Skip to main content

Renal Tubular Development

  • Reference work entry
Book cover Pediatric Nephrology
  • 3044 Accesses

Abstract

The kidney is faced with the enormous task of maintaining a constant composition and volume of the extracellular fluid. The adult ingests nutrients and water and generates waste products that must be eliminated to maintain this balance. In other words, the amount of electrolytes that are ingested and absorbed must be eliminated and the waste products from metabolism must also be excreted. This challenge is all the more complex as our dietary intake is quite variable from day to day. Despite this variable intake, there is virtually no change in the volume or composition of the extracellular fluid volume from day to day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abuazza G, Becker A, Williams SS, Chakravarty S, Truong HT, Lin F, Baum M. Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins. Am J Physiol Renal Physiol 2006;291:F1132–F1141.

    CAS  PubMed  Google Scholar 

  2. Adachi S, Uchida S, Ito H, Hata M, Hiroe M, Marumo F, Sasaki S. Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle's loop and collecting ducts of rat kidney. J Biol Chem 1994;269:17677–17683.

    CAS  PubMed  Google Scholar 

  3. Alpern RJ, Howlin KJ, Preisig PA. Active and passive components of chloride transport in the rat proximal convoluted tubule. J Clin Invest 1985;76:1360–1366.

    CAS  PubMed  Google Scholar 

  4. Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 1995;269:G467–G475.

    CAS  PubMed  Google Scholar 

  5. Aperia A, Broberger O, Thodenius K, Zetterstrom R. Renal response to an oral sodium load in newborn full-term infants. Acta Paediatr Scand 1972;61:670–676.

    CAS  PubMed  Google Scholar 

  6. Aperia A, Elinder G. Distal tubular sodium reabsorption in the developing rat kidney. Am J Physiol 1981;240:F487–F491.

    CAS  PubMed  Google Scholar 

  7. Aperia A, Herin P, Lundin S, Melin P, Zetterstrom R. Regulation of renal water excretion in newborn full-term infants. Acta Paediatr Scand 1984;73:717–721.

    CAS  PubMed  Google Scholar 

  8. Aperia ABOHPZr. Sodium excretion in relation to sodium intake and aldosterone excretion in newborn preterm and fullterm infants. Acta Paediatr Scand 1979;68:813–817.

    CAS  PubMed  Google Scholar 

  9. Aperia AC. Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism. Annu Rev Physiol 2000;62:621–647.

    CAS  PubMed  Google Scholar 

  10. Aperia ALL. Induced development of proximal tublar NaKATPase, basolateral cell membranes and fluid reabsorption. Acta Physiol Scand 1984;121:133–141.

    CAS  PubMed  Google Scholar 

  11. Aperia ALLZR. Hormonal induction of Na-K-ATPase in developing proximal tubular cells. Am J Physiol 1981;241:F356–F360.

    CAS  PubMed  Google Scholar 

  12. Arant BS Jr. Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr 1978;92:705–712.

    CAS  PubMed  Google Scholar 

  13. Arant B. The renal reabsorption of glucose in the developing canine kidney: a study of glomerulotubular balance. Pediatr Res 1974;8:638–646.

    CAS  PubMed  Google Scholar 

  14. Aronson PS. 1994 Homer W. Smith Award. From flies to physiology – accidental findings along the trail of renal NaCl transport. J Am Soc Nephrol 1995;5:2001–2013.

    CAS  PubMed  Google Scholar 

  15. Aronson PS. Role of ion exchangers in mediating NaCl transport in the proximal tubule. Kidney Int 1996;49:1665–1670.

    CAS  PubMed  Google Scholar 

  16. Aronson PS. Ion exchangers mediating NaCl transport in the renal proximal tubule. Cell Biochem Biophys 2002;36:147–153.

    CAS  PubMed  Google Scholar 

  17. Aronson PS, Giebisch G. Mechanisms of chloride transport in the proximal tubule. Am J Physiol 1997;273:F179–F192.

    CAS  PubMed  Google Scholar 

  18. Aronson PS, Kuo SM. Heterogeneity of anion exchangers mediating chloride transport in the proximal tubule. Ann N Y Acad Sci 1989;574:96–101.

    CAS  PubMed  Google Scholar 

  19. Baerlocher KE, Scriver CR, Mohyuddin F. The ontogeny of amino acid transport in rat kidney. I. Effect on distribution ratios and intracellular metabolism of proline and glycine. Biochim Biophys Acta 1971;249:353–363.

    CAS  PubMed  Google Scholar 

  20. Bahn A, Prawitt D, Buttler D, Reid G, Enklaar T, Wolff NA, Ebbinghaus C, Hillemann A, Schulten HJ, Gunawan B, Fuzesi L, Zabel B, Burckhardt G. Genomic structure and in vivo expression of the human organic anion transporter 1 (hOAT1) gene. Biochem Biophys Res Commun 2000;275:623–630.

    CAS  PubMed  Google Scholar 

  21. Barac-Nieto M, Corey H, Liu SM, Spitzer A. Role of intracellular phosphate in the regulation of renal phosphate transport during development. Pediatr Nephrol 1993;7:819–822.

    CAS  PubMed  Google Scholar 

  22. Barfuss DW, Schafer JA. Differences in active and passive glucose transport along the proximal nephron. Am J Physiol 1981;241:F322–F332.

    CAS  PubMed  Google Scholar 

  23. Baum M. Neonatal rabbit juxtamedullary proximal convoluted tubule acidification. J Clin Invest 1990;85:499–506.

    CAS  PubMed  Google Scholar 

  24. Baum M. Developmental changes in rabbit juxtamedullary proximal convoluted tubule acidification. Pediatr Res 1992;31:411–414.

    CAS  PubMed  Google Scholar 

  25. Baum M, Amemiya M, Dwarakanath V, Alpern RJ, Moe OW. Glucocorticoids regulate NHE-3 transcription in OKP cells. Am J Physiol 1996;270:F164–F169.

    CAS  PubMed  Google Scholar 

  26. Baum M, Berry CA. Evidence for neutral transcellular NaCl transport and neutral basolateral chloride exit in the rabbit convoluted tubule. J Clin Invest 1984;74:205–211.

    CAS  PubMed  Google Scholar 

  27. Baum M, Biemesderfer D, Gentry D, Aronson PS. Ontogeny of rabbit renal cortical NHE3 and NHE1: effect of glucocorticoids. Am J Physiol 1995;268:F815–F820.

    CAS  PubMed  Google Scholar 

  28. Baum M, Dwarakanath V, Alpern RJ, Moe OW. Effects of thyroid hormone on the neonatal renal cortical Na+/H+ antiporter. Kidney Int 1998;53:1254–1258.

    CAS  PubMed  Google Scholar 

  29. Baum M, Moe OW, Gentry DL, Alpern RJ. Effect of glucocorticoids on renal cortical NHE-3 and NHE-1 mRNA. Am J Physiol 1994;267:F437–F442.

    CAS  PubMed  Google Scholar 

  30. Baum M, Quigley R. Prenatal glucocorticoids stimulate neonatal juxtamedullary proximal convoluted tubule acidification. Am J Physiol 1991;261:F746–F752.

    CAS  PubMed  Google Scholar 

  31. Baum M, Quigley R. Maturation of proximal tubular acidification. Pediatr Nephrol 1993;7:785–791.

    CAS  PubMed  Google Scholar 

  32. Baum M, Quigley R. Thyroid hormone modulates rabbit proximal straight tubule paracellular permeability. Am J Physiol Renal Physiol 2004;286:F477–F482.

    CAS  PubMed  Google Scholar 

  33. Baum M, Quigley R. Maturation of rat proximal tubule chloride permeability. Am J Physiol Regul Integr Comp Physiol 2005;289:R1659–R1664.

    CAS  PubMed  Google Scholar 

  34. Baum M, Schiavi S, Dwarakanath V, Quigley R. Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules. Kidney Int 2005;68:1148–1153.

    CAS  PubMed  Google Scholar 

  35. Baum MA, Ruddy MK, Hosselet CA, Harris HW. The perinatal expression of aquaporin-2 and aquaporin-3 in developing kidney. Pediatr Res 1998;43:783–790.

    CAS  PubMed  Google Scholar 

  36. Beck JC. Glucose and sodium transport in brush-border membrane vesicles from fetal rabbit kidney. Ann N Y Acad Sci 1985;456:457–459.

    CAS  PubMed  Google Scholar 

  37. Beck JC, Lipkowitz MS, Abramson RG. Ontogeny of Na/H antiporter activity in rabbit renal brush border membrane vesicles. J Clin Invest 1991;87:2067–2076.

    CAS  PubMed  Google Scholar 

  38. Becker AM, Zhang J, Goyal S, Dwarakanath V, Aronson PS, Moe OW, Baum M. Ontogeny of NHE8 in the rat proximal tubule. Am J Physiol Renal Physiol 2007.

    Google Scholar 

  39. Beitins IZ, Bayard F, Levitsky L, Ances IG, Kowarski A, Migeon CJ. Plasma aldosterone concentration at delivery and during the newborn period. J Clin Invest 1972;51:386–394.

    CAS  PubMed  Google Scholar 

  40. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 2006;78:179–192.

    CAS  PubMed  Google Scholar 

  41. Berndt T, Craig TA, Bowe AE, Vassiliadis J, Reczek D, Finnegan R, de Beur SMJ, Schiavi SC, Kumar R. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest 2003;112:785–794.

    CAS  PubMed  Google Scholar 

  42. Bertorello AM, Katz AI. Short-term regulation of renal Na-K-ATPase activity: physiological relevance and cellular mechanisms. Am J Physiol 1993;265:F743–F755.

    CAS  PubMed  Google Scholar 

  43. Bertran J, Werner A, Moore ML, Stange G, Markovich D, Biber J, Testar X, Zorzano A, Palacin M, Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci USA 1992;89:5601–5605.

    CAS  PubMed  Google Scholar 

  44. Biber J, Caderas G, Stange G, Werner A, Murer H. Effect of low-phosphate diet on sodium/phosphate cotransport mRNA and protein content and on oocyte expression of phosphate transport. Pediatr Nephrol 1993;7:823–826.

    CAS  PubMed  Google Scholar 

  45. Biemesderfer D, Pizzonia J, Abu-Alfa A, Exner M, Reilly R, Igarashi P, Aronson PS. NHE3: a Na+/H+ exchanger isoform of renal brush border. Am J Physiol 1993;265:F736–F742.

    CAS  PubMed  Google Scholar 

  46. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 2001;29:310–314.

    CAS  PubMed  Google Scholar 

  47. Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 1998;275:F633–F650.

    CAS  PubMed  Google Scholar 

  48. Bobulescu IA, Dwarakanath V, Zou L, Zhang J, Baum M, Moe OW. Glucocorticoids acutely increase cell surface Na+/H+ exchanger-3 (NHE3) by activation of NHE3 exocytosis. Am J Physiol Renal Physiol 2005;289:F685–F691.

    CAS  PubMed  Google Scholar 

  49. Bohmer C, Broer A, Munzinger M, Kowalczuk S, Rasko JE, Lang F, Broer S. Characterization of mouse amino acid transporter B0AT1 (slc6a19). Biochem J 2005;389:745–751.

    PubMed  Google Scholar 

  50. Bondy C, Chin E, Smith BL, Preston GM, Agre P. Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci USA 1993;90:4500–4504.

    CAS  PubMed  Google Scholar 

  51. Bonilla-Felix M. Development of water transport in the collecting duct. Am J Physiol Renal Physiol 2004;287:F1093–F1101.

    CAS  PubMed  Google Scholar 

  52. Bonilla-Felix M, Jiang W. Aquaporin-2 in the immature rat: expression, regulation, and trafficking. J Am Soc Nephrol 1997;8:1502–1509.

    CAS  PubMed  Google Scholar 

  53. Bonilla-Felix M, John-Phillip C. Prostaglandins mediate the defect in AVP-stimulated cAMP generation in immature collecting duct. Am J Physiol 1994;267:F44–F48.

    CAS  PubMed  Google Scholar 

  54. Bonilla-Felix M, Vehaskari VM, Hamm LL. Water transport in the immature rabbit collecting duct. Pediatr Nephrol 1999;13:103–107.

    CAS  PubMed  Google Scholar 

  55. Boss JM, Dlouha H, Kraus M, Krecek J. The structure of the kidney in relation to age and diet in white rats during the weaning period. J Physiol 1963;168:196–204.

    CAS  PubMed  Google Scholar 

  56. Bourdeau JE, Burg MB. Voltage dependence of calcium transport in the thick ascending limb of Henle's loop. Am J Physiol 1979;236:F357–F364.

    CAS  PubMed  Google Scholar 

  57. Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001;284:977–981.

    CAS  PubMed  Google Scholar 

  58. Brace RA, Miner LK, Siderowf AD, Cheung CY. Fetal and adult urine flow and ANF responses to vascular volume expansion. Am J Physiol 1988;255:R846–R850.

    CAS  PubMed  Google Scholar 

  59. Brodehl J, Gellissen K. Endogenous renal transport of free amino acids in infancy and childhood. Pediatrics 1968 42:395–404.

    CAS  PubMed  Google Scholar 

  60. Broer A, Cavanaugh JA, Rasko JE, Broer S. The molecular basis of neutral aminoacidurias. Pflugers Arch 2006;451:511–517.

    PubMed  Google Scholar 

  61. Brunette MG, Vigneault N, Carriere S. Micropuncture study of magnesium transport along the nephron in the young rat. Am J Physiol 1974;227:891–896.

    CAS  PubMed  Google Scholar 

  62. Brunette MG, Vigneault N, Carriere S. Micropuncture study of renal magnesium transport in magnesium-loaded rats. Am J Physiol 1975;229:1695–1701.

    CAS  PubMed  Google Scholar 

  63. Calado J, Soto K, Clemente C, Correia P, Rueff J. Novel compound heterozygous mutations in SLC5A2 are responsible for autosomal recessive renal glucosuria. Hum Genet 2004;114:314–316.

    PubMed  Google Scholar 

  64. Calcagno PL, Rubin MI. Renal extraction of para-aminohippurate in infants and children 2. J Clin Invest 1963;42:1632–1639.

    CAS  PubMed  Google Scholar 

  65. Calonge MJ, Gasparini P, Chillaron J, Chillon M, Gallucci M, Rousaud F, Zelante L, Testar X, Dallapiccola B, Di Silverio F. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet 1994;6:420–425.

    CAS  PubMed  Google Scholar 

  66. Calonge MJ, Volpini V, Bisceglia L, Rousaud F, Sanctis L, Beccia E, Zelante L, Testar X, Zorzano A, Estivill X, Gasparini P, Nunes V, Palacin M. Genetic heterogeneity in cystinuria: The SLC3A1 gene is linked to type I but not to type III cystinuria. Proc Natl Acad Sci USA 1995;92:9667–9671.

    CAS  PubMed  Google Scholar 

  67. Cano A, Baum M, Moe OW. Thyroid hormone stimulates the renal Na/H exchanger NHE3 by transcriptional activation. Am J Physiol 1999;276:C102–C108.

    CAS  PubMed  Google Scholar 

  68. Capasso G, Lin JT, De Santo NG, Kinne R. Short term effect of low doses of tri-iodothyronine on proximal tubular membrane Na-K-ATPase and potassium permeability in thyroidectomized rats. Pflugers Arch 1985;403:90–96.

    CAS  PubMed  Google Scholar 

  69. Caverzasio J, Bonjour JP, Fleisch H. Tubular handling of Pi in young growing and adult rats. Am J Physiol 1982;242:F705–F710.

    CAS  PubMed  Google Scholar 

  70. Celsi G, Nishi A, Akusjarvi G, Aperia A. Abundance of Na(+)-K(+)-ATPase mRNA is regulated by glucocorticoid hormones in infant rat kidneys. Am J Physiol 1991;260:F192–F197.

    CAS  PubMed  Google Scholar 

  71. Celsi G, Wang ZM, Akusjarvi G, Aperia A. Sensitive periods for glucocorticoids’ regulation of Na+, K(+)-ATPase mRNA in the developing lung and kidney. Pediatr Res 1993;33:5–9.

    CAS  PubMed  Google Scholar 

  72. Chambrey R, Warnock DG, Podevin RA, Bruneval P, Mandet C, Belair MF, Bariety J, Paillard M. Immunolocalization of the Na+/H+ exchanger isoform NHE2 in rat kidney. Am J Physiol 1998;275:F379–F386.

    CAS  PubMed  Google Scholar 

  73. Chesney RW, Gusowski N, Lippincitt S, Zelikovic I. Renal adaptation to dietary amino acid alteration is expressed in immature renal brush border membranes. Pediatr Nephrol 1988;2:146–150.

    CAS  PubMed  Google Scholar 

  74. Choi JY, Shah M, Lee MG, Schultheis PJ, Shull GE, Muallem S, Baum M. Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. J Clin Invest 2000;105:1141–1146.

    CAS  PubMed  Google Scholar 

  75. Colegio OR, Itallie CV, Rahner C, Anderson JM. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol 2003;284:C1346–C1354.

    CAS  PubMed  Google Scholar 

  76. Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 2002;283:C142–C147.

    CAS  PubMed  Google Scholar 

  77. Connelly JP, Crawford JD, Watson J. Studies of neonatal hyperphosphatemia. Pediatrics 1962;30:425–432.

    CAS  PubMed  Google Scholar 

  78. Constantinescu A, Silver RB, Satlin LM. H-K-ATPase activity in PNA-binding intercalated cells of newborn rabbit cortical collecting duct. Am J Physiol 1997;272:F167–F177.

    CAS  PubMed  Google Scholar 

  79. Corman B, Di Stefano A. 1983;Does water drag solutes through kidney proximal tubule? Pflugers Archiv 397:35–41.

    CAS  PubMed  Google Scholar 

  80. Cramb G, Cutler CP, Lamb JF, McDevitt T, Ogden PH, Owler D, Voy C. The effects of monensin on the abundance of mRNA(alpha) and of sodium pumps in human cultured cells. Q J Exp Physiol 1989;74:53–63.

    CAS  PubMed  Google Scholar 

  81. Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev 2001;81:51–84.

    CAS  PubMed  Google Scholar 

  82. Dean RF, McCance RA. The renal response of infants and adults to the administration of hypertonic solutions of sodium chloride and urea. J Physiol (London) 2004;109:81–87.

    Google Scholar 

  83. Dean RFA, McCance RA. Phosphate clearance in infants and adults. J Physiol (London) 1948;107:182–186.

    CAS  Google Scholar 

  84. DeFronzo RA, Goldberg M, Agus ZS. The effects of glucose and insulin on renal electrolyte transport. J Clin Invest 1976;58:83–90.

    CAS  PubMed  Google Scholar 

  85. DeVane GW, Naden RP, Porter JC, Rosenfeld CR. Mechanism of arginine vasopressin release in the sheep fetus. Pediatr Res 1982;16:504–507.

    CAS  PubMed  Google Scholar 

  86. DeVane GW, Porter JC. An apparent stress-induced release or arginine vasopressin by human neonates. J Clin Endocrinol Metab 1980;51:1412–1416.

    CAS  PubMed  Google Scholar 

  87. Djouadi F, Wijkhuisen A, Bastin J. Coordinate development of oxidative enzymes and Na-K-ATPase in thick ascending limb: role of corticosteroids. Am J Physiol 1992;263:F237–F242.

    CAS  PubMed  Google Scholar 

  88. Drukker A, Goldsmith DI, Spitzer A, Edelmann CM Jr., Blaufox MD. The renin angiotensin system in newborn dogs: developmental patterns and response to acute saline loading. Pediatr Res 1980;14:304–307.

    CAS  PubMed  Google Scholar 

  89. Dustin JP, Moore S, Bigwood EJ. Chromatographic studies on the excretion of amino acids in early infancy. Metabolism 1955;4:75–79.

    CAS  PubMed  Google Scholar 

  90. Edelmann CM Jr, Barnett HL, Stark H. Effect of urea on concentration of urinary nonurea solute in premature infants. J Appl Physiol 1966;21:1021–1025.

    CAS  PubMed  Google Scholar 

  91. Edelmann CM, Jr., Barnett HL, Troupkou V. Renal concentrating mechanisms in newborn infants. Effect of dietary protein and water content, role of urea, and responsiveness to antidiuretic hormone. J Anatomy 1960;1062–1069.

    Google Scholar 

  92. Edelmann CMJ, Soriano JR, Boichis H, Gruskin AB, Acosta M. Renal bicarbonate reabsorption and hydrogen ion excretion in normal infants. J Clin Invest 1967;46:1309–1317.

    CAS  PubMed  Google Scholar 

  93. Ekblad H, Kero P, Vuolteenaho O, Arjamaa O, Korvenranta H, Shaffer SG. Atrial natriuretic peptide in the preterm infant. Lack of correlation with natriuresis and diuresis. Acta Paediatr 1992;81:978–982.

    CAS  PubMed  Google Scholar 

  94. Ellison DH, Velazquez H, Wright FS. Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol 1987;253:F546–F554.

    CAS  PubMed  Google Scholar 

  95. Elsas LJ. Glucose reabsorption in familial renal glycosuria and glucose-galactose malabsorption. Birth Defects Orig Artic Ser 1970;6:21–22.

    CAS  PubMed  Google Scholar 

  96. Elsas LJ, Hillman RE, Patterson JH, Rosenberg LE. Renal and intestinal hexose transport in familial glucose-galactose malabsorption. J Clin Invest 1970;49:576–585.

    CAS  PubMed  Google Scholar 

  97. Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ. Barttin is a Cl-channel beta-subunit crucial for renal Cl-reabsorption and inner ear K+ secretion. Nature 2001;414:558–561.

    CAS  PubMed  Google Scholar 

  98. Evan AP, Satlin LM, Gattone VH, Connors B, Schwartz GJ. Postnatal maturation of rabbit renal collecting duct. II. Morphological observations. Am J Physiol 1991;261:F91–107.

    CAS  PubMed  Google Scholar 

  99. Ewart HS, Klip A. Hormonal regulation of the Na(+)-K(+)-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol 1995;269:C295–C311.

    CAS  PubMed  Google Scholar 

  100. Farman N. Na,K-pump expression and distribution in the nephron. Miner Electrolyte Metab 1996;22:272–278.

    CAS  PubMed  Google Scholar 

  101. Fawer CL, Torrado A, Guignard JP. Maturation of renal function in full-term and premature neonates. Helv Paediatr Acta 1979;34:11–21.

    CAS  PubMed  Google Scholar 

  102. Feliubadalo L, Font M, Purroy J, Rousaud F, Estivill X, Nunes V, Golomb E, Centola M, Aksentijevich I, Kreiss Y, Goldman B, Pras M, Kastner DL, Pras E, Gasparini P, Bisceglia L, Beccia E, Gallucci M, de Sanctis L, Ponzone A, Rizzoni GF, Zelante L, Bassi MT, George AL, Jr., Manzoni M, De Grandi A, Riboni M, Endsley JK, Ballabio A, Borsani G, Reig N, Fernandez E, Estevez R, Pineda M, Torrents D, Camps M, Lloberas J, Zorzano A, Palacin M. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo, +AT) of rBAT. Nat Genet 1999;23:52–57.

    CAS  PubMed  Google Scholar 

  103. Fernandez E, Carrascal M, Rousaud F, Abian J, Zorzano A, Palacin M, Chillaron J. rBAT-b(0,+)AT heterodimer is the main apical reabsorption system for cystine in the kidney. Am J Physiol Renal Physiol 2002;283:F540–F548.

    CAS  PubMed  Google Scholar 

  104. Fiselier TJ, Lijnen P, Monnens L, van Munster P, Jansen M, Peer P. Levels of renin, angiotensin I and II, angiotensin-converting enzyme and aldosterone in infancy and childhood. Eur J Pediatr 1983;141:3–7.

    CAS  PubMed  Google Scholar 

  105. Font MA, Feliubadalo L, Estivill X, Nunes V, Golomb E, Kreiss Y, Pras E, Bisceglia L, d'Adamo AP, Zelante L, Gasparini P, Bassi MT, George AL, Jr., Manzoni M, Riboni M, Ballabio A, Borsani G, Reig N, Fernandez E, Zorzano A, Bertran J, Palacin M. Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria. Hum Mol Genet 2001;10:305–316.

    CAS  PubMed  Google Scholar 

  106. Foreman JW, Medow MS, Wald H, Ginkinger K, Segal S. Developmental aspects of sugar transport by isolated dog renal cortical tubules. Pediatr Res 1984;18:719–723.

    CAS  PubMed  Google Scholar 

  107. Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int 2006;70:1548–1559.

    CAS  PubMed  Google Scholar 

  108. Fukuda Y, Aperia A. Differentiation of Na+-K+ pump in rat proximal tubule is modulated by Na+-H+ exchanger. Am J Physiol 1988;255:F552–F557.

    CAS  PubMed  Google Scholar 

  109. Fukuda Y, Bertorello A, Aperia A. Ontogeny of the regulation of Na+, K(+)-ATPase activity in the renal proximal tubule cell. Pediatr Res 1991 30:131–134.

    CAS  PubMed  Google Scholar 

  110. Furriols M, Chillaron J, Mora C, Castello A, Bertran J, Camps M, Testar X, Vilaro S, Zorzano A, Palacin M. rBAT, related to L-cystine transport, is localized to the microvilli of proximal straight tubules, and its expression is regulated in kidney development. J Biol Chem 1993;268:27060–27068.

    CAS  PubMed  Google Scholar 

  111. Garg LC, Knepper MA, Burg MB. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol 1981;240:F536–F544.

    CAS  PubMed  Google Scholar 

  112. Garg LC, Tisher CC. Effects of thyroid hormone on Na-K-adenosine triphosphatase activity along the rat nephron. J Lab Clin Med 1985;106:568–572.

    CAS  PubMed  Google Scholar 

  113. Gengler WR, Forte LR. Neonatal development of rat kidney adenyl cyclase and phosphodiesterase. Biochim Biophys Acta 1972;279:367–372.

    CAS  PubMed  Google Scholar 

  114. Godard C, Geering JM, Geering K, Vallotton MB. Plasma renin activity related to sodium balance, renal function and urinary vasopressin in the newborn infant. Pediatr Res 1979;13:742–745.

    CAS  PubMed  Google Scholar 

  115. Goldsmith DI, Drukker A, Blaufox MD, Edelmann CM Jr., Spitzer A. Hemodynamic and excretory response of the neonatal canine kidney to acute volume expansion. Am J Physiol 1979;237:F392–F397.

    CAS  PubMed  Google Scholar 

  116. Goyal S, Mentone S, Aronson PS. Immunolocalization of NHE8 in rat kidney. Am J Physiol Renal Physiol 2005;288:F530–F538.

    CAS  PubMed  Google Scholar 

  117. Goyal S, Vanden Heuvel G, Aronson PS. Renal expression of novel Na+/H+ exchanger isoform NHE8. Am J Physiol Renal Physiol 2003;284:F467–F473.

    CAS  PubMed  Google Scholar 

  118. Greger R, Schlatter E. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch 1981;392:92–94.

    CAS  PubMed  Google Scholar 

  119. Gupta N, Dwarakanath V, Baum M. Maturation of the Na/H antiporter (NHE3) in the proximal tubule of the hypothroid adrenalectomized rat. Am J Physiol Renal Physiol 2004;287:F521–F527.

    CAS  PubMed  Google Scholar 

  120. Gurkan S, Estilo GK, Wei Y, Satlin LM. Potassium transport in the maturing kidney. Pediatr Nephrol 2007;22:915–925.

    PubMed  Google Scholar 

  121. Hadeed AJ, Leake RD, Weitzman RE, Fisher DA. Possible mechanisms of high blood levels of vasopressin during the neonatal period. J Pediatr 1979;94:805–808.

    CAS  PubMed  Google Scholar 

  122. Hammerman MR, Karl IE, Hruska KA. Regulation of canine renal vesicle Pi transport by growth hormone and parathyroid hormone. Biochim Biophys Acta 1980;603:322–335.

    CAS  PubMed  Google Scholar 

  123. Hansen JOL, Smith C.A. Effects of withholding fluid in the immediate post-natal period. Pediatrics 1953;12:99–113.

    CAS  PubMed  Google Scholar 

  124. Haramati A, Mulroney SE, Lumpkin MD. Regulation of renal phosphate reabsorption during development: implications from a new model of growth hormone deficiency. Pediatr Nephrol 1990;4:387–391.

    CAS  PubMed  Google Scholar 

  125. Haramati A, Mulroney SE, Webster SK. Developmental changes in the tubular capacity for phosphate reabsorption in the rat. Am J Physiol 1988;255:F287–F291.

    CAS  PubMed  Google Scholar 

  126. Harris RC, Seifter JL, Lechene C. Coupling of Na-H exchange and Na-K pump activity in cultured rat proximal tubule cells. Am J Physiol 1986;251:C815–C824.

    CAS  PubMed  Google Scholar 

  127. Haworth JCMMS. Reducing sugars in the urine and blood of premature babies. Arch Dis Child 2004;32:417–421.

    Google Scholar 

  128. Hebert SC, Gamba G. Molecular cloning and characterization of the renal diuretic-sensitive electroneutral sodium-(potassium)-chloride cotransporters. Clin Investig 1994;72:692–694.

    CAS  PubMed  Google Scholar 

  129. Hebert SC, Gamba G, Kaplan M. The electroneutral Na(+)-(K+)-Cl-cotransport family. Kidney Int 1996;49:1638–1641.

    CAS  PubMed  Google Scholar 

  130. Hediger MA, Coady MJ, Ikeda TS, Wright EM. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 1987;330:379–381.

    CAS  PubMed  Google Scholar 

  131. Henning SJ. Plasma concentrations of total and free corticosterone during development in the rat. Am J Physiol 1978;235:E451–E456.

    CAS  PubMed  Google Scholar 

  132. Henning SJ, Leeper LL, Dieu DN. Circulating corticosterone in the infant rat: the mechanism of age and thyroxine effects. Pediatr Res 1986;20:87–92.

    CAS  PubMed  Google Scholar 

  133. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 1998;95:14564–14569.

    CAS  PubMed  Google Scholar 

  134. Hirsch GH, Hook JB. Maturation of renal organic acid transport: substrate stimulation by penicillin. Science 1969;165:909–910.

    CAS  PubMed  Google Scholar 

  135. Hirsch GH, Hook JB. Maturation of renal organic acid transport: substrate stimulation by penicillin and p-aminohippurate (PAH). J Pharmacol Exp Ther 1970;171:103–108.

    CAS  PubMed  Google Scholar 

  136. Hirsch GH, Hook JB. Stimulation of renal organic acid transport and protein synthesis by penicillin. J Pharmacol Exp Ther 1970;174:152–158.

    CAS  PubMed  Google Scholar 

  137. Hohenauer L, Rosenberg TF, Oh W. Calcium and phosphorus homeostasis on the first day of life. Biol Neonate 1970;15:49–56.

    CAS  PubMed  Google Scholar 

  138. Horster M. Loop of Henle functional differentiation: in vitro perfusion of the isolated thick ascending segment. Pflugers Arch 1978;378:15–24.

    CAS  PubMed  Google Scholar 

  139. Horster M. Expression of ontogeny in individual nephron segments. Kidney Int 1982;22:550–559.

    CAS  PubMed  Google Scholar 

  140. Horster M, Valtin H. Postnatal development of renal function: micropuncture and clearance studies in the dog. J Clin Invest 1971;50:779–795.

    CAS  PubMed  Google Scholar 

  141. Horster MF, Zink H. Functional differentiation of the medullary collecting tubule: influence of vasopressin. Kidney Int 1982;22:360–365.

    CAS  PubMed  Google Scholar 

  142. Huber SM, Braun GS, Horster MF. Expression of the epithelial sodium channel (ENaC) during ontogenic differentiation of the renal cortical collecting duct epithelium. Pflugers Arch 1999;437:491–497.

    CAS  PubMed  Google Scholar 

  143. Ikeda TS, Hwang ES, Coady MJ, Hirayama BA, Hediger MA, Wright EM. Characterization of a Na+/glucose cotransporter cloned from rabbit small intestine. J Membr Biol 1989;110:87–95.

    CAS  PubMed  Google Scholar 

  144. Imai M. Calcium transport across the rabbit thick ascending limb of Henle's loop perfused in vitro. Pflugers Arch 1978;374:255–263.

    CAS  PubMed  Google Scholar 

  145. Imai M, Kokko JP. Mechanism of sodium and chloride transport in the thin ascending limb of Henle. J Clin Invest 1976;58:1054–1060.

    CAS  PubMed  Google Scholar 

  146. Jacobson HR, Kokko JP, Seldin DW, Holmberg C. Lack of solvent drag of NaCl and NaHCO3 in rabbit proximal tubules. Am J Physiol 1982;243:F342–F348.

    CAS  PubMed  Google Scholar 

  147. Johnson V, Spitzer A. Renal reabsorption of phosphate during development: whole-kidney events. Am J Physiol 1986;251:F251–F256.

    CAS  PubMed  Google Scholar 

  148. Joppich R, Kiemann U, Mayer G, Haberle D. Effect of antidiuretic hormone upon urinary concentrating ability and medullary c-AMP formation in neonatal piglets. Pediatr Res 1979;13:884–888.

    CAS  PubMed  Google Scholar 

  149. Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 1992;360:467–471.

    CAS  PubMed  Google Scholar 

  150. Kanai Y, Nussberger S, Romero MF, Boron WF, Hebert SC, Hediger MA. Electrogenic properties of the epithelial and neuronal high affinity glutamate transporter. J Biol Chem 1995;270:16561–16568.

    CAS  PubMed  Google Scholar 

  151. Kaneko S, Albrecht F, Asico LD, Eisner GM, Robillard JE, Jose PA. Ontogeny of DA1 receptor-mediated natriuresis in the rat: in vivo and in vitro correlations. Am J Physiol 1992;263:R631–R638.

    CAS  PubMed  Google Scholar 

  152. Karashima S, Hattori S, Ushijima T, Furuse A, Nakazato H, Matsuda I. Developmental changes in carbonic anhydrase II in the rat kidney. Pediatr Nephrol 1998;12:263–268.

    CAS  PubMed  Google Scholar 

  153. Kaskel FJ, Kumar AM, Feld LG, Spitzer A. Renal reabsorption of phosphate during development: tubular events. Pediatr Nephrol 1988;2:129–134.

    CAS  PubMed  Google Scholar 

  154. Katz AI, Satoh T, Takemoto F, Cohen HT. Novel pathways of Na-K-ATPase regulation in kidney cells. Contrib Nephrol 1993;101:7–11.

    CAS  PubMed  Google Scholar 

  155. Kempson SA, Lotscher M, Kaissling B, Biber J, Murer H, Levi M. Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am J Physiol 1995;268:F784–F791.

    CAS  PubMed  Google Scholar 

  156. Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ. Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci USA 1994;91:6943–6947.

    CAS  PubMed  Google Scholar 

  157. Kim YH, Earm JH, Ma T, Verkman AS, Knepper MA, Madsen KM, Kim J. Aquaporin-4 expression in adult and developing mouse and rat kidney. J Am Soc Nephrol 2001;12:1795–1804.

    CAS  PubMed  Google Scholar 

  158. Kleta R, Romeo E, Ristic Z, Ohura T, Stuart C, Arcos-Burgos M, Dave MH, Wagner CA, Camargo SR, Inoue S, Matsuura N, Helip-Wooley A, Bockenhauer D, Warth R, Bernardini I, Visser G, Eggermann T, Lee P, Chairoungdua A, Jutabha P, Babu E, Nilwarangkoon S, Anzai N, Kanai Y, Verrey F, Gahl WA, Koizumi A Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet 2004;36:999–1002.

    CAS  PubMed  Google Scholar 

  159. Knepper MA, Inoue T Regulation of aquaporin-2 water channel trafficking by vasopressin. Curr Opin Cell Biol 1997;9:560–564.

    CAS  PubMed  Google Scholar 

  160. Kobayashi K, Uchida S, Mizutani S, Sasaki S, Marumo F. Developmental expression of CLC-K1 in the postnatal rat kidney. Histochem Cell Biol 2001;116:49–56.

    CAS  PubMed  Google Scholar 

  161. Kobayashi K, Uchida S, Mizutani S, Sasaki S, Marumo F. Intrarenal and cellular localization of CLC-K2 protein in the mouse kidney. J Am Soc Nephrol 2001;12:1327–1334.

    CAS  PubMed  Google Scholar 

  162. Kokko JP, Rector FC Jr. Countercurrent multiplication system without active transport in inner medulla. Kidney Int 1972;2:214–223.

    CAS  PubMed  Google Scholar 

  163. Kon V, Hughes ML, Ichikawa I. Physiologic basis for the maintenance of glomerulotubular balance in young growing rats. Kidney Int 1984;25:391–396.

    CAS  PubMed  Google Scholar 

  164. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006;281:6120–6123.

    CAS  PubMed  Google Scholar 

  165. Kurtz I, Nagami G, Yanagawa N, Li L, Emmons C, Lee I. Mechanism of apical and basolateral Na(+)-independent Cl-/base exchange in the rabbit superficial proximal straight tubule. J Clin Invest 1994;94:173–183.

    CAS  PubMed  Google Scholar 

  166. Larsson SH, Rane S, Fukuda Y, Aperia A, Lechene C. Changes in Na influx precede post-natal increase in Na, K-ATPase activity in rat renal proximal tubular cells. Acta Physiol Scand 1990;138:99–100.

    CAS  PubMed  Google Scholar 

  167. Launay-Vacher V, Izzedine H, Karie S, Hulot JS, Baumelou A, Deray G. Renal tubular drug transporters. Nephron Physiol 2006;103:97–106.

    Google Scholar 

  168. Leake RD, Weitzman RE, Weinberg JA, Fisher DA. Control of vasopressin secretion in the newborn lamb. Pediatr Res 1979;13:257–260.

    CAS  PubMed  Google Scholar 

  169. Leake RD, Zakauddin S, Trygstad CW, Fu P, Oh W. The effects of large volume intravenous fluid infusion on neonatal renal function. J Pediatr 1976;89:968–972.

    CAS  PubMed  Google Scholar 

  170. Lee HW, Kim WY, Song HK, Yang CW, Han KH, Kwon HM, Kim J. Sequential expression of NKCC2, TonEBP, aldose reductase, and urea transporter – a in developing mouse kidney. Am J Physiol Renal Physiol 2007;292:F269–F277.

    CAS  PubMed  Google Scholar 

  171. Lelievre-Pegorier MM-BDRNdC. Developmental pattern of water and electrolyte transport in rat superficial nephrons. Am J Physiol 1983;245:F15–F21.

    CAS  PubMed  Google Scholar 

  172. Levi M, Arar M, Kaissling B, Murer H, Biber J. Low-Pi diet increases the abundance of an apical protein in rat proximal-tubular S3 segments. Pflugers Arch 1994;426:5–11.

    CAS  PubMed  Google Scholar 

  173. Levi M, Lotscher M, Sorribas V, Custer M, Arar M, Kaissling B, Murer H, Biber J. Cellular mechanisms of acute and chronic adaptation of rat renal P(i) transporter to alterations in dietary P(i). Am J Physiol 1994;267:F900–F908.

    CAS  PubMed  Google Scholar 

  174. Li XX, Albrecht FE, Robillard JE, Eisner GM, Jose PA. Gbeta regulation of Na/H exchanger-3 activity in rat renal proximal tubules during development. Am J Physiol Regul Integr Comp Physiol 2000;278:R931–R936.

    CAS  PubMed  Google Scholar 

  175. Liapis H, Nag M, Kaji DM. K-Cl cotransporter expression in the human kidney. Am J Physiol 1998;275:C1432–C1437.

    CAS  PubMed  Google Scholar 

  176. Liu FY, Cogan MG. Axial heterogeneity in the rat proximal convoluted tubule. I. Bicarbonate, chloride, and water transport. Am J Physiol 1984;247:F816–F821.

    CAS  PubMed  Google Scholar 

  177. Lorenz JM, Kleinman LI, Disney TA. Renal response of newborn dog to potassium loading. Am J Physiol 1986;251:F513–F519.

    CAS  PubMed  Google Scholar 

  178. Lourdel S, Paulais M, Marvao P, Nissant A, Teulon J. A chloride channel at the basolateral membrane of the distal-convoluted tubule: a candidate ClC-K channel. J Gen Physiol 2003;121:287–300.

    CAS  PubMed  Google Scholar 

  179. Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice. J Biol Chem 2002;277:37881–37887.

    CAS  PubMed  Google Scholar 

  180. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci USA 2000;97:4386–4391.

    CAS  PubMed  Google Scholar 

  181. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 1997;100:957–962.

    CAS  PubMed  Google Scholar 

  182. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 1998;273:4296–4299.

    CAS  PubMed  Google Scholar 

  183. Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci USA 1993;90:5979–5983.

    CAS  PubMed  Google Scholar 

  184. Magen D, Sprecher E, Zelikovic I, Skorecki K. A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney Int 2005;67:34–41.

    CAS  PubMed  Google Scholar 

  185. Matson JR, Stokes JB, Robillard JE. Effects of inhibition of prostaglandin synthesis on fetal renal function. Kidney Int 1981;20:621–627.

    CAS  PubMed  Google Scholar 

  186. Matsuo H, Kanai Y, Kim JY, Chairoungdua A, Kim DK, Inatomi J, Shigeta Y, Ishimine H, Chaekuntode S, Tachampa K, Choi HW, Babu E, Fukuda J, Endou H. Identification of a novel Na+-independent acidic amino acid transporter with structural similarity to the member of a heterodimeric amino acid transporter family associated with unknown heavy chains. J Biol Chem 2002;277:21017–21026.

    CAS  PubMed  Google Scholar 

  187. McCance RA, Naylor NJ, Widdowson EM. The response of infants to a large dose of water. Arch Dis Child 1954;29:104–109.

    CAS  PubMed  Google Scholar 

  188. McDonough AA, Farley RA. Regulation of Na,K-ATPase activity. Curr Opin Nephrol Hypertens 1993;2:725–734.

    CAS  PubMed  Google Scholar 

  189. McDonough AA, Geering K, Farley RA. The sodium pump needs its beta subunit. FASEB J 1990;4:1598–1605.

    CAS  PubMed  Google Scholar 

  190. McKinney TD, Burg MB. Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J Clin Invest 1977;60:766–768.

    CAS  PubMed  Google Scholar 

  191. Medow MS, Foreman JW, Bovee KC, Segal S. Developmental changes of glycine transport in the dog. Biochim Biophys Acta 1982;693:85–92.

    CAS  PubMed  Google Scholar 

  192. Medow MS, Roth KS, Goldmann DR, Ginkinger K, Hsu BY, Segal S. Developmental aspects of proline transport in rat renal brush border membranes. Proc Natl Acad Sci USA 1986;83:7561–7564.

    CAS  PubMed  Google Scholar 

  193. Meeuwisse GW, Melin K. Glucose-galactose malabsorption. A clinical study of 6 cases. Acta Paediatr Scand Suppl 1969.

    Google Scholar 

  194. Mehrgut FM, Satlin LM, Schwartz GJ. Maturation of. Am J Physiol 1990;259:F801–F808.

    CAS  PubMed  Google Scholar 

  195. Melin K, Meeuwisse GW. Glucose-galactose malabsorption. A genetic study. Acta Paediatr Scand Suppl 1969.

    Google Scholar 

  196. Mennitt PA, Wade JB, Ecelbarger CA, Palmer LG, Frindt G. Localization of ROMK channels in the rat kidney. J Am Soc Nephrol 1997;8:1823–1830.

    CAS  PubMed  Google Scholar 

  197. Mensenkamp AR, Hoenderop JG, Bindels RJ. Recent advances in renal tubular calcium reabsorption. Curr Opin Nephrol Hypertens 2006;15:524–529.

    CAS  PubMed  Google Scholar 

  198. Merlet-Benichou CPMM-JMAC. Functional and morphologic patterns of renal maturation in the developing guinea pig. Am J Physiol 1981;36:H1467–H1475.

    Google Scholar 

  199. Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol 1998;60:121–142.

    CAS  PubMed  Google Scholar 

  200. Mitic LL, Van Itallie CM, Anderson JM. Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol 2000;279:G250–G254.

    CAS  PubMed  Google Scholar 

  201. Mizoguchi K, Cha SH, Chairoungdua A, Kim DK, Shigeta Y, Matsuo H, Fukushima J, Awa Y, Akakura K, Goya T, Ito H, Endou H, Kanai Y. Human cystinuria-related transporter: localization and functional characterization. Kidney Int 2001;59:1821–1833.

    CAS  PubMed  Google Scholar 

  202. Mulder J, Baum M, Quigley R. Diffusional water permeability (PDW) of adult and neonatal rabbit renal brush border membrane vesicles. J Membr Biol 2002;187:167–174.

    CAS  PubMed  Google Scholar 

  203. Mulder J, Haddad MN, Baum M, Quigley R. Glucocorticoids increase osmotic water permeability in neonatal proximal tubule brush border membrane. Am J Physiol Regul Integr Comp Physiol 2005;288(5):R1417–R1421.

    CAS  PubMed  Google Scholar 

  204. Mulder J, Haddad MN, Vernon K, Baum M, Quigley R. Hypothyroidism increases osmotic water permeability (Pf) in the developing renal brush border membrane. Pediatr Res 2003;53:1001–1007.

    CAS  PubMed  Google Scholar 

  205. Mulroney SE, Haramati A. Renal adaptation to changes in dietary phosphate during development. Am J Physiol 1990;258:F1650–F1656.

    CAS  PubMed  Google Scholar 

  206. Mulroney SE, Lumpkin MD, Haramati A. Antagonist to GH-releasing factor inhibits growth and renal Pi reabsorption in immature rats. Am J Physiol 1989;257:F29–F34.

    CAS  PubMed  Google Scholar 

  207. Nakajima N, Sekine T, Cha SH, Tojo A, Hosoyamada M, Kanai Y, Yan K, Awa S, Endou H. Developmental changes in multispecific organic anion transporter 1 expression in the rat kidney. Kidney Int 2000;57:1608–1616.

    CAS  PubMed  Google Scholar 

  208. Nakhoul F, Thompson CB, McDonough AA. Developmental change in Na,K-ATPase alpha1 and beta1 expression in normal and hypothyroid rat renal cortex. Am J Nephrol 2000;20:225–231.

    CAS  PubMed  Google Scholar 

  209. Neiberger RE, Barac-Nieto M, Spitzer A. Renal reabsorption of phosphate during development: transport kinetics in BBMV. Am J Physiol 1989;257:F268–F274.

    CAS  PubMed  Google Scholar 

  210. Nielsen S, Agre P. The aquaporin family of water channels in kidney. Kidney Int 1995;48:1057–1068.

    CAS  PubMed  Google Scholar 

  211. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 2002;82:205–244.

    CAS  PubMed  Google Scholar 

  212. Nielsen S, Smith BL, Christensen EI, Knepper MA, Agre P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol 1993;120:371–383.

    CAS  PubMed  Google Scholar 

  213. Obermuller N, Bernstein P, Velazquez H, Reilly R, Moser D, Ellison DH, Bachmann S. Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am J Physiol 1995;269:F900–F910.

    CAS  PubMed  Google Scholar 

  214. Orlowski J, Lingrel JB. Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic alpha isoform and beta subunit mRNAs. J Biol Chem 1988;263:10436–10442.

    CAS  PubMed  Google Scholar 

  215. Osborn JL, Hook JB, Bailie MD. Effect of saralasin and indomethacin on renal function in developing piglets. Am J Physiol 1980;238:R438–R442.

    CAS  PubMed  Google Scholar 

  216. Ostrowski NL, Young WS, III, Knepper MA, Lolait SJ. Expression of vasopressin V1a and V2 receptor messenger ribonucleic acid in the liver and kidney of embryonic, developing, and adult rats. Endocrinology 1993;133:1849–1859.

    CAS  PubMed  Google Scholar 

  217. Pavlova A, Sakurai H, Leclercq B, Beier DR, Yu AS, Nigam SK. Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am J Physiol Renal Physiol 2000;278:F635–F643.

    CAS  PubMed  Google Scholar 

  218. Peghini P, Janzen J, Stoffel W. Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J 1997;16:3822–3832.

    CAS  PubMed  Google Scholar 

  219. Pfeiffer R, Loffing J, Rossier G, Bauch C, Meier C, Eggermann T, Loffing-Cueni D, Kuhn LC, Verrey F. Luminal heterodimeric amino acid transporter defective in cystinuria. Mol Biol Cell 1999;10:4135–4147.

    CAS  PubMed  Google Scholar 

  220. Polacek E, Vocel J, Neugebaurova L, Sebkova M, Vechetova E. The osmotic concentrating ability in healthy infants and children. Archives of Diseases of Children 1965;40:291–295.

    CAS  Google Scholar 

  221. Polin RA, Husain MK, James LS, Frantz AG. High vasopressin concentrations in human umbilical cord blood – lack of correlation with stress. J Perinat Med 1977;5:114–119.

    CAS  PubMed  Google Scholar 

  222. Pras E, Raben N, Golomb E, Arber N, Aksentijevich I, Schapiro JM, Harel D, Katz G, Liberman U, Pras M, Kastner DL. Mutations in the SLC3A1 transporter gene in cystinuria. American Journal of Human Genetics 1995;56:1297–1303.

    CAS  PubMed  Google Scholar 

  223. Pras E, Sood R, Raben N, Aksentijevich I, Chen X, Kastner DL. Genomic organization of SLC3A1, a transporter gene mutated in cystinuria. Genomics 1996;36:163–167.

    CAS  PubMed  Google Scholar 

  224. Preisig PA, Berry CA. Evidence for transcellular osmotic water flow in rat proximal tubules. Am J Physiol 1985;249:F124–F131.

    CAS  PubMed  Google Scholar 

  225. Preisig PA, Ives HE, Cragoe EJ, Jr., Alpern RJ, Rector FC, Jr. Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest 1987;80:970–978.

    CAS  PubMed  Google Scholar 

  226. Preston GM, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 1991;88:11110–11114.

    CAS  PubMed  Google Scholar 

  227. Prie D, Beck L, Urena P, Friedlander G. Recent findings in phosphate homeostasis. Curr Opin Nephrol Hypertens 2005;14:318–324.

    CAS  PubMed  Google Scholar 

  228. Quigley R, Baum M. Effects of growth hormone and insulin-like growth factor I on rabbit proximal convoluted tubule transport. J Clin Invest 1991;88:368–374.

    CAS  PubMed  Google Scholar 

  229. Quigley R, Baum M. Developmental changes in rabbit juxtamedullary proximal convoluted tubule water permeability. Am J Physiol 1996;271:F871–F876.

    CAS  PubMed  Google Scholar 

  230. Quigley R, Baum M. Developmental changes in rabbit proximal straight tubule paracellular permeability. Am J Physiol Renal Physiol 2002;283:F525–F531.

    CAS  PubMed  Google Scholar 

  231. Quigley R, Baum M. Water transport in neonatal and adult rabbit proximal tubules. Am J Physiol Renal Physiol 2002;283:F280–F285.

    CAS  PubMed  Google Scholar 

  232. Quigley R, Chakravarty S, Baum M. Antidiuretic hormone resistance in the neonatal cortical collecting tubule is mediated in part by elevated phosphodiesterase activity. Am J Physiol Renal Physiol 2004;286:F317–F322.

    CAS  PubMed  Google Scholar 

  233. Quigley R, Flynn M, Baum M. Neonatal and adult rabbit renal brush border membrane vesicle solute reflection coefficients. Biol Neonate 1999;76:106–113.

    CAS  PubMed  Google Scholar 

  234. Quigley R, Gupta N, Lisec A, Baum M. Maturational changes in rabbit renal basolateral membrane vesicle osmotic water permeability. J Membr Biol 2000;174:53–58.

    CAS  PubMed  Google Scholar 

  235. Quigley R, Harkins EW, Thomas PJ, Baum M. Maturational changes in rabbit renal brush border membrane vesicle osmotic water permeability. J Membr Biol 1998;164:177–185.

    CAS  PubMed  Google Scholar 

  236. Rajerison RM, Butlen D, Jard S. Ontogenic development of antidiuretic hormone receptors in rat kidney: comparison of hormonal binding and adenylate cyclase activation. Mol Cell Endocrinol 1976;4:271–285.

    CAS  PubMed  Google Scholar 

  237. Rane S, Aperia A. Ontogeny of Na-K-ATPase activity in thick ascending limb and of concentrating capacity. Am J Physiol 1985;249:F723–F728.

    CAS  PubMed  Google Scholar 

  238. Rane S, Aperia A, Eneroth P, Lundin S. Development of urinary concentrating capacity in weaning rats. Pediatr Res 1985;19:472–475.

    CAS  PubMed  Google Scholar 

  239. Rector FC, Jr. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol 1983;244:F461–F471.

    PubMed  Google Scholar 

  240. Rees L, Forsling ML, Brook CG. Vasopressin concentrations in the neonatal period. Clin Endocrinol (Oxf) 1980;12:357–362.

    CAS  Google Scholar 

  241. Reynolds R, Roth KS, Hwang SM, Segal S. On the development of glycine transport systems by rat renal cortex. Biochim Biophys Acta 1978;511:274–284.

    CAS  PubMed  Google Scholar 

  242. Richmond JBKHSWWHA. Renal clearance of endogenous phosphate in infants and children. Proc Soc Exp Biol Med 1951;77:83–87.

    CAS  PubMed  Google Scholar 

  243. Ristic Z, Camargo SM, Romeo E, Bodoy S, Bertran J, Palacin M, Makrides V, Furrer EM, Verrey F. Neutral amino acid transport mediated by ortholog of imino acid transporter SIT1/SLC6A20 in opossum kidney cells. Am J Physiol Renal Physiol 2006;290:F880–F887.

    CAS  PubMed  Google Scholar 

  244. Rivard CJ, Almeida NE, Berl T, Capasso JM. The gamma subunit of Na/K-ATPase: an exceptional, small transmembrane protein. Front Biosci 2005;10:2604–2610.

    CAS  PubMed  Google Scholar 

  245. Robillard JE, Weiner C. Atrial natriuretic factor in the human fetus: effect of volume expansion. J Pediatr 1988;113:552–555.

    CAS  PubMed  Google Scholar 

  246. Robillard JE, Weitzman RE. Developmental aspects of the fetal renal response to exogenous arginine vasopressin. Am J Physiol 1980;238:F407–F414.

    CAS  PubMed  Google Scholar 

  247. Robillard JE, Weitzman RE, Fisher DA, Smith FG, Jr. The dynamics of vasopressin release and blood volume regulation during fetal hemorrhage in the lamb fetus. Pediatr Res 1979;13:606–610.

    CAS  PubMed  Google Scholar 

  248. Rocha AS, Magaldi JB, Kokko JP. Calcium and phosphate transport in isolated segments of rabbit Henle's loop. J Clin Invest 1977;59:975–983.

    CAS  PubMed  Google Scholar 

  249. Rodriguez-Soriano J, Vallo A, Oliveros R, Castillo G. Renal handling of sodium in premature and full-term neonates: a study using clearance methods during water diuresis. Pediatr Res 1983;17:1013–1016.

    CAS  PubMed  Google Scholar 

  250. Romeo E, Dave MH, Bacic D, Ristic Z, Camargo SM, Loffing J, Wagner CA, Verrey F. Luminal kidney and intestine SLC6 amino acid transporters of B0AT-cluster and their tissue distribution in Mus musculus. Am J Physiol Renal Physiol 2006;290:F376–F383.

    CAS  PubMed  Google Scholar 

  251. Ross MG, Ervin MG, Lam RW, Castro L, Leake RD, Fisher DA. Plasma atrial natriuretic peptide response to volume expansion in the ovine fetus. Am J Obstet Gynecol 1987;157:1292–1297.

    CAS  PubMed  Google Scholar 

  252. Roth KS, Hwang SM, London JW, Segal S. Ontogeny of glycine transport in isolated rat renal tubules. Am J Physiol 1977;233:F241–F246.

    CAS  PubMed  Google Scholar 

  253. Rubin MIBERM. Maturation of renal function in childhood: clearance studies. J Clin Invest 1949;28:1144–1162.

    CAS  Google Scholar 

  254. Sabolic I, Katsura T, Verbavatz JM, Brown D. The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol 1995;143:165–175.

    CAS  PubMed  Google Scholar 

  255. Sabolic I, Valenti G, Verbavatz J-M, Van Hoek AN, Verkman AS, Ausiello DA, Brown D. Localization of the CHIP28 water channel in rat kidney. Am J Physiol 1992;263:C1225–C1233.

    CAS  PubMed  Google Scholar 

  256. Sacktor B, Rosenbloom IL, Liang CT, Cheng L. Sodium gradient- and sodium plus potassium gradient-dependent L-glutamate uptake in renal basolateral membrane vesicles. J Membr Biol 1981;60:63–71.

    CAS  PubMed  Google Scholar 

  257. Samarzija I, Fromter E. Electrophysiological analysis of rat renal sugar and amino acid transport. IV. Basic amino acids. Pflugers Arch 1982;393:210–214.

    CAS  PubMed  Google Scholar 

  258. Sands JM, Kokko JP. Countercurrent system. Kidney Int 1990;38:695–699.

    CAS  PubMed  Google Scholar 

  259. Satlin LM. Postnatal maturation of potassium transport in rabbit cortical collecting duct. Am J Physiol 1994;266:F57–F65.

    CAS  PubMed  Google Scholar 

  260. Satlin LM, Matsumoto T, Schwartz GJ. Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells. Am J Physiol 1992;262:F199–F208.

    CAS  PubMed  Google Scholar 

  261. Satlin LM, Palmer LG. Apical Na+ conductance in maturing rabbit principal cell. Am J Physiol 1996;270:F391–F397.

    CAS  PubMed  Google Scholar 

  262. Satlin LM, Palmer LG. Apical K+ conductance in maturing rabbit principal cell. Am J Physiol 1997;272:F397–F404.

    CAS  PubMed  Google Scholar 

  263. Satlin LM, Schwartz GJ. Postnatal maturation of rabbit renal collecting duct: intercalated cell function. Am J Physiol 1987;253:F622–F635.

    CAS  PubMed  Google Scholar 

  264. Satoh T, Cohen HT, Katz AI. Intracellular signaling in the regulation of renal Na-K-ATPase. I. Role of cyclic AMP and phospholipase A2. J Clin Invest 1992;89:1496–1500.

    CAS  PubMed  Google Scholar 

  265. Satoh T, Cohen HT, Katz AI. Regulation of renal Na-K-ATPase by eicosanoids: central role of the cytochrome P450-monooxygenase pathway. Trans Assoc Am Physicians 1992;105:86–92.

    CAS  PubMed  Google Scholar 

  266. Satoh T, Cohen HT, Katz AI. Different mechanisms of renal Na-K-ATPase regulation by protein kinases in proximal and distal nephron. Am J Physiol 1993;265:F399–F405.

    CAS  PubMed  Google Scholar 

  267. Satoh T, Cohen HT, Katz AI. Intracellular signaling in the regulation of renal Na-K-ATPase. II. Role of eicosanoids. J Clin Invest 1993;91:409–415.

    CAS  PubMed  Google Scholar 

  268. Satoh T, Ominato M, Cohen HT, Katz AI. Role of the phospholipase C-protein kinase C pathway in proximal tubule Na-K-ATPase regulation. Trans Assoc Am Physicians 1993;106:196–200.

    CAS  PubMed  Google Scholar 

  269. Schlondorff D, Satriano JA, Schwartz GJ. Synthesis of prostaglandin E2 in different segments of isolated collecting tubules from adult and neonatal rabbits. Am J Physiol 1985;248:F134–F144.

    CAS  PubMed  Google Scholar 

  270. Schlondorff D, Weber H, Trizna W, Fine LG. Vasopressin responsiveness of renal adenylate cyclase in newborn rats and rabbits. Am J Physiol 1978;234:F16–F21.

    CAS  PubMed  Google Scholar 

  271. Schmidt U, Horster M. Na-K-activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol 1977;233:F55–F60.

    CAS  PubMed  Google Scholar 

  272. Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS. Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci USA 1998;95:9660–9664.

    CAS  PubMed  Google Scholar 

  273. Schwartz GH, Evan AP. Development of solute transport in rabbit proximal tubule. I. HCO3 and glucose absorption. Am J Physiol 1983;245:F382–F390.

    CAS  PubMed  Google Scholar 

  274. Schwartz GH, Evan AP. Development of solute transport in rabbit proximal tubule. III. Na-K-ATPase activity. Am J Physiol 1984;246:F845–F852.

    CAS  PubMed  Google Scholar 

  275. Schwartz GJ. Physiology and molecular biology of renal carbonic anhydrase. J Nephrol 15 Suppl 2002;5:S61–S74.

    Google Scholar 

  276. Schwartz GJ, Goldsmith DI, Fine LG. p-aminohippurate transport in the proximal straight tubule: development and substrate stimulation. Pediatr Res 1978;12:793–796.

    CAS  PubMed  Google Scholar 

  277. Schwartz GJ, Haycock GB, Edelmann CM Jr., Spitzer A. Late metabolic acidosis: a reassessment of the definition. J Pediatr 1979;95:102–107.

    CAS  PubMed  Google Scholar 

  278. Schwartz GJ, Olson J, Kittelberger AM, Matsumoto T, Waheed A, Sly WS. Postnatal development of carbonic anhydrase IV expression in rabbit kidney. Am J Physiol 1999;276:F510–F520.

    CAS  PubMed  Google Scholar 

  279. Scriver CR, Davies E. Endogenous renal clearance rates of free amino acids in pre-pubertal children (Employing an accelerated procedure for elution chromatography of basic amino acids on ion exchange resin). Pediatrics 1965;36:592–598.

    CAS  PubMed  Google Scholar 

  280. Segal S, McNamara PD, Pepe LM. Transport interaction of cystine and dibasic amino acids in renal brush border vesicles. Science 1977;197:169–171.

    CAS  PubMed  Google Scholar 

  281. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K. Growth-related renal type II Na/Pi cotransporter. J Biol Chem 2002;277:19665–19672.

    CAS  PubMed  Google Scholar 

  282. Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol 2006;290:F251–F261.

    CAS  PubMed  Google Scholar 

  283. Seow HF, Broer S, Broer A, Bailey CG, Potter SJ, Cavanaugh JA, Rasko JE. 2004;Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6ANat Genet 36:1003–1007.

    CAS  Google Scholar 

  284. Shah M. Gupta N, Dwarakanath V, Moe OW, Baum M. Ontogeny of Na+/H+ antiporter activity in rat proximal convoluted tubules. Pediatr Res 2000;48:206–210.

    CAS  PubMed  Google Scholar 

  285. Shah M, Quigley R, Baum M. Maturation of rabbit proximal straight tubule chloride/base exchange. Am J Physiol 1998;274:F883–F888.

    CAS  PubMed  Google Scholar 

  286. Shah M, Quigley R, Baum M. Neonatal rabbit proximal tubule basolateral membrane Na+/H+ antiporter and Cl-/base exchange. Am J Physiol 1999;276:R1792–R1797.

    CAS  PubMed  Google Scholar 

  287. Shah M, Quigley R, Baum M. Maturation of proximal straight tubule NaCl transport: role of thyroid hormone. Am J Physiol Renal Physiol 2000;278:F596–F602.

    CAS  PubMed  Google Scholar 

  288. Shayakul C, Kanai Y, Lee WS, Brown D, Rothstein JD, Hediger MA. Localization of the high-affinity glutamate transporter EAAC1 in rat kidney. Am J Physiol 1997;273:F1023–F1029.

    CAS  PubMed  Google Scholar 

  289. Sheu JN, Baum M, Bajaj G, Quigley R. Maturation of rabbit proximal convoluted tubule chloride permeability. Pediatr Res 1996;39:308–312.

    CAS  PubMed  Google Scholar 

  290. Sheu JN, Quigley R, Baum M. Heterogeneity of chloride/base exchange in rabbit superficial and juxtamedullary proximal convoluted tubules. Am J Physiol 1995;268:F847–F853.

    CAS  PubMed  Google Scholar 

  291. Shimada T, Muto T, Hasegawa H, Yamazaki Y, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. FGF-23 is a novel regulator of mineral homeostasis with unique properties controlling, vitamin D metabolism and phosphate reabsorption. Journal of Bone and Mineral Research 2002;17:S425.

    Google Scholar 

  292. Shimizu T, Yoshitomi K, Nakamura M, Imai M. Site and mechanism of action of trichlormethiazide in rabbit distal nephron segments perfused in vitro. J Clin Invest 1988;82:721–730.

    CAS  PubMed  Google Scholar 

  293. Siegel SR, Fisher DA, Oh W. Serum aldosterone concentrations related to sodium balance in the newborn infant. Pediatrics 1974;53:410–413.

    CAS  PubMed  Google Scholar 

  294. Siegel SR, Leake RD, Weitzman RE, Fisher DA. Effects of furosemide and acute salt loading on vasopressin and renin secretion in the fetal lamb. Pediatr Res 1980;14:869–871.

    CAS  PubMed  Google Scholar 

  295. Siga E, Horster MF. Regulation of osmotic water permeability during differentiation of inner medullary collecting duct. Am J Physiol 1991;260:F710–F716.

    CAS  PubMed  Google Scholar 

  296. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet 1997;17:171–178.

    CAS  PubMed  Google Scholar 

  297. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 1996;13:183–188.

    CAS  PubMed  Google Scholar 

  298. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 1996;14:152–156.

    CAS  PubMed  Google Scholar 

  299. Simon DB, Lifton RP. The molecular basis of inherited hypokalemic alkalosis: Bartter’s and Gitelman's syndromes. Am J Physiol 1996;271:F961–F966.

    CAS  PubMed  Google Scholar 

  300. Simon DB, Lifton RP. Ion transporter mutations in Gitelman's and Bartter's syndromes. Curr Opin Nephrol Hypertens 1998;7:43–47.

    CAS  PubMed  Google Scholar 

  301. Simon DB, Lu Y, Choate KA, Velazquez H, Al Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 1999;285:103–106.

    CAS  PubMed  Google Scholar 

  302. Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza FJ, Gitleman HJ, Lifton RP. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 1996;12:24–30.

    CAS  PubMed  Google Scholar 

  303. Smith B, Baumgarten R, Nielsen S, Raben D, Zeidel ML, Agre P. Concurrent expression of erythroid and renal aquaporin CHIP and appearance of water channel activity in perinatal rats. J Clin Invest 1993;92:2035–2041.

    CAS  PubMed  Google Scholar 

  304. Spitzer A, Barac-Nieto M. Ontogeny of renal phosphate transport and the process of growth. Pediatr Nephrol 2001;16:763–771.

    CAS  PubMed  Google Scholar 

  305. Spitzer A, Brandis M. Functional and morphologic maturation of the superficial nephrons. Relationship to total kidney function. J Clin Invest 1974;53:279–287.

    CAS  PubMed  Google Scholar 

  306. Stanier MW. Development of intra-renal solute gradients in foetal and post-natal life. Pflugers Arch 1972;336:263–270.

    CAS  PubMed  Google Scholar 

  307. Stephenson G, Hammet M, Hadaway G, Funder JW. Ontogeny of renal mineralocorticoid receptors and urinary electrolyte responses in the rat. Am J Physiol 1984;247:F665–F671.

    CAS  PubMed  Google Scholar 

  308. Stubbe J, Madsen K, Nielsen FT, Skott O, Jensen BL. Glucocorticoid impairs growth of kidney outer medulla and accelerates loop of Henle differentiation and urinary concentrating capacity in rat kidney development. Am J Physiol Renal Physiol 2006;291:F812–F822.

    CAS  PubMed  Google Scholar 

  309. Sulyok E, Nemeth M, Tenyi I, Csaba IF, Varga F, Gyory E, Thurzo V. Relationship between maturity, electrolyte balance and the function of the renin-angiotensin-aldosterone system in newborn infants. Biol Neonate 1979;35:60–65.

    CAS  PubMed  Google Scholar 

  310. Takahashi F, Morita K, Katai K, Segawa H, Fujioka A, Kouda T, Tatsumi S, Nii T, Taketani Y, Haga H, Hisano S, Fukui Y, Miyamoto KI, Takeda E. Effects of dietary Pi on the renal Na+-dependent Pi transporter NaPi-2 in thyroparathyroidectomized rats. Biochem J 1998;333 (Pt 1):175–181.

    CAS  PubMed  Google Scholar 

  311. Takemoto F, Cohen HT, Satoh T, Katz AI. Dopamine inhibits Na/K-ATPase in single tubules and cultured cells from distal nephron. Pflugers Arch 1992;421:302–306.

    PubMed  Google Scholar 

  312. Taufiq S, Collins JF, Ghishan FK. Posttranscriptional mechanisms regulate ontogenic changes in rat renal sodium-phosphate transporter. Am J Physiol 1997;272:R134–R141.

    CAS  PubMed  Google Scholar 

  313. Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S. Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 1995;269:F775–F785.

    CAS  PubMed  Google Scholar 

  314. Traebert M, Lotscher M, Aschwanden R, Ritthaler T, Biber J, Murer H, Kaissling B. Distribution of the sodium/phosphate transporter during postnatal ontogeny of the rat kidney. J Am Soc Nephrol 1999;10:1407–1415.

    CAS  PubMed  Google Scholar 

  315. Trimble ME. Renal response to solute loading in infant rats: relationship to anatomical development. Am J Physiol 1970;219:1089–1097.

    CAS  PubMed  Google Scholar 

  316. Turner RJ, Moran A. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am J Physiol 1982;242:F406–F414.

    CAS  PubMed  Google Scholar 

  317. Tuvad FVJ. The maximal tubular transfer of glucose and para-aminohippurate in premature infants. Acta Paediatr Scand 1953;42:337–345.

    Google Scholar 

  318. van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol 2002;13:595–603.

    CAS  PubMed  Google Scholar 

  319. Vehaskari VM. Ontogeny of cortical collecting duct sodium transport. Am J Physiol 1994;267:F49–F54.

    CAS  PubMed  Google Scholar 

  320. Vehaskari VM, Hempe JM, Manning J, Aviles DH, Carmichael MC. Developmental regulation of ENaC subunit mRNA levels in rat kidney. Am J Physiol 1998;274:C1661–C1666.

    CAS  PubMed  Google Scholar 

  321. Velazquez H, Silva T. Cloning and localization of KCC4 in rabbit kidney: expression in distal convoluted tubule. Am J Physiol Renal Physiol 2003;285:F49–F58.

    CAS  PubMed  Google Scholar 

  322. Velazquez H, Wright FS. Effects of diuretic drugs on Na, Cl, and K transport by rat renal distal tubule. Am J Physiol 1986;250:F1013–F1023.

    CAS  PubMed  Google Scholar 

  323. Walker P, Dubois JD, Dussault JH. Free thyroid hormone concentrations during postnatal development in the rat. Pediatr Res 1980;14:247–249.

    CAS  PubMed  Google Scholar 

  324. Wang T, Agulian SK, Giebisch G, Aronson PS. Effects of formate and oxalate on chloride absorption in rat distal tubule. Am J Physiol 1993;264:F730–F736.

    CAS  PubMed  Google Scholar 

  325. Wang ZM, Yasui M, Celsi G. Glucocorticoids regulate the transcription of Na(+)-K(+)-ATPase genes in the infant rat kidney. Am J Physiol 1994;267:C450–C455.

    CAS  PubMed  Google Scholar 

  326. Ward DT, Hammond TG, Harris HW. Modulation of vasopressin-elicited water transport by trafficking of aquaporin2-containing vesicles. Annu Rev Physiol 1999;61:683–697.

    CAS  PubMed  Google Scholar 

  327. Watanabe S, Matsushita K, McCray PB Jr., Stokes JB. Developmental expression of the epithelial Na+ channel in kidney and uroepithelia. Am J Physiol 1999;276:F304–F314.

    CAS  PubMed  Google Scholar 

  328. Webster SK, Haramati A. Developmental changes in the phosphaturic response to parathyroid hormone in the rat. Am J Physiol 1985;249:F251–F255.

    CAS  PubMed  Google Scholar 

  329. Wei YF, Rodi CP, Day ML, Wiegand RC, Needleman LD, Cole BR, Needleman P. Developmental changes in the rat atriopeptin hormonal system. J Clin Invest 1987;79:1325–1329.

    CAS  PubMed  Google Scholar 

  330. Weiss SD, McNamara PD, Pepe LM, Segal S. Glutamine and glutamic acid uptake by rat renal brushborder membrane vesicles. J Membr Biol 1978;43:91–105.

    CAS  PubMed  Google Scholar 

  331. Weitzman RE, Fisher DA, Robillard J, Erenberg A, Kennedy R, Smith F. Arginine vasopressin response to an osmotic stimulus in the fetal sheep. Pediatr Res 1978;12:35–38.

    CAS  PubMed  Google Scholar 

  332. Wells RG, Pajor AM, Kanai Y, Turk E, Wright EM, Hediger MA. Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am J Physiol 1992;263:F459–F465.

    CAS  PubMed  Google Scholar 

  333. Werner A, Moore ML, Mantei N, Biber J, Semenza G, Murer H. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci USA 1991;88:9608–9612.

    CAS  PubMed  Google Scholar 

  334. Winberg J. Determination of renal concentrating capacity in infants and children without renal disease. Acta Paediatrica Scandinavia 1959;48:318–328.

    Google Scholar 

  335. Winkler CA, Kittelberger AM, Watkins RH, Maniscalco WM, Schwartz GJ. Maturation of carbonic anhydrase IV expression in rabbit kidney 5. Am J Physiol Renal Physiol 2001;280:F895–F903.

    CAS  PubMed  Google Scholar 

  336. Woda C, Mulroney SE, Halaihel N, Sun L, Wilson PV, Levi M, Haramati A. Renal tubular sites of increased phosphate transport and NaPi-2 expression in the juvenile rat. Am J Physiol Regul Integr Comp Physiol 2001;280:R1524–R1533.

    CAS  PubMed  Google Scholar 

  337. Woda CB, Bragin A, Kleyman TR, Satlin LM. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol 2001;280:F786–F793.

    CAS  PubMed  Google Scholar 

  338. Woda CB, Halaihel N, Wilson PV, Haramati A, Levi M, Mulroney SE. Regulation of renal NaPi-2 expression and tubular phosphate reabsorption by growth hormone in the juvenile rat. Am J Physiol Renal Physiol 2004;287:F117–F123.

    CAS  PubMed  Google Scholar 

  339. Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev 2004;84:987–1049.

    CAS  PubMed  Google Scholar 

  340. Wu MS, Biemesderfer D, Giebisch G, Aronson PS. Role of NHE3 in mediating renal brush border Na+-H+ exchange. Adaptation to metabolic acidosis. J Biol Chem 1996;271:32749–32752.

    CAS  PubMed  Google Scholar 

  341. Xu JZ, Hall AE, Peterson LN, Bienkowski MJ, Eessalu TE, Hebert SC. Localization of the ROMK protein on apical membranes of rat kidney nephron segments. Am J Physiol 1997;273:F739–F748.

    CAS  PubMed  Google Scholar 

  342. Yamamoto T, Sasaki S, Fushimi K, Ishibashi K, Yaoita E, Kawasaki K, Fujinaka H, Marumo F, Kihara I. Expression of AQP family in rat kidneys during development and maturation. Am J Physiol 1997;272:F198–F204.

    CAS  PubMed  Google Scholar 

  343. Yasui M, Marples D, Belusa R, Eklof AC, Celsi G, Nielsen S, Aperia A. Development of urinary concentrating capacity: role of aquaporin-2. Am J Physiol 1996;271:F461–F468.

    CAS  PubMed  Google Scholar 

  344. Youngblood GL, Sweet DH. Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am J Physiol Renal Physiol 2004;287:F236–F244.

    CAS  PubMed  Google Scholar 

  345. Zhang J, Bobulescu IA, Goyal S, Aronson PS, Baum MG, Moe OW. Characterization of Na+/H+ exchanger NHE8 in cultured renal epithelial cells. Am J Physiol Renal Physiol 2007;293:F761–F766.

    CAS  PubMed  Google Scholar 

  346. Zheng W, Verlander JW, Lynch IJ, Cash M, Shao J, Stow LR, Cain BD, Weiner ID, Wall SM, Wingo CS. Cellular distribution of the potassium channel KCNQ1 in normal mouse kidney. Am J Physiol Renal Physiol 2007;292:F456–F466.

    CAS  PubMed  Google Scholar 

  347. Zink H, Horster M. Maturation of diluting capacity in loop of Henle of rat superficial nephrons. Am J Physiol 1977;233:F519–F524.

    CAS  PubMed  Google Scholar 

  348. Zolotnitskaya A, Satlin LM. Developmental expression of ROMK in rat kidney. Am J Physiol 1999;276:F825–F836.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Baum, M. (2009). Renal Tubular Development. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics