and potassium-sparing diuretics. Magnesium (1986) 5:282–292.

    PubMed  CAS  Google Scholar 

  284. Netzer T, Knauf H, Mutschler E. Modulation of electrolyte excretion by potassium retaining diuretics. Eur Heart J 1992;13(Suppl G):22–27.

    Article  PubMed  Google Scholar 

  285. Bundy JT, Connito D, Mahoney MD, Pontier PJ. Treatment of idiopathic renal magnesium wasting with amiloride. Am J Nephrol 1995;15:75–77.

    Article  PubMed  CAS  Google Scholar 

  286. Sutherland DJ, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J 1996;95:1109–1119.

    Google Scholar 

  287. Dluhy RG, Lifton RP. Glucocorticoid-remediable aldosteronism (GRA): diagnosis, variability of phenotype and regulation of potassium homeostasis. Steroids 1995;60:48–51.

    Article  PubMed  CAS  Google Scholar 

  288. Stowasser M, Gunasekera TG, Gordon RD. Familial varieties of primary aldosteronism. Clin Exp Pharmacol Physiol 2001;28:1087–1090.

    Article  PubMed  CAS  Google Scholar 

  289. Mulatero P, di Cella SM, Williams TA, Milan A, Mengozzi G, Chiandussi L, Gomez-Sanchez CE, Veglio F. Glucocorticoid remediable aldosteronism: low morbidity and mortality in a four-generation italian pedigree. J Clin Endocrinol Metab 2002;87:3187–3191.

    Article  PubMed  CAS  Google Scholar 

  290. Litchfield WR, Anderson BF, Weiss RJ, Lifton RP, Dluhy RG. Intracranial aneurysm and hemorrhagic stroke in glucocorticoid-remediable aldosteronism. Hypertension 1998;31:445–450.

    Article  PubMed  CAS  Google Scholar 

  291. Mantero F, Armanini D, Biason A, Boscaro M, Carpene G, Fallo F, Opocher G, Rocco S, Scaroni C, Sonino N. New aspects of mineralocorticoid hypertension. Horm Res 1990;34:175–180.

    Article  PubMed  CAS  Google Scholar 

  292. Mulatero P, Veglio F, Pilon C, Rabbia F, Zocchi C, Limone P, Boscaro M, Sonino N, Fallo F. Diagnosis of glucocorticoid-remediable aldosteronism in primary aldosteronism: aldosterone response to dexamethasone and long polymerase chain reaction for chimeric gene. J Clin Endocrinol Metab 1998;83:2573–2575.

    Article  PubMed  CAS  Google Scholar 

  293. Litchfield WR, New MI, Coolidge C, Lifton RP, Dluhy RG. Evaluation of the dexamethasone suppression test for the diagnosis of glucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab 1997;82:3570–3573.

    Article  PubMed  CAS  Google Scholar 

  294. Stowasser M, Bachmann AW, Tunny TJ, Gordon RD. Production of 18-oxo-cortisol in subtypes of primary aldosteronism. Clin Exp Pharmacol Physiol 1996;23:591–593.

    Article  PubMed  CAS  Google Scholar 

  295. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992;355:262–265.

    Article  PubMed  CAS  Google Scholar 

  296. Curnow KM, Mulatero P, Emeric-Blanchouin N, Aupetit-Faisant B, Corvol P, Pascoe L. The amino acid substitutions Ser288Gly and Val320Ala convert the cortisol producing enzyme, CYP11B1, into an aldosterone producing enzyme. Nat Struct Biol 1997;4:32–35.

    Article  PubMed  CAS  Google Scholar 

  297. Pascoe L, Curnow KM, Slutsker L, Connell JM, Speiser PW, New MI, White PC. Glucocorticoid-suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2. Proc Natl Acad Sci USA 1992;89:8327–8331.

    Article  PubMed  CAS  Google Scholar 

  298. Jonsson JR, Klemm SA, Tunny TJ, Stowasser M, Gordon RD. A new genetic test for familial hyperaldosteronism type I aids in the detection of curable hypertension. Biochem Biophys Res Commun 1995;207:565–571.

    Article  PubMed  CAS  Google Scholar 

  299. Stowasser M, Bachmann AW, Huggard PR, Rossetti TR, Gordon RD. Treatment of familial hyperaldosteronism type I: only partial suppression of adrenocorticotropin required to correct hypertension. J Clin Endocrinol Metab 2000;85:3313–3318.

    Article  PubMed  CAS  Google Scholar 

  300. Stowasser M, Gordon RD, Tunny TJ, Klemm SA, Finn WL, Krek AL. Familial hyperaldosteronism type II: five families with a new variety of primary aldosteronism. Clin Exp Pharmacol Physiol 1992;19:319–322.

    Article  PubMed  CAS  Google Scholar 

  301. Stowasser M, Gordon RD. Primary aldosteronism: learning from the study of familial varieties. J Hypertens 2000;18:1165–1176.

    Article  PubMed  CAS  Google Scholar 

  302. Lafferty AR, Torpy DJ, Stowasser M, Taymans SE, Lin JP, Huggard P, Gordon RD, Stratakis CA. A novel genetic locus for low renin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22). J Med Genet 2000;37:831–835.

    Article  PubMed  CAS  Google Scholar 

  303. Sukor N, Mulatero P, Gordon RD, So A, Duffy D, Bertello C, Kelemen L, Jeske Y, Veglio F, Stowasser M. Further evidence for linkage of familial hyperaldosteronism type II at chromosome 7p22 in Italian as well as Australian and South American families. J Hypertens 2008;26:1577–1582.

    Article  PubMed  CAS  Google Scholar 

  304. Geller DS, Zhang JJ, Wisgerhof MV, Shackleton C, Kashgarian M, Lifton RP. A novel form of human Mendelian hypertension featuring non-glucocorticoid remediable aldosteronism. J Clin Endocrinol Metab 2008;93:3117–23.

    Article  PubMed  CAS  Google Scholar 

  305. Liddle G, Bledsoe TWSC. A familial renal disorder simulating primary aldosteronism byt with negligible aldosterone secretion. Trans Assoc Am Phys 1963;76:199–213.

    CAS  Google Scholar 

  306. Botero-Velez M, Curtis JJ, Warnock DG. Brief report: Liddle’s syndrome revisited – a disorder of sodium reabsorption in the distal tubule. N Engl J Med 1994;330:178–181.

    Article  PubMed  CAS  Google Scholar 

  307. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR, Ulick S, Milora RV, Findling JW et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994;79:407–414.

    Article  PubMed  CAS  Google Scholar 

  308. Jeunemaitre X, Bassilana F, Persu A, Dumont C, Champigny G, Lazdunski M, Corvol P, Barbry P. Genotype-phenotype analysis of a newly discovered family with Liddle’s syndrome. J Hypertens 1997;15:1091–1100.

    Article  PubMed  CAS  Google Scholar 

  309. Baker E, Jeunemaitre X, Portal AJ, Grimbert P, Markandu N, Persu A, Corvol P, MacGregor G. Abnormalities of nasal potential difference measurement in Liddle’s syndrome. J Clin Invest 1998;102:10–14.

    Article  PubMed  CAS  Google Scholar 

  310. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 1995;11:76–82.

    Article  PubMed  CAS  Google Scholar 

  311. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 1994;367:463–467.

    Article  PubMed  CAS  Google Scholar 

  312. Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 2007;449:316–323.

    Article  PubMed  CAS  Google Scholar 

  313. Bhalla V, Hallows KR. Mechanisms of ENaC Regulation and Clinical Implications. J Am Soc Nephrol 2008;PMID:18753254.

    Google Scholar 

  314. Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, Stokes JB, Welsh MJ. Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell 1995;83:969–978.

    Article  PubMed  CAS  Google Scholar 

  315. Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 1996;15:2381–2387.

    PubMed  CAS  Google Scholar 

  316. Rotin D, Staub O, Haguenauer-Tsapis R. Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol 2000;176:1–17.

    PubMed  CAS  Google Scholar 

  317. Staub O, Verrey F. Impact of Nedd4 proteins and serum and glucocorticoid-induced kinases on epithelial Na+ transport in the distal nephron. J Am Soc Nephrol 2005;16:3167–3174.

    Article  PubMed  CAS  Google Scholar 

  318. Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier BC. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci USA 1996;93:15370–15375.

    Article  PubMed  CAS  Google Scholar 

  319. Corvol P, Persu A, Gimenez-Roqueplo AP, Jeunemaitre X. Seven lessons from two candidate genes in human essential hypertension: angiotensinogen and epithelial sodium channel. Hypertension 1999;33:1324–1331.

    Article  PubMed  CAS  Google Scholar 

  320. Persu A, Barbry P, Bassilana F, Houot AM, Mengual R, Lazdunski M, Corvol P, Jeunemaitre X. Genetic analysis of the beta subunit of the epithelial Na+ channel in essential hypertension. Hypertension 1998;32:129–137.

    Article  PubMed  CAS  Google Scholar 

  321. Baker EH, Dong YB, Sagnella GA, Rothwell M, Onipinla AK, Markandu ND, Cappuccio FP, Cook DG, Persu A, Corvol P, Jeunemaitre X, Carter ND, MacGregor GA. Association of hypertension with T594M mutation in beta subunit of epithelial sodium channels in black people resident in London. Lancet 1998;351:1388–1392.

    Article  PubMed  CAS  Google Scholar 

  322. Baker EH, Duggal A, Dong Y, Ireson NJ, Wood M, Markandu ND, MacGregor GA. Amiloride, a specific drug for hypertension in black people with T594M variant? Hypertension 2002;40:13–17.

    Article  PubMed  CAS  Google Scholar 

  323. Ambrosius WT, Bloem LJ, Zhou L, Rebhun JF, Snyder PM, Wagner MA, Guo C, Pratt JH. Genetic variants in the epithelial sodium channel in relation to aldosterone and potassium excretion and risk for hypertension. Hypertension 1999;34:631–637.

    Article  PubMed  CAS  Google Scholar 

  324. Busst CJ, Scurrah KJ, Ellis JA, Harrap SB. Selective genotyping reveals association between the epithelial sodium channel gamma-subunit and systolic blood pressure. Hypertension 2007;50:672–678.

    Article  PubMed  CAS  Google Scholar 

  325. Warnock DG. Liddle syndrome: an autosomal dominant form of human hypertension. Kidney Int 1998;53(1):18–24.

    Article  PubMed  CAS  Google Scholar 

  326. Teiwes J, Toto RD. Epithelial sodium channel inhibition in cardiovascular disease. A potential role for amiloride. Am J Hypertens 2007;20:109–117.

    Article  PubMed  CAS  Google Scholar 

  327. Swift PA, MacGregor GA. The epithelial sodium channel in hypertension: genetic heterogeneity and implications for treatment with amiloride. Am J Pharmacogenomics 2004;4(3):161–168.

    Article  PubMed  CAS  Google Scholar 

  328. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Sigler PB, Lifton RP. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 2000;289:119–123.

    Article  PubMed  CAS  Google Scholar 

  329. New MI, Levine LS, Biglieri EG, Pareira J, Ulick S. Evidence for an unidentified steroid in a child with apparent mineralocorticoid hypertension. J Clin Endocrinol Metab 1977;44:924–933.

    Article  PubMed  CAS  Google Scholar 

  330. Ulick S, Ramirez LC, New MI. An abnormality in steroid reductive metabolism in a hypertensive syndrome. J Clin Endocrinol Metab 1977;44:799–802.

    Article  PubMed  CAS  Google Scholar 

  331. New MI, Geller DS, Fallo F, Wilson RC. Monogenic low renin hypertension. Trends Endocrinol Metab 2005;16:92–97.

    Article  PubMed  CAS  Google Scholar 

  332. Ulick S, Tedde R, Mantero F. Pathogenesis of the type 2 variant of the syndrome of apparent mineralocorticoid excess. J Clin Endocr Metab 1990;70:200–206.

    Article  PubMed  CAS  Google Scholar 

  333. Li A, Tedde R, Krozowski ZS, Pala A, Li KX, Shackleton CH, Mantero F, Palermo M, Stewart PM. Molecular basis for hypertension in the “type II variant” of apparent mineralocorticoid excess. Am J Hum Genet 1998;63:370–379.

    Article  PubMed  CAS  Google Scholar 

  334. Lakshmi V, Monder C. Evidence for independent 11-oxidase and 11-reductase activities of 11 beta-hydroxysteroid dehydrogenase: enzyme latency, phase transitions, and lipid requirements. Endocrinology 1985;116:552–560.

    Article  PubMed  CAS  Google Scholar 

  335. Edwards CR, Stewart PM, Burt D, Brett L, McIntyre MA, Sutanto WS, de Kloet ER, Monder C. Localisation of 11 beta-hydroxysteroid dehydrogenase – tissue specific protector of the mineralocorticoid receptor. Lancet 1988;2:986–989.

    Article  PubMed  CAS  Google Scholar 

  336. Stewart PM. Mineralocorticoid hypertension. Lancet 1999;353:1341–1347.

    Article  PubMed  CAS  Google Scholar 

  337. Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 11 beta- hydroxysteroid dehydrogenase. 1995;10:394–399.

    Google Scholar 

  338. Stewart PM, Krozowski ZS, Gupta A, Milford DV, Howie AJ, Sheppard MC, Whorwood CB. Hypertension in the syndrome of apparent mineralocorticoid excess due to mutation of the 11 beta-hydroxysteroid dehydrogenase type 2 gene. Lancet 1996;347: 88–91.

    Article  PubMed  CAS  Google Scholar 

  339. Morineau G, Marc JM, Boudi A, Galons H, Gourmelen M, Corvol P, Pascoe L, Fiet J. Genetic, biochemical, and clinical studies of patients with A328V or R213C mutations in 11betaHSD2 causing apparent mineralocorticoid excess. Hypertension 1999;34:435–441.

    Article  PubMed  CAS  Google Scholar 

  340. Nunez BS, Rogerson FM, Mune T, Igarashi Y, Nakagawa Y, Phillipov G, Moudgil A, Travis LB, Palermo M, Shackleton C, White PC. Mutants of 11beta-hydroxysteroid dehydrogenase (11-HSD2) with partial activity: improved correlations between genotype and biochemical phenotype in apparent mineralocorticoid excess. Hypertension 1999;34:638–642.

    Article  PubMed  CAS  Google Scholar 

  341. Kotelevtsev Y, Brown RW, Fleming S, Kenyon C, Edwards CR, Seckl JR, Mullins JJ. Hypertension in mice lacking 11beta-hydroxysteroid dehydrogenase type 2. J Clin Invest 1999;103:683–689.

    Article  PubMed  CAS  Google Scholar 

  342. Walker BR, Edwards CR. Licorice-induced hypertension and syndromes of apparent mineralocorticoid excess. Endocrinol Metab Clin North Am 1994;23:359–377.

    PubMed  CAS  Google Scholar 

  343. Pinder RM, Brogden RN, Sawyer PR, Speight TM, Spencer R, Avery GS. Carbenoxolone: a review of its pharmacological properties and therapeutic efficacy in peptic ulcer disease. Drugs 1976;11:245–307.

    Article  PubMed  CAS  Google Scholar 

  344. Gourmelen M, Saint-Jacques I, Morineau G, Soliman H, Julien R, Fiet J. 11 beta-Hydroxysteroid dehydrogenase deficit: a rare cause of arterial Hypertension. Diagnosis and therapeutic approach in two young brothers. Eur J Endocrinol 1996;135:238–244.

    Article  PubMed  CAS  Google Scholar 

  345. Palermo M, Delitala G, Sorba G, Cossu M, Satta R, Tedde R, Pala A, Shackleton CH. Does kidney transplantation normalise cortisol metabolism in apparent mineralocorticoid excess syndrome? J Endocrinol Invest 2000;23:457–462.

    PubMed  CAS  Google Scholar 

  346. Wilson RC, Nimkarn S, New MI. Apparent mineralocorticoid excess. Trends Endocrinol Metab 2001;12(3):104–111.

    Article  PubMed  CAS  Google Scholar 

  347. Gordon RD, Klemm SA, Tunny TJ, Stowasser M. Gordon Syndrome: a Sodium-Volume-Dependent Form of Hypertension with a Genetic Basis. In Hypertension: Pathophysiology, Diagnosis and Management, Laragh JH and Brenner BM (eds.). Chap. 125, 2nd edn. New York, Raven, 1995.

    Google Scholar 

  348. Paver W, Pauline G. hypertension and hyperpotassaemia without renal disease in a young male. Med J Aust 1964;2:305–306.

    PubMed  CAS  Google Scholar 

  349. Arnold JE, Healy JK. hyperkalemia, hypertension and systemic acidosis without renal failure associated with a tubular defect in potassium excretion. Am J Med 1969;47:461–472.

    Article  PubMed  CAS  Google Scholar 

  350. Achard JM, Warnock DG, Disse-Nicodeme S, Fiquet-Kempf B, Corvol P, Fournier A, Jeunemaitre X. Familial hyperkalemic hypertension: phenotypic analysis in a large family with the WNK1 deletion mutation. Am J Med 2003;114:495–498.

    Article  PubMed  Google Scholar 

  351. Schambelan M, Sebastian A, Rector FC. Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. Kidney Int 1981;19:716–727.

    Article  PubMed  CAS  Google Scholar 

  352. Mansfield TA, Simon DB, Farfel Z, Bia M, Tucci JR, Lebel M, Gutkin M, Vialettes B, Christofilis MA, Kauppinen-Makelin R, Mayan H, Risch N, Lifton RP. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31-42 and 17p11-q21. Nat Genet 1997;16:202–205.

    Article  PubMed  CAS  Google Scholar 

  353. Disse-Nicodeme S, Achard JM, Desitter I, Houot AM, Fournier A, Corvol P, Jeunemaitre X. A new locus on chromosome 12p13.3 for pseudohypoaldosteronism type II, an autosomal dominant form of hypertension. Am J Hum Genet 2000;67:302–310.

    Article  PubMed  CAS  Google Scholar 

  354. Disse-Nicodeme S, Achard JM, Potier J, Delahousse M, Fiquet-Kempf B, Stern N, Blanchard A, Guilbaud JC, Niaudet P, Chauveau D, Dussol B, Berland Y, Dequiedt P, Ader JL, Paillard M, Grunfeld JP, Fournier A, Corvol P, Jeunemaitre X. Familial hyperkalemic hypertension (Gordon syndrome): evidence for phenotypic variability in a study of 7 families. Adv Nephrol Necker Hosp 2001;31:55–68.

    PubMed  CAS  Google Scholar 

  355. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science 2001;293:1107–1112.

    Article  PubMed  CAS  Google Scholar 

  356. Xu BE, Lee BH, Min X, Lenertz L, Heise CJ, Stippec S, Goldsmith EJ, Cobb MH. WNK1: analysis of protein kinase structure, downstream targets, and potential roles in hypertension. Cell Res (2005) 15:6–10.

    Article  PubMed  Google Scholar 

  357. Kahle KT, Rinehart J, Giebisch G, Gamba G, Hebert SC, Lifton RP. A novel protein kinase signaling pathway essential for blood pressure regulation in humans. Trends Endocrinol Metab 2008;19:91–95.

    Article  PubMed  CAS  Google Scholar 

  358. Hadchouel J, Delaloy C, Faure S, Achard JM, Jeunemaitre X. Familial hyperkalemic hypertension. J Am Soc Nephrol 2006;17:208–217.

    Article  PubMed  CAS  Google Scholar 

  359. Wilson FH, Kahle KT, Sabath E, Lalioti MD, Rapson AK, Hoover RS, Hebert SC, Gamba G, Lifton RP. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 2003;100:680–684.

    Article  PubMed  CAS  Google Scholar 

  360. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 2003;35:372–376.

    Article  PubMed  CAS  Google Scholar 

  361. Yamauchi K, Yang SS, Ohta A, Sohara E, Rai T, Sasaki S, Uchida S. Apical localization of renal K channel was not altered in mutant WNK4 transgenic mice. Biochem Biophys Res Commun 2005;332:750–755.

    Article  PubMed  CAS  Google Scholar 

  362. Lalioti MD, Zhang J, Volkman HM, Kahle KT, Hoffmann KE, Toka HR, Nelson-Williams C, Ellison DH, Flavell R, Booth CJ, Lu Y, Geller DS, Lifton RP. Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat Genet 2006;38:1124–1132.

    Article  PubMed  CAS  Google Scholar 

  363. Delaloy C, Lu J, Houot AM, Disse-Nicodeme S, Gasc JM, Corvol P, Jeunemaitre X. Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol 2003;23:9208–9221.

    Article  PubMed  CAS  Google Scholar 

  364. Lenertz LY, Lee BH, Min X, Xu BE, Wedin K, Earnest S, Goldsmith EJ, Cobb MH. Properties of WNK1 and implications for other family members. J Biol Chem 2005;280(29):26653–26658.

    Article  PubMed  CAS  Google Scholar 

  365. Mayan H, Vered I, Mouallem M, Tzadok-Witkon M, Pauzner R, Farfel Z. Pseudohypoaldosteronism type II: marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density. J Clin Endocrinol Metab 2002;87:3248–3254.

    Article  PubMed  CAS  Google Scholar 

  366. Fu Y, Subramanya A, Rozansky D, Cohen DM. WNK kinases influence TRPV4 channel function and localization. Am J Physiol Renal Physiol. 2006;290(6):F1305–F1314.

    Article  PubMed  CAS  Google Scholar 

  367. Sanjad S, Mansour F, Hernandez R, Hill L. Severe hypertension, hyperkalemia, and renal tubular acidosis responding to dietary sodium restriction. Pediatrics 1982;69:317–324.

    PubMed  CAS  Google Scholar 

  368. Zennaro MC, Lombès M. Mineralocorticoid resistence. Trends Endocrinol Metab 2004;15:264–270.

    Article  PubMed  CAS  Google Scholar 

  369. Cheek DB, Perry JW. A salt wasting syndrome in infancy. Arch Dis Child 1958;33:252–256.

    Article  PubMed  CAS  Google Scholar 

  370. Hanukoglu A. Type I pseudohypoaldosteronism includes two clinically and genetically distinct entities with either renal or multiple target organ defects. J Clin Endocrinol Metab 1991;73:936–944.

    Article  PubMed  CAS  Google Scholar 

  371. Geller DS. Mineralocorticoid resistance. Clin Endocrinol 2005;62:513–520.

    Article  CAS  Google Scholar 

  372. Zettle RM, West ML, Josse RG, Richardson RM, Marsden PA, Halperin ML. Renal potassium handling during states of low aldosterone bio-activity: a method to differentiate renal and non-renal causes. Am J Nephrol 1987;7:360–366.

    Article  PubMed  CAS  Google Scholar 

  373. Rodriguez-Soriano J, Ubetagoyena M, Vallo. Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children. Pediatr Nephrol 1990;4:105–110.

    Article  PubMed  CAS  Google Scholar 

  374. Speiser PW, Stoner E, New MI. Pseudohypoaldosteronism: a review and report of two new cases. Adv Exp Med Biol 1986;196:173–195.

    Article  PubMed  CAS  Google Scholar 

  375. Hanukoglu A, Edelheit O, Shriki Y, Gizewska M, Dascal N, Hanukoglu I. Renin-aldosterone response, urinary Na/K ratio and growth in pseudohypoaldosteronism patients with mutations in epithelial sodium channel (ENaC) subunit genes. J Steroid Biochem Mol Biol 2008;111:268–274.

    Article  PubMed  CAS  Google Scholar 

  376. Oberfield SE, Levine LS, Carey RM, Bejar R, New MI. Pseudohypoaldosteronism: multiple target organ unresponsiveness to mineralocorticoid hormones. J Clin Endocrinol Metab 1979;48:228–234.

    Article  PubMed  CAS  Google Scholar 

  377. Kerem E, Bistritzer T, Hanukoglu A, Hofmann T, Zhou Z, Bennett W, MacLaughlin E, Barker P, Nash M, Quittell L, Boucher R, Knowles MR. Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med 1999;341:156–162.

    Article  PubMed  CAS  Google Scholar 

  378. Martin JM, Calduch L, Monteagudo C, Alonso V, Garcia L, Jorda E. Clinico-pathological analysis of the cutaneous lesions of a patient with type I pseudohypoaldosteronism. J Eur Acad Dermatol Venereol 2005;19:377–379.

    Article  PubMed  CAS  Google Scholar 

  379. Rodriguez-Soriano J, Vallo A, Oliveros R, Castillo G. Transient pseudohypoaldosteronism secondary to obstructive uropathy in infancy. J Pediatr 1983;103:375–380.

    Article  PubMed  CAS  Google Scholar 

  380. Bulchmann G, Schuster T, Heger A, Kuhnle U, Joppich I, Schmidt H. Transient pseudohypoaldosteronism secondary to posterior urethral valves – a case report and review of the literature. Eur J Pediatr Surg 2001;11:277–279.

    Article  PubMed  CAS  Google Scholar 

  381. Watanabe T. Reversible secondary pseudohypoaldosteronism. Pediatr Nephrol 2003;18:486.

    PubMed  Google Scholar 

  382. Vantyghem MC, Hober C, Evrard A, Ghulam A, Lescut D, Racadot A, Triboulet JP, Armanini D, Lefebvre J. Transient pseudo-hypoaldosteronism following resection of the ileum: normal level of lymphocytic aldosterone receptors outside the acute phase. J Endocrinol Invest 1999;22:122–127.

    PubMed  CAS  Google Scholar 

  383. Deppe CE, Heering PJ, Viengchareun S, Grabensee B, Farman N, Lombes. Cyclosporine a and FK506 inhibit transcriptional activity of the human mineralocorticoid receptor: a cell-based model to investigate partial aldosterone resistance in kidney transplantation. Endocrinology 2002;143:1932–1941.

    Article  PubMed  CAS  Google Scholar 

  384. Verrey F, Pearce D, Pfeiffer R, Spindler B, Mastroberardino L, Summa V, Zecevic M. Pleiotropic action of aldosterone in epithelia mediated by transcription and post-transcription mechanisms. Kidney Int 2000;57:1277–1282.

    Article  PubMed  CAS  Google Scholar 

  385. Rossier BC, Pradervand S, Schild L, Hummler E. Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol 2002;64:877–897.

    Article  PubMed  CAS  Google Scholar 

  386. Armanini D, Kuhnle U, Strasser T, Dorr H, Butenandt I, Weber P, Stockigt JR, Pearce P, Funder JW. Aldosterone receptor deficiency in pseudohypoaldosteronism. N Engl J Med 1985;313:1178–1181.

    Article  PubMed  CAS  Google Scholar 

  387. Kuhnle U, Nielsen MD, Tietze HU, Schroeter CH, Schlamp D, Bosson D, Knorr D, Armanini D. Pseudohypoaldosteronism in eight families: different forms of inheritance are evidence for various genetic defects. J Clin Endocrinol Metab 1990;70:638–641.

    Article  PubMed  CAS  Google Scholar 

  388. Geller DS, Rodriguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, Lifton RP. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 1998;19:279–281.

    Article  PubMed  CAS  Google Scholar 

  389. Riepe FG, Finkeldei J, de Sanctis L, Einaudi S, Testa A, Karges B, Peter M, Viemann M, Grotzinger J, Sippell WG, Fejes-Toth G, Krone N. Elucidating the underlying molecular pathogenesis of NR3C2 mutants causing autosomal dominant pseudohypoaldosteronism type 1. J Clin Endocrinol Metab 2006;91:4552–4561.

    Article  PubMed  CAS  Google Scholar 

  390. Pujo L, Fagart J, Gary F, Papadimitriou DT, Claes A, Jeunemaitre X, Zennaro MC. Mineralocorticoid receptor mutations are the principal cause of renal type 1 pseudohypoaldosteronism. Hum Mutat 2007;28:33–40.

    Article  PubMed  CAS  Google Scholar 

  391. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson-Williams C, Rossier BC, Lifton RP. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 1996;12:248–253.

    Article  PubMed  CAS  Google Scholar 

  392. Strautnieks SS, Thompson RJ, Gardiner RM, Chung E. A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet 1996;13:248–250.

    Article  PubMed  CAS  Google Scholar 

  393. Saxena A, Hanukoglu I, Saxena D, Thompson RJ, Gardiner RM, Hanukoglu A. Novel mutations responsible for autosomal recessive multisystem pseudohypoaldosteronism and sequence variants in epithelial sodium channel alpha-, beta-, and gamma-subunit genes. J Clin Endocrinol Metab 2002;87:3344–3350.

    Article  PubMed  CAS  Google Scholar 

  394. Sartorato P, Lapeyraque AL, Armanini D, Kuhnle U, Khaldi Y, Salomon R, Abadie V, Di Battista E, Naselli A, Racine A, Bosio M, Caprio M, Poulet-Young V, Chabrolle JP, Niaudet P, De Gennes C, Lecornec MH, Poisson E, Fusco AM, Loli P, Lombes M, Zennaro MC. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism. J Clin Endocrinol Metab 2003;88:2508–2517.

    Article  PubMed  CAS  Google Scholar 

  395. Sartorato P, Khaldi Y, Lapeyraque AL, Armanini D, Kuhnle U, Salomon R, Caprio M, Viengchareun S, Lombes M, Zennaro MC. Inactivating mutations of the mineralocorticoid receptor in Type I pseudohypoaldosteronism. Mol Cell Endocrinol 2004;217:119–125.

    Article  PubMed  CAS  Google Scholar 

  396. Prince LS, Launspach JL, Geller DS, Lifton RP, Pratt JH, Zabner J, Welsh MJ. Absence of amiloride-sensitive sodium absorption in the airway of an infant with pseudohypoaldosteronism. J Pediatr 1999;135:786–789.

    Article  PubMed  CAS  Google Scholar 

  397. Ulick S, Wang JZ, Morton DH. The biochemical phenotypes of two inborn errors in the biosynthesis of aldosterone. J Clin Endocrinol Metab 1992;74:1415–1420.

    Article  PubMed  CAS  Google Scholar 

  398. New MI. Inborn errors of adrenal steroidogenesis. Mol Cell Endocrinol 2003;211:75–83.

    Article  PubMed  CAS  Google Scholar 

  399. Mathew PM, Manasra KB, Hamdan JA. Indomethacin and cation-exchange resin in the management of pseudohypoaldosteronism. Clin Pediatr 1993;32:58–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Devuyst, O., Konrad, M., Jeunemaitre, X., Zennaro, MC. (2009). Tubular Disorders of Electrolyte Regulation. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics