Skip to main content

In Vitro Methods in Renal Research

  • Reference work entry
Pediatric Nephrology

Abstract

Significant advances in the understanding of normal and disease-associated renal cell function, epithelial cell biology, and morphogenesis have been made in recent years by the application of in vitro techniques. The researcher today is presented with a wide choice of in vitro models, and the aim of this chapter is to provide not only an overview of techniques available but also sufficient information to allow insight into the advantages and limitations of each system. This provides the experimental pediatric nephrologist with an appreciation of the range of renal in vitro methods currently available and allows selection of the most appropriate in vitro system to adequately answer the questions posed. For a more complete methodologic review of isolation and culture techniques, the reader is referred to standard tissue culture texts (13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freshney RI. Culture of Animal Cells, 2nd edn. New York, AR Liss, 1987.

    Google Scholar 

  2. Potter EL. Normal and Abnormal Development of the Kidney. Chicago, Year Book Medical Publishers, 1972.

    Google Scholar 

  3. Kreisberg JI, Wilson PD. Renal cell culture. Electron MicroscTech 1988;9:235–263.

    CAS  Google Scholar 

  4. Mundel P, Reiser J, Kriz W. Induction of differentiation in cultured rat and human Podocytes. JASN 1997;8:697–705.

    PubMed  CAS  Google Scholar 

  5. Striker GE, Striker LJ. Biology of disease: glomerular cell culture. Lab Invest 1985;53:122–131.

    PubMed  CAS  Google Scholar 

  6. Harper PA, Robinson JM, Hoover RL et al. Improved methods for culturing rat glomerular cells. Kidney Int 1984;26:875–880.

    PubMed  CAS  Google Scholar 

  7. Mentzel S, Van Son JP et al. Mouse glomerular epithelial cells in culture with features of podocytes in vivo express aminopeptidase A and angiotensinogen but not other components of the renin-angiotensin system. JASN 1997;8:706–719.

    PubMed  CAS  Google Scholar 

  8. Ballerman BJ. Regulation of bovine glomerular endothelial cell growth in vitro. Am J Physiol 1989;256:C182–C189.

    Google Scholar 

  9. Kreisberg JI, Karnovsky MJ. Glomerular cells in culture. Kidney Int 1983;23:439–447.

    PubMed  CAS  Google Scholar 

  10. Wilson PD, Dillingham MA, Breckon R et al. Defined human renal tubular epithelia in culture: growth, characterization and hormonal response. Am J Physiol 1985;248:F436–F443.

    PubMed  CAS  Google Scholar 

  11. Wilson PD, Anderson RJ, Breckon RD et al. Retention of differentiated characteristics by cultures of defined rabbit kidney epithelia. J Cell Physiol 1987;130:245–254.

    PubMed  CAS  Google Scholar 

  12. Wilson PD. Monolayer cultures of microdissected renal tubule epithelial segment. J Tissue Cult Meth 1991;13:137–142.

    Google Scholar 

  13. Drugge ED, Carroll MA, McGiff JC. Cells in culture from rabbit medullary thick ascending Hmb of Henle’s loop. Am J Physiol 1989;256:C1070–C1081.

    PubMed  CAS  Google Scholar 

  14. Pizzonia JH, Gesk FA, Kennedy SM et al. Immunomagnetic separation, primar)’ culture and characterization of cortical thick ascending limb plus distal convoluted tubule cells from mouse kidney. In Vitro Cell Dev Biol 1991;27A:409–4l6.

    PubMed  CAS  Google Scholar 

  15. Merot J, Bidet M, Gachot B et al. Electrical properties of rabbit early distal convoluted tubule in primary culture. Am J Physiol 1989;257:F288–F299.

    PubMed  CAS  Google Scholar 

  16. Caviedes R, Croxatto HR, Corthorn J et al. Identification of kallikrein in cultures of adult renal cells. Cell Biol Int Rep 1987;11:735–743.

    PubMed  CAS  Google Scholar 

  17. Fejes-Toth G, Fejes-Toth AN. Differentiated transport functions in primary cultures of rabbit collecting ducts. Am J Physiol 1987;253:F1302–F1307.

    PubMed  CAS  Google Scholar 

  18. Garcia-Perez A, Smith WL. Use of monoclonal antibodies to isolate cortical collecting tubule cells: AVP induces PGE release. Am J Physiol 1983;244:C211–C220.

    PubMed  CAS  Google Scholar 

  19. Van Adelsberg J, Edwards JC, Herzlinger D et al. Isolation and culture of HC03-secreting intercalated cells. Am JPhysiol 1989; 256:1004–1011.

    Google Scholar 

  20. Minuth W. Induction and inhibition of outgrowth and development of renal collecting duct epithelium. Lab Invest 1983;48:543–548.

    PubMed  CAS  Google Scholar 

  21. Yasuoka Y, Kawada H et al. Establishment of a mouse macula densa cell line with an nNOS promoter driving EGFP expression. Jpn J Physiol 2005;55:365–372.

    PubMed  CAS  Google Scholar 

  22. Grenier FC, Rollins TE, Smith WL. Kinin-induced prostaglandin synthesis by renal papillary collecting tubule cells in culture. Am J Physiol 1981;24l:F94–F104.

    Google Scholar 

  23. Kurtz A, Pfeilschifter J et al. Role of protein kinase C in inhibition of renin release caused by vasoconstrictors. Am J Physiol 1986;250:C563–C571.

    PubMed  CAS  Google Scholar 

  24. Rayson BM. Juxtaglomerular cells cultured on a reconstituted basement membrane. Am J Physiol 1992;262:C563–C568.

    PubMed  CAS  Google Scholar 

  25. Pinet F, Corvol MT et al. Isolation of renin-producing human cells by transfection with three simian virus 40 mutants. PNAS 1985;82:8503–8507.

    PubMed  CAS  Google Scholar 

  26. Sato M, Dunn MJ. Interaction of vasopressin, prostaglandins and cAMP in rat renal papillary collecting tubules in culture. Am J Physiol 1984;247:F423–F433.

    PubMed  CAS  Google Scholar 

  27. Lewis MP, Norman JT. Differential response of activated versus non-activated renal fibroblasts to tubular epithelial cells: a model of initiation and progression of fibrosis. Exp Nephrol 1998;6:132–143.

    PubMed  CAS  Google Scholar 

  28. Rodemann HP, Muller GA, Knecht A et al. Fibroblasts of rabbit kidney in culture. Characterization and identification of cell-specific markers. Am J Physiol 1991;261:F283–F291.

    PubMed  CAS  Google Scholar 

  29. Takaoka T, Katsuta H, Endo M et al. Establishment of a cell strain, JTC-12, from cynomolgus monkey kidney tissue. Jpn J Exp Med 1962;32:351–365.

    PubMed  CAS  Google Scholar 

  30. Walsh-Reitz MM, Toback FG. Vasopressin stimulates growth of renal epithelial cells in culture. Am J Physiol 1983;245:C365–C370.

    PubMed  CAS  Google Scholar 

  31. Koyama H, Goodpasture C, Miller MM et al. Establishment and characterization of a cell line from the American opossum (Didelphys virginiana). In Vitro 1978;14:239–246.

    PubMed  CAS  Google Scholar 

  32. Hull RN, Cherry WR, Weaver GW. The origin and characteristics of a pig kidney cell strain LLC-PK1. In Vitro 1976;12:670–677.

    PubMed  CAS  Google Scholar 

  33. Schwiebert EM, Mills JW et al. Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem 1994;269:7081–7089.

    PubMed  CAS  Google Scholar 

  34. Green N, Algren A, Hoyer J et al. Differentiated lines of cells from rabbit renal medullary thick ascending limbs grown on amnion. Am J Physiol 1985;249:C97–C104.

    PubMed  CAS  Google Scholar 

  35. Stoos BA, Naray-Fejes-Toth A et al. Characterization of a mouse cortical collecting duct cell line. Kidney Int 1991;39:1168–1175.

    PubMed  CAS  Google Scholar 

  36. Delarue F, Virone A, Hagege J et al. Stable cell line of T-SV40 immortalized human glomerular visceral epithelial cells. Kidney Int 1991;40:906–912.

    PubMed  CAS  Google Scholar 

  37. Mackay K, Striker LJ, Elliot S et al. Glomerular epithelial, mesangial, and endothelial cell lines from transgenic mice. Kidney Int 1988;33:677–684.

    PubMed  CAS  Google Scholar 

  38. Ryan MJ, Johnson G, Kirk J et al. HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int 1994;45:48–57.

    PubMed  CAS  Google Scholar 

  39. Bland RE, Walker A, Hughes SV et al. Constitutive expression of 25-Hydroxyvitamin D3–1 alpha-hydroxylase in a transformed human proximal tubule cell 1 line: evidence for direct regulation of vitamin D metabolism by calcium. Endocrinology 1999;140:2027–2034.

    PubMed  CAS  Google Scholar 

  40. Friedman PA, Coutermarsh BA, Rhim JS et al. Characterization of immortalized mouse distal convoluted tubule ceils. J Am Soc Nephrol 1991;2:737.

    Google Scholar 

  41. Brandsch M, Brandsch C, Prasad PD et al. Identification of a renal cell line that constitutively expresses the kidney-specific high-affinity HVpeptide cotransporter. FASEB J 1995;9:1489–1496.

    PubMed  CAS  Google Scholar 

  42. Barasch J, Pressler L, Connor J et al. A ureteric bud cell line induces nephrogenesis in two steps by two distinct signals. Am J Physiol 1996;271:F50–F6l.

    PubMed  CAS  Google Scholar 

  43. Mundel P, Reiser J, Borja AZ et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell line. Exp Cell Res 1997;236:248–258.

    PubMed  CAS  Google Scholar 

  44. Wilson PD. In vitro methods in renal research. In Pediatric Nephrology, 5th edn. Avner E, Harmon W, Niaudet P (eds.). Baltimore, MD, Lippincott Williams & Wilkins, 2004, pp. 317–333.

    Google Scholar 

  45. Racusen LC, Wilson PD, Hartz PA et al. Renal proximal tubular epithelium from patients with nephropathic cysti-nosis: immortalized cell lines as in vitro model systems. Kidney Int 1995; 48:536–543.

    PubMed  CAS  Google Scholar 

  46. Tang SS, Jung F, Diamant D et al. Temperature-sensitive SV40 immortalized rat proximal tubule cell line has a functional rennin-angiotensin system. Am J Physiol 1995;268:F435–F436.

    PubMed  CAS  Google Scholar 

  47. Loghman-Adham M, Rohrwasser A et al. A conditionally immortalized cell line from murine proximal tubule. Kidney Int 1997; 52:229–239.

    PubMed  CAS  Google Scholar 

  48. Geng L, Burrow CR, Li H et al. Modification of the composition of polycystin-1 multiprotein complexes by calcium and tyrosine phosphorylation. Biochim Biophys Acta 2000;1535:21–35.

    PubMed  CAS  Google Scholar 

  49. Wilson, PD Geng L, Li X et al. The PKD1 gene product, “polycystin-1,” is a tyrosine phosphorylated protein that colocalizes with alpha2betal integrin in focal clusters in adherent renal epithelia. Lab Invest 2000;79:1311–1323.

    Google Scholar 

  50. Chung SD, Alavi N, Livingston D et al. Characterization of primary rabbit kidney cultures that express proximal tubule functions in a hormonally defined medium. J Cell Biol 1982;85:118–126.

    Google Scholar 

  51. Vinay V, Gougoux A, Lemieux G. Isolation of pure suspension of rat proximal tubules. Am J Physiol 1981;240:F403–F4ll.

    Google Scholar 

  52. Smith WL, Garcia-Perez A. Immunodissection: use of monoclonal antibodies to isolate specific types of renal cells. Am J Physiol 1985;24S:F1–F7.

    Google Scholar 

  53. Gesek FA, Wolff DW et al. Improved separation method for rat proximal and distal renal tubules. Am J Physiol 1987;253:F358–F365.

    PubMed  CAS  Google Scholar 

  54. Bello-Reuss E, Weber MR. Electrophysiologic characterization of primary cultures of kidney cells. Am J Physiol 1987;252:F899–F909.

    PubMed  CAS  Google Scholar 

  55. Reuveny SL, Silberstein L et al. DE-52 and DE-53 cellulose microcarriers. I. Growth of primary and established anchorage-dependent cells. In Vitro 1982;18(2):92–98.

    PubMed  CAS  Google Scholar 

  56. Stanton RC, Mendrick DL, Rennke HG et al. Use of monoclonal antibodies to culture rat proximal tubule cells. Am J Physiol 1986;251:C780–C786.

    PubMed  CAS  Google Scholar 

  57. Misra RE. Isolation of glomeruli from mammalian kidneys by graded sieving. Am J Clin Pathol 1972;58:135–139.

    PubMed  CAS  Google Scholar 

  58. Horster M. Hormonal stimulation and differential growth response of renal epithelial cells cultivated in vitro from individual nephron segments. Int J Biochem 1980;12:29–35.

    PubMed  CAS  Google Scholar 

  59. Itoh S, Carretero OA et al. Possible role of adenosine in the macula densa mechanism of renin release in rabbits. J Clin Invest 1985;76:1412–1417.

    PubMed  CAS  Google Scholar 

  60. Liu R, Persson AE. Angiotensin II stimulates calcium and nitric oxide release from Macula densa cells through AT1 receptors. Hypertension 2004;43:649–653.

    PubMed  CAS  Google Scholar 

  61. Rightsel WA, Okamura T, Inagami T et al. Juxtaglomerular cells grown as monolayer culture contain renin, angiotensin I-converting enzyme and angiotensins I and II/III. Circ Res 1982;50:822–829.

    PubMed  CAS  Google Scholar 

  62. Kuo N, Norman JT, Wilson PD. Acidic FGF regulation of hyperproliferation of fibroblasts in human autosomal dominant polycystic kidney disease. Biochem Mol Med 1997;61:178–191.

    PubMed  CAS  Google Scholar 

  63. Aiello L, Guilfoyle R et al. Adenovirus 5 DNA sequences present and RNA sequences transcribed in transformed human embryo kidney cells (HEK-Ad-5 or 293). Virology 1979;94:460–469.

    PubMed  CAS  Google Scholar 

  64. Jat P, Noble M, Ataliotis N et al. Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci USA 1991;88:5096–5100.

    PubMed  CAS  Google Scholar 

  65. Rohatgi R, Greenberg A, Burrow CR et al. Na transport in ARPKD cyst lining epithelial cells. J Am Soc Nephrol 2003;14:827–836.

    PubMed  CAS  Google Scholar 

  66. Wilson SJ et al. Inhibition of HER-2(neu/ErbB2) restores normal function and structure to polycystic kidney disease (PKD) epithelia. Biochim Biophys Acta 2006;1762:647–655.

    PubMed  CAS  Google Scholar 

  67. Rohatgi R, Battini L et al. Mechanoregulation of intracellular Ca2 + in human autosomal recessive polycystic kidney disease (ARPKD) cyst-lining renal epithelial cells. Am J Physiol cell physiol 2008;294:F890–F899.

    CAS  Google Scholar 

  68. Sweeney WE, Kusner L, Carlin CR et al. Phenotypic analysis of conditionally immortalized cells isolated from the BPK model of ARPKD. Am J Physiol 2001;281:C1695–C1705.

    CAS  Google Scholar 

  69. Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? Theor Biol 1982;99:31–68.

    CAS  Google Scholar 

  70. Wilson PD, Schrier RW, Breckon RD et al. A new method for studying human polycystic kidney disease epithelia in culture. Kidney Int 1986;30:371–378.

    PubMed  CAS  Google Scholar 

  71. Wilson PD, Hreniuk D, Gabow PA. Abnormal extracellular matrix and excessive growth of human adult polycystic kidney disease epithelia. J Cell Physiol 1992;150:360–369.

    PubMed  CAS  Google Scholar 

  72. Taub M, Sato G. Growth of functional primary cultures of kidney epithelial cells in defined medium. Cell Physiol 1980;105:369–378.

    CAS  Google Scholar 

  73. Ekblom P. Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 1989;3:2141–2150.

    PubMed  CAS  Google Scholar 

  74. Klein G, Langegger M, Timpl R et al. Role of laminin A chain in the development of epithelial cell polarity. Cell 1988;55:331–314.

    PubMed  CAS  Google Scholar 

  75. Sorokin L, Sonnenberg A, Aumailley M et al. Recognition of the laminin E8 cell-binding site by an integrin possessing alpha 6 subunit is essential for epithelial polarization in developing kidney tubules. J Cell Biol 1990;111:1265–1273.

    PubMed  CAS  Google Scholar 

  76. Barasch J, Qiao J et al. Ureteric bud cells secrete multiple factots, including bFGF, which rescue renal progenitors from apoptosis. J Physiol 1997;273:F757–F767.

    CAS  Google Scholar 

  77. Rodriquez-Boulan E, Nelson WJ. Morphogenesis of the polarized epithelial cell type. Science 1989;245:718–725.

    Google Scholar 

  78. Wilson PD, Sherwood AC, Palla K et al. Reversed polarity of Na + K + -ATPase: mislocation to apical plasma membranes in polycystic kidney disease. Am J Physiol 1991;260:F420–F430.

    PubMed  CAS  Google Scholar 

  79. Hartz PA, Wilson PD. Functional defects in lysosomal enzymes in autosomal dominant polycystic kidney disease (ADPKD): abnormalities in synthesis, molecular processing, polarity, and secretion.  Biochem Mol Med 1997;60:8–26.

    PubMed  CAS  Google Scholar 

  80. Polgar K, Burrow C, Hyink D, Fernandez H, Thornton K, Li X, Gusella G, Wilson PD. Disruption of polycystin-1 function interferes with branching morphogenesis of the ureteric bud in developing mouse kidneys. Dev Biol 2005;286:16–30.

    PubMed  CAS  Google Scholar 

  81. Grobstein C. Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp Cell Res 1956;10:424–440.

    PubMed  CAS  Google Scholar 

  82. Grobstein C. Inductive epithelio mesenchymal interaction in cultured organ rudiments of the mouse. Science 1953;118:52–55.

    PubMed  CAS  Google Scholar 

  83. Cunha GR, Bigsby RM, Cooke PS et al. Stromal-epithelial interactions in adult organs. Cell Differ 1985;17:137–148.

    PubMed  CAS  Google Scholar 

  84. Bard JB. Epithelial-fibroblastic organization in cultures grown from human embryonic kidney: its significance for morphogenesis in vivo. J Cell Sci 1979;39:291–298.

    PubMed  CAS  Google Scholar 

  85. Taub M, Wang Y, Szczesny M et al. Epidermal growth factor or transforming growth factor alpha is required for kidney tubulogenesis in matrigel cultures in serum-free medium. PNAS 1990; 87:4002–4006.

    PubMed  CAS  Google Scholar 

  86. Wohlwend A, Montesano R, Vassalli J et al. LLC-PKl cysts: a model for the study of epithelial polarity. Cell Physiol 1985;125:533–539.

    CAS  Google Scholar 

  87. Montesano R, Schaller G, Orci L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 1991;66:697–711.

    PubMed  CAS  Google Scholar 

  88. Montesano R, Matsumoto K, NakamuraT et al. Identification of a fibroblast-derived epithelial morphogen as hepato-cyte growth factor. Cell 1991;67:901–908.

    PubMed  CAS  Google Scholar 

  89. Sakurai H, Tsukamoto T, Kjelsberg CA et al. EGF receptor ligands are a large fraction of in vitro branching morphogens secreted by the embryonic kidney. Jpn J Physiol 1997;273:F463–F472.

    CAS  Google Scholar 

  90. Gupta JR, Piscionne TD, Grisaru S et al. Protein kinase A is a negative regulator of renal branching morphogenesis and modulates inhibitory and stimulatory bone morphogenetic proteins. J Biol Chem 1999;274:26305–26314.

    PubMed  CAS  Google Scholar 

  91. Li X, Li H, Amsler K et al. PRKX, a phylogenetically and functionally distinct cAMP-dependent protein kinase, activates renal epithelial cell migration and morphogenesis. PNAS 2002;99:9260–9265.

    PubMed  CAS  Google Scholar 

  92. Ekblom M, Klein G, Mugrauer G et al. Transient and locally restricted expression of laminin A chain mRNA by developing epithelial cells during kidney organogenesis. Cell 1990;60:337–346.

    PubMed  CAS  Google Scholar 

  93. Falk M, Salmivirta K, Durbeej M et al. Integrin alpha 6 beta 1 is involved in kidney tubulogenesis in vitro. J Cell Sci 1996;109:2801–2810.

    PubMed  CAS  Google Scholar 

  94. Bullock SL, Johnson TM. Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney. JASN 2001;12:515–523.

    PubMed  CAS  Google Scholar 

  95. Davies J, Lyon M. Sulphated proteoglycan is required for collecting duct growth and branching but not nephron formation during kidney development. Development 1995;121:1507–1517.

    PubMed  CAS  Google Scholar 

  96. Sariola H, Aufderheide E, Bernhard H et al. Antibodies to cell surface ganglioside GD3 perturb inductive epithelialmesenchymal interactions. Cell 1988;54:235–245.

    PubMed  CAS  Google Scholar 

  97. Saxen L, Lehtonen E. Embryonic kidney in organ culture. Differentiation 1987;36:2–11.

    PubMed  CAS  Google Scholar 

  98. Avner ED, Sweeney W, Piesco NP et al. Growth factor requirements of organogenesis in serum-free metanephric organ cultute. In Vitro Cell Dev Biol 1985;21:297–304.

    PubMed  CAS  Google Scholar 

  99. Avner E, Sweeney W, Ellis D. In vitro modulation of tubular cyst regression in murine polycystic kidney disease. Kidney Int 1989;36:960–968.

    PubMed  CAS  Google Scholar 

  100. Li, X, Burrow, CR. et al. Protein kinase X (PRKX) can rescue the effects of polycystic kidney disease-1 gene (PKD1) deficiency. Biochim Biophys Acta 2008;1782:1–9.

    PubMed  CAS  Google Scholar 

  101. Davis H, Gascho C, Kiernan JA. Effects of aprotinin on organ cultures of the rats kidney. In Vitro 1976;12:192–197.

    PubMed  CAS  Google Scholar 

  102. Crocker JFS. Human embryonic kidneys in organ culture: abnormalities of development induced by decreased potassium. Science 1973;181:1178–1179.

    PubMed  CAS  Google Scholar 

  103. Wilson PD, Schrier RW. Nephron segment and calcium as determinants of anoxic cell death in renal cultures. Kidney Int 1986;29:1172–1179.

    PubMed  CAS  Google Scholar 

  104. Hori R, Yamamoto K, Saito H et al. Effect of aminoglycoside antibiotics on cellular functions of kidney epithelial cell line (LLC-PKl): a model system for aminoglycoside nephrotoxicity. J Pharmacol Exp Ther 1984;230:742–748.

    CAS  Google Scholar 

  105. Schwertz DW, Treisberg JI, Venkatachalam MA. Gentamicin-induced alterations in pig kidney epithelial (LLC-PKl) cells in culture. Pharmacol Exp Ther 1986;236:254–262.

    CAS  Google Scholar 

  106. Ramsammy LS, Josepovitz C, Lane B et al. Effect of gen-tamicin on phospholipid metabolism in cultured rabbit proximal tubular cells. Am J Physiol 1989;256:C204–C213.

    PubMed  CAS  Google Scholar 

  107. Ghosh P, Chatterjee S. Effects of gentamicin on sphingomyelinase activity in cultured human renal proximal tubular cells. J Biol Chem 1987;262:12550–12556.

    PubMed  CAS  Google Scholar 

  108. Wilson PD, Hreniuk D. Nephrotoxicity of cyclosporine in renal tubule cultures and attenuation by calcium restriction. Transplant Proc 1988;20:709–711.

    PubMed  CAS  Google Scholar 

  109. Wilson PD, Hartz PA. Mechanisms of cyclosporine A toxicity in defined cultures of renal tubule epithelia: a role for cysteine proteases. Cell Biol Int Rep 1991;15:1243–1258.

    PubMed  CAS  Google Scholar 

  110. Lau DCW, Wong K-L, Hwang WS. Cyclosporine toxicity on cultured rat microvascular endothelial cells. Kidney Int 1989; 35:604–613.

    PubMed  CAS  Google Scholar 

  111. Jonasson L, Holm J, Hansson GK. Cyclosporine A inhibits smooth muscle proliferation in the vascular response to injury. PNAS 1988;85:2303–2306.

    PubMed  CAS  Google Scholar 

  112. Norman JT, Fine LG. Progressive renal disease: fibroblasts, extracellular matrix and integrins. Exp Nephrol 1999;7:l67–177.

    Google Scholar 

  113. Hjelle JT, Waters DC, Golinska BT et al. Autosomal recessive polycystic kidney disease: characterization of human peritoneal and cystic kidney cells in vitro. Am J Kidney Dis 1990;2:123–136.

    Google Scholar 

  114. Van Adeisberg J. Murine polycystic kidney cells have increased integrin-mediated adhesion to collagen. Am J Physiol 1994;267:F1082–F1093.

    Google Scholar 

  115. Yoder B, Tousson A. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol 2002;282:F54l–F552.

    Google Scholar 

  116. Berteelli R, Ginevri F, Candiano G et al. Tubular epithelium culture from nephronophthisis-affected kidneys: a new approach to molecular disorders of tubular cells. Am J Nephrol 1990;10:463–469.

    Google Scholar 

  117. Haber DA, Park S, Maheswaren S et al. WTl-mediated growth suppression of Wilms tumor cells expressing a WTl splicing variant. Science 1993;262:2057–2059.

    PubMed  CAS  Google Scholar 

  118. Amato R, Menniti M et al. IL-2 signals through Sgk1 and inhibits proliferation and apoptosis in kidney cancer cells. J Mol Med 2007;85:707–721.

    PubMed  CAS  Google Scholar 

  119. Sherwood JB, Shouval D. Continuous production of erythropoietin by an established human renal carcinoma cell line: development of the cell line. PNAS 1986;83:165–169.

    PubMed  CAS  Google Scholar 

  120. Moon TD, Morley J, Vessella J et al. The role of calmodulin in human renal cell carcinoma. Biochem Biophys Res Commun 1983;114:843–849.

    PubMed  CAS  Google Scholar 

  121. Hashimura T, Tubbs RR, Connelly R et al. Characterization of two cell lines with distinct phenotypes and genotypes established from a patient with renal cell carcinoma. Cancer Res 1989;49:7064–7071.

    PubMed  CAS  Google Scholar 

  122. Fujioka H. Effects of dibutyryl cyclic AMP, theophylline or isobutylmethylxanthine on human renal cancer cell line (OUR-10) and normal human kidney cell. Med J Osaka Univ 1984;34:43–56.

    PubMed  CAS  Google Scholar 

  123. Couser WG, Abrass CK. Pathogenesis of membranous nephropathy. Annu Rev Med 1988;39:517–527.

    PubMed  CAS  Google Scholar 

  124. Mundel P, Schwarz K, Reiser J. Podocyte biology: a footstep further. Adv Nephrol Necker Hosp 2001;31:235–241.

    PubMed  CAS  Google Scholar 

  125. Endlich N, Kai R, Reiser J, Uttenweiler D, Kriz W, Mundel P, Endlich K. Podocytes respond to mechanical stress in vitro. JASN 2001;12:413–422.

    PubMed  CAS  Google Scholar 

  126. Sasaki S, Bao Q, Hughes RC. Galectin-3 modulates rat mesangial cell proliferation and matrix synthesis during experimental glomerulonephritis induced by anti-Thy 1.1 antibodies. J Pathol 1999;187:481–489.

    PubMed  CAS  Google Scholar 

  127. Ouardani M, Travo P et al. Loss of differences in mesangial cell phenotype between diabetic and normal rats: role of culture passages. Biol Cell 1996;86:127–133.

    PubMed  CAS  Google Scholar 

  128. McDermott GF, Ingram A et al. Glomerular dysfunction in the aging Fischer 344 rat is associated with excessive growth and normal mesangial cell function. J Gerontol A Biol Sci Med Sci 1996;51:M80–M85.

    PubMed  CAS  Google Scholar 

  129. Barnes JL, Hevey KA et al. Mesangial cell migration precedes proliferation in Habu snake venom-induced glomerular injury. Lab Invest 1994;70:460–467.

    PubMed  CAS  Google Scholar 

  130. Wilson PD. Use of cultured renal tubular cells in the study of cell injury. Miner Electrolyte Metab 1986;12:71–84.

    PubMed  CAS  Google Scholar 

  131. Hotter G, Palacios L et al. Low O2 and high CO2 in LLC-PK1 cells culture mimics renal ischemia-induced apoptosis. Lab Invest 2004;84:213–220.

    PubMed  Google Scholar 

  132. Wiegele G, Brandis M et al. Apoptosis and necrosis during ischaemia in renal tubular cells (LLC-PK1 and MDCK). Nephrol Dial Transplant 1998;13:1158–1167.

    PubMed  CAS  Google Scholar 

  133. Kumar Y, Tatu U. Induced hsp70 is in small, cytoplasmic complexes in a cell culture model of renal ischemia: a comparative study with heat shock. Cell Stress Chaperones 2000;5:314–327.

    PubMed  CAS  Google Scholar 

  134. Combe C, Burton CJ et al. Hypoxia induces intercellular adhesion molecule-1 on cultured human tubular cells. Kidney Int 1997;51:1703–1709.

    PubMed  CAS  Google Scholar 

  135. Orphanides C, Fine L et al. Hypoxic stimulation of proximal tubular cell matrix production via a TGF-beta1-independent mechanism. Kidney Int 1997;52:637–647.

    PubMed  CAS  Google Scholar 

  136. Sodhi CP, Batlle D et al. Osteopontin mediates hypoxia-induced proliferation of cultured mesangial cells: role of PKC and p38 MAPK. Kidney Int 2000;58:691–700.

    PubMed  CAS  Google Scholar 

  137. Sargazi M, Shenkin A et al. Aluminium-induced injury to kidney proximal tubular cells: Effects on markers of oxidative damage. J Trace Elem Med Biol 2006;19:267–273.

    PubMed  CAS  Google Scholar 

  138. Cherian MG. Rat kidney epithelial cell culture for metal toxicity studies. In Vitro Cell Dev Biol 1985;21:505–508.

    PubMed  CAS  Google Scholar 

  139. Chen WC, Cheng HH et al. The carcinogen safrole increases intracellular free Ca2+ levels and causes death in MDCK cells. Chin J Physiol 2007;50:34–40.

    PubMed  CAS  Google Scholar 

  140. Sandoval RM, Bacallao RL et al. Nucleotide depletion increases trafficking of gentamicin to the Golgi complex in LLC-PK1 cells. Am J Physiol 2002;283:F1422–F1429.

    CAS  Google Scholar 

  141. Schlatter P, Gutmann H. et al. Primary porcine proximal tubular cells as a model for transepithelial drug transport in human kidney. Eur J Pharm Sci 2006;28:141–154.

    PubMed  CAS  Google Scholar 

  142. Matsushima S, Maeda K et al. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther 2005;314:1059–1067.

    PubMed  CAS  Google Scholar 

  143. Schepers MS, van Ballegooijen ES et al. Crystals cause acute necrotic cell death in renal proximal tubule cells, but not in collecting tubule cells. Kidney Int 2005;68:1543–1553.

    PubMed  Google Scholar 

  144. Moryama MT, Domiki C et al. Effects of oxalate exposure on Madin-Darby canine kidney cells in culture: renal prothrombin fragment-1 mRNA expression. Urol Res 2005;33:470–475.

    PubMed  CAS  Google Scholar 

  145. Cao Y, Sagi S et al. Impact of hypoxia and hypercapnia on calcium oxalate toxicity in renal epithelial and interstitial cells. Urol Res 2006;34:271–276.

    PubMed  CAS  Google Scholar 

  146. Wilson PD. Polycystic kidney disease. N Engl J Med 2004; 350:151–164.

    PubMed  CAS  Google Scholar 

  147. Nesbitt T, Drezner MK. Phosphate transport in renal cell cultures by gy mice: evidence of a single defect in X-linked hypophosphatemia. Am J Physiol 1997;273:F113–F119.

    PubMed  CAS  Google Scholar 

  148. Berka JL, Alcorn D et al. Renin processing in cultured juxtaglomerular cells of the hydronephrotic mouse kidney. J Histochem Cytochem 1993;41:365–373.

    PubMed  CAS  Google Scholar 

  149. Clement N, Polgar K et al. (2008) Development of Adeno-Associated Viral (AAV) vectors for gene therapy of Polycystic Kidney Disease (PKD). PNAS.

    Google Scholar 

  150. Kubota Y, Shuin T et al. The enhanced 32P labeling of CDP-diacylglycerol in c-myc gene expressed human kidney cancer cells. FEBS Lett 1987;212:159–162.

    PubMed  CAS  Google Scholar 

  151. Lin PY, Fosmire SP et al. Attenuation of PTEN increases p21 stability and cytosolic localization in kidney cancer cells: a potential mechanism of apoptosis resistance. Mol Cancer 2007;6:16.

    PubMed  Google Scholar 

  152. Shirakawa T, Gardner TA et al. Cytotoxicity of adenoviral-mediated cytosine deaminase plus 5-fluorocytosine gene therapy is superior to thymidine kinase plus acyclovir in a human renal cell carcinoma model. J Urol 1999;162:949–954.

    PubMed  CAS  Google Scholar 

  153. Costa LJ, Gemmill RM et al. Upstream signaling inhibition enhances rapamycin effect on growth of kidney cancer cells. Urology 2007;69:596–602.

    PubMed  Google Scholar 

  154. Du C, Guan Q et al. Nitric oxide induces apoptosis in renal tubular epithelial cells through activation of caspase-8. Am J Physiol Renal Physiol 2006;290:F1044–F1054.

    PubMed  CAS  Google Scholar 

  155. Vigneau C, Polgar K et al. Mouse embryonic stem cell-derived embryoid bodies generate progenitors that integrate long-term into renal proximal tubules in vivo. JASN 2007;18:1709–1720.

    PubMed  CAS  Google Scholar 

  156. Oliver JA, Maarouf O et al. The renal papilla is a niche for adult kidney stem cells. J Clin Invest 2004;114:795–804.

    PubMed  CAS  Google Scholar 

  157. Kasaoka Y, Nakamoto T et al. Gene therapy for murine renal cell carcinoma using genetically engineered tumor cells to secrete interleukin-12. Hiroshima J Med Sci 2000;49:29–35.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Wilson, P.D. (2009). In Vitro Methods in Renal Research. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics