Skip to main content

Introduction Strategies in Drug Discovery and Evaluation

  • Reference work entry
  • 2675 Accesses

Historical Approaches in Drug Discovery

Today's medicine is based on traditional medicine. Traditional medicines exist in every continent of the globe and in every cultural area of the world. The most famous ones are traditional Chinese medicine in East Asia, Ayurvedic medicine in India, and formerly Galenic medicine in Europe, all of which have some resemblance to one other (Vogel 1991).

Each of these traditional medicines has its own origins and an individual basic philosophy. The art of practicing Chinese medicine stretches back over several thousand years. The legendary culture hero, Shen-nong, is said to have tested many herbs for their medical properties. Pen-ts'ao, the first compilation of herbal medicines, is connected with his name (Unschuld 1973, 1986). Since Ancient times, the Chinese have divided the world into five symbolic elements: Wood, Fire, Earth, Metal and Water. Everything in the world is dominated by one of these elements, and their constant interplay,...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   809.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References and Further Reading

  • Abassi YA, Jackson JA, Zhu J, O'Connell J, Wang X, Xu X (2004) Label-free, real-time monitoring of IgE-mediated mast cell activation on microelectronic cell sensor arrays. J Immunol Methods 292:195–205

    PubMed  CAS  Google Scholar 

  • Abraham VC, Taylor DL, Haskins JR (2004) High-content screening applied to large-scale cell biology. Trends Biotechnol 22:15–22

    PubMed  CAS  Google Scholar 

  • Achelis JD, Hardebeck K (1955) Eine neue Blutzucker-senkende Substanz! Vorläufige Mitteilung. Dtsch Med Wochenschr 80:1452–1455

    PubMed  CAS  Google Scholar 

  • Adam GI, Reneland R, Andersson M, Risinger C, Nilsson M, Lewander T (2000) Pharmacogenomics to predict drug response. Pharmacogenomics 1:5–14

    PubMed  CAS  Google Scholar 

  • Adang AEP, Hermkens PHH (2001) The contribution of combinatorial chemistry to lead generation: an interim analysis. Curr Med Chem 8:985–998

    PubMed  CAS  Google Scholar 

  • Akong M, Siegel R, Vasserman E, Row B, Karlton D, McNeil J, Varney M, Stauderman K, Velicelebi G (1995) High‐throughput measurement of intracellular calcium by fluorescence imaging of a 96-well microtiter plate. Soc Neurosci Abstr 21:577

    Google Scholar 

  • Alajoki ML, Baxter GT, Bemiss WR, Blau D, Bousse LJ, Chan SDH, Dawes TD, Hahnenberger KM, Hamilton JM, Lam P, McReynolds RJ, Stevenson DN, Wada GH, Williams J (1997) High‐performance microphysiometry in drug discovery. In: Devlin JP (ed) High throughput screening. The discovery of bioactive substances. Dekker, New York, pp 427–442

    Google Scholar 

  • Alanine A, Nettekoven M, Roberts E, Thomas AW (2003) Lead generation – enhancing the success of drug discovery by investing in the hit to lead process. Comb Chem High Throughput Screen 6:51–66

    PubMed  CAS  Google Scholar 

  • Alexander S, Mathie A, Peteres J, MacKenzie G, Smith A (2001) 2001 Nomenclature Supplement. Trends Pharmacol Sci Toxicol Sci, Special Issue

    Google Scholar 

  • Amara SG, Arriza JL (1993) Neurotransmitter transporters: three distinct gene families. Curr Opin Neurobiol 3:337–344

    PubMed  CAS  Google Scholar 

  • Andersen AH, Zhang Z, Barber T, Rayens WS, Zhang J, Grondin R, Hardy P, Gerhardt GA, Gash DM (2002) Functional MRI studies in awake rhesus monkeys. methodological and analytical strategies. J Neurosci Methods 118:141–152

    PubMed  Google Scholar 

  • Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861

    PubMed  CAS  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome. History, character, and diagnostic prospects. Mol Cell Proteomics 1:845–856

    PubMed  CAS  Google Scholar 

  • Anderson SN, Cool BL, Kifle L, Chiou W, Egan DA, Barrett LW, Richardson PL, Frevert EU, Warrior U, Kofron JL, Burns DJ (2004) Microarrayed compound screening (µARCS) to identify activators and inhibitors of AMP‐activated protein kinase. J Biomol Screen 9:112–121

    PubMed  CAS  Google Scholar 

  • Angeli P, Guilini U (1996) Perspectives in receptor research. Il Farmaco 51:97–106

    PubMed  CAS  Google Scholar 

  • Angers S, Salahpour A, Bouvier M (2001) Biochemical and biophysical demonstration of GPCR oligomerization in mammalian cells. Life Sci 68:2243–2250

    PubMed  CAS  Google Scholar 

  • Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 97:3684–3689

    PubMed  CAS  Google Scholar 

  • Annis DA, Nazef N, Chung CC, Scott MP, Nash HM (2004) A general technique to rank protein‐ligand binding affinities and determine allosteric versus direct binding site competition in compound mixtures. J Am Chem Soc 126:15495–15503

    PubMed  CAS  Google Scholar 

  • Appleton T (1999) Combinatorial chemistry and HTS – feeding a voracious process. Drug Discov Today 4:398–400

    PubMed  Google Scholar 

  • Ardenkjær-Larsen HJ, Laursen I, Leunbach I, Ehnholm GI, Wistrand LG, Petersson JS, Golman K (1998) EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging. J Magn Reson 133:1–12

    PubMed  Google Scholar 

  • Ariëns EJ, van Rossum JM (1957) pDx, pAx and pDx′ values in the analysis of pharmacodynamics. Arch Int Pharmacodyn 110:275–299

    PubMed  Google Scholar 

  • Artal-Sanz M, de Jong L, Tavenarakis N (2006) Caenorhabditis elegans: a versatile platform fore drug discovery. Biotechnol J 1:1405–1418

    PubMed  CAS  Google Scholar 

  • Arun KH, Kaul CL, Ramarao P (2005) Green fluorescent proteins in receptor research: an emerging tool for drug discovery. J Pharmacol Toxicol Methods 51:1–23

    PubMed  CAS  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58

    CAS  Google Scholar 

  • Asmild M, Oswald N, Krzywkowski FM, Friis S, Jacobsen BR, Reuter D, Taboryski R, Kutchinsky J, Vestergaard RK, Schrøder RL, Sørensen CB, Bech M, Korsgard MPG, Willumsen NJ (2003) Upscaling and automation of electrophysiology: toward high throughput screening in ion channel drug discovery. Receptor Channels 9:49–58

    CAS  Google Scholar 

  • Atienza JM, Zhu J, Wang X, Xu X, Abassi Y (2005) Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen 10:795–805

    PubMed  CAS  Google Scholar 

  • Auer M, Moore KJ, Meyer-Almes FJ, Guenther R, Pope AJ, Stoeckli KA (1999) Fluorescence correlation spectroscopy: lead discovery by miniaturized HTS. Int J Immunopharmacol 2:457–465

    Google Scholar 

  • Ayoub MA, Couturier C, Lucas-Meunier E, Angers S, Fossier P, Bouvier M, Jockers R (2002) Monitoring of ligand‐independent dimerization and ligand‐induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem 277:21522–21528

    PubMed  CAS  Google Scholar 

  • Aza-Blanc P, Cooper CL, Wagner K, Batalov S, Deveraux QL, Cooke MP (2003) Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell 12:627–637

    PubMed  CAS  Google Scholar 

  • Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    PubMed  Google Scholar 

  • Bailey SD, Bucci L, Gosline E, Kline NS, Park ICH, Rochlin D, Saunders JC, Vaisberg M (1959) Comparison of iproniacid with other amino oxidase inhibitors, including W-1544, JB-516, RO 4-1018 and RO 5-0700. Ann NY Acad Sci 80:652–668

    PubMed  CAS  Google Scholar 

  • Bailey SN, Wu RZ, Sabatini DM (2002) Applications of transfected cell microarrays in high‐throughput drug discovery. Drug Discov Today Suppl 7:S113–S118

    CAS  Google Scholar 

  • Bammer R, Skare S, Newbould R, Liu C, Thijs V, Ropele S, Clayton DB, Krueger G, Moseley ME, Glover GH (2005) Foundations of advanced magnetic resonance imaging. NeuroRX 2:167–196

    PubMed  Google Scholar 

  • Ban TA (2006) The role of serendipity in drug discovery. Dialogues Clin Neurosci 8:335–344

    PubMed  Google Scholar 

  • Banks P, Gosselin M, Prystay L (2000) Fluorescence polarization assays for high throughput screening of G protein‐coupled receptors. J Biomol Screen 5:158–168

    Google Scholar 

  • Barad O, Meiri E, Avniel A, Aharonpv R, Barzilai A, Bentwich E, Gilad S, Hurban P, Karov Y, Lobenhofer EK, Sharon E, Shiboleth Y, Shtutman M, Bentwich Z, Einat P (2004) MicroRNA expression detected by oligonucleotide microarray system establishment and expression profiling in human tissue. Genome Res 14:2486–2494

    PubMed  CAS  Google Scholar 

  • Barros HM, Tannhauser MA, Tannhauser SL, Tannhauser M (1991) Enhanced detection of hyperactivity after drug withdrawal with a simple modification of the open-field apparatus. J Pharmacol Methods 26:269–275

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  • Bartz S, Jackson AL (2005) How will RNAi facilitate drug development? Sci STKE eg7 (available online at http://stke.sciencemag.org/cgi/content/abstract/2005/295/pe39

    Google Scholar 

  • Beasley JR, Dunn DA, Walker TL, Parlato SM, Lehrach JM, Auld DS (2003) Evaluation of compound interference in immobilized metal ion affinity-based fluorescence polarization detection with a four million member compound collection. Assay Drug Dev Technol 1:455–459

    PubMed  CAS  Google Scholar 

  • Beckmann N, Laurent D, Tigani B, Panizzutti R, Rudin M (2004) Magnetic resonance imaging in drug discovery: lessons from disease areas. Drug Discov Today 9:35–42

    PubMed  CAS  Google Scholar 

  • Beckmann N, Mueggler T, Allegrini PR, Laurent D, Rudin M (2001) From anatomy to the target: contributions of magnetic resonance imaging to preclinical pharmaceutical research. Anat Rec 265:85–100

    PubMed  CAS  Google Scholar 

  • Beckmann N, Rudin M (2006) The drug discovery and development process: opportunities and challenges for MR techniques. In: Beckmann N (ed) In vivo MR techniques in drug discovery and development. Taylor and Francis, New York, pp 7–28

    Google Scholar 

  • Bednar B, Cunningham ME, Kiss L, Cheng G, McCauley JA, Liverton NJ, Koblan KS (2004) Kinetic characterization of novel NR2B antagonists using fluorescence detection of calcium flux. J Neurosci Methods 137:247–255

    PubMed  CAS  Google Scholar 

  • Beeley LJ, Duckworth DM, Southan C (2000) The impact of genomics on drug discovery. Prog Med Chem 37:1–43

    PubMed  CAS  Google Scholar 

  • Beeley N, Berger A (2000) A revolution in drug discovery. Br Med J 321:581–582

    CAS  Google Scholar 

  • Belart W (1953) Butazolidine als Antirheumaticum im Vergleich mit Irgapyrin. Dtsch Med Wschr 78:129–131

    PubMed  CAS  Google Scholar 

  • Bennett JP Jr (1978) Methods in binding studies. In: Yamamura et al. (eds) Neurotransmitter receptor binding. Raven, New York, pp 57–90

    Google Scholar 

  • Bentley DR (2000) Decoding the human genome sequence. Human Mol Genet 9:2353–2358

    CAS  Google Scholar 

  • Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RHA, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24

    PubMed  CAS  Google Scholar 

  • Berg M, Undisz K, Thiericke R, Moore T, Posten C (2000) Miniaturization of a functional transcription assay in yeast (human progesterone receptor) in the 384- and 1536-well plate format. J Biomol Screen 5:71–76

    PubMed  CAS  Google Scholar 

  • Berkowitz BA, Sachs G (2002) Life cycle of a blockbuster drug. Discovery and development of omeprazole (Prilosec™). Mol Interventions 2:6–11

    Google Scholar 

  • Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhovem RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437

    PubMed  CAS  Google Scholar 

  • Bertrand L, Parent S, Caron M, Legault M, Joly E, Angers S, Bouvier M, Houle B, Ménard L (2002) The BRET2/arrestin assay in stable recombinant cells: a platform screen for compounds that interact with G protein‐coupled receptors. J Receptor Signal Transduct Res 22:533–541

    CAS  Google Scholar 

  • Beske OE, Goldbard S (2002) High‐throughput cell analysis using multiplexed array technologies. Drug Discov Today Suppl 7:S131–S135

    CAS  Google Scholar 

  • Betz H (1992) Structure and function of inhibitory glycine receptors. Q Rev Biophys 25:381–394

    PubMed  CAS  Google Scholar 

  • Bilello JA (2005) The agony and ecstasy of “OMIC” technology in drug development. Curr Mol Med 5:39–52

    PubMed  CAS  Google Scholar 

  • Binz PA, Müller M, Walther D, Bienvenut WV, Gras R, Hoogland C, Bouchet G, Gasteiger E, Fabbretti R, Gay S, Palagi P, Wilkins MR, Rouge V, Tonella L, Paesano S, Rossellat G, Karmime A, Bairoch A, Sanchez JC, Appel RD, Hochstrasser DF (1999) A molecular scanner to automate proteomic research and to display proteome images. Anal Chem 71:4981–4988

    PubMed  CAS  Google Scholar 

  • Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17:121–127

    PubMed  CAS  Google Scholar 

  • Blake JF (2004) Integrating cheminformatic analysis in combinatorial chemistry. Curr Opin Chem Biol 8:407–411

    PubMed  CAS  Google Scholar 

  • Bleicher KH, Böhm HJ, Müller K, Alanine AI (2003) Hit and lead generation: beyond high‐throughput screening. Nat Rev Drug Discov 2:369–378

    PubMed  CAS  Google Scholar 

  • Blundell TL, Patel S (2004) High‐throughput X-ray crystallography for drug discovery. Curr Opin Pharmacol 4:490–496

    PubMed  CAS  Google Scholar 

  • Bolger R (1999) High-throughput screening: new frontiers for the 21st century. Drug Discov Today 4:251–253

    PubMed  Google Scholar 

  • Bookchin RM, Nagel RI, Ranney HM (1970) The effect of beta 73 Asn on the interactions of sickling hemoglobin. Biochim Biophys Acta 221:373–375

    PubMed  CAS  Google Scholar 

  • Bormann J (2000) The `ABC' of GABA receptors. Trends Pharmacol Sci 21:16–19

    PubMed  CAS  Google Scholar 

  • Bosse R, Illy C, Elands J, Chelsky D (2000) Miniaturizing screening: how low can we go today? Drug Discov Today HTS Suppl 1:42–47

    Google Scholar 

  • Bosworth N, Towers P (1989) Scintillation proximity assay. Nature 341:167–168

    PubMed  CAS  Google Scholar 

  • Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high‐throughput screening: BRET versus FRET. Trends Pharmacol Sci 23:351–354

    PubMed  CAS  Google Scholar 

  • Boute N, Pernet K, Issad T (2001) Monitoring the activation of the insulin receptor using bioluminescence resonance energy transfer. Mol Pharmacol 60:640–645

    PubMed  CAS  Google Scholar 

  • Bowery NG (1993) GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol 33:109–147

    PubMed  CAS  Google Scholar 

  • Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine tuning the recognition of DNA and RNA. Chem Biol 8:1–7

    PubMed  CAS  Google Scholar 

  • Brandish PE, Chiu CS, Schneeweis J, Brandon NJ, Leech CL, Kornienko O, Scolnick EM, Strulovici B, Zheng W (2006) A cell-based ultra-high‐throughput screening assay for identifying inhibitors of D-amino acid oxidase. J Biomol Screen 11:481–487

    PubMed  CAS  Google Scholar 

  • Brandt DW (1998) Core system model: understanding the impact of reliability on high‐throughput screening systems. Drug Discov Today 3:61–68

    Google Scholar 

  • Braun KPJ, Dijkhuizen RM, de Graff RA, Nicolay K, Vandertop WP, Gooskens RHJM, Tulleken KF (1997) Cerebral ischemia and white matter edema in experimental hydrocephalus. A combined in vivo MRI and MRS study. Brain Res 757:295–298

    PubMed  CAS  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JT, Parkinson H, Robinson A, Sarkans U, Schulze‐Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME) – towards standards for microarray data. Nat Genet 29:365–371

    PubMed  CAS  Google Scholar 

  • Broach JR, Thorner J (1996) High throughput screening for drug discovery. Nature 384:14–16

    PubMed  CAS  Google Scholar 

  • Broder S, Venter JC (2000) Sequencing the entire genomes of free-living organisms: the foundation of pharmacology in the new millennium. Annu Rev Pharmacol Toxicol 40:97–132

    PubMed  CAS  Google Scholar 

  • Bronstein I, Fortin J, Stanley E, Stewart GS, Kricka LJ (1994) Chemiluminescence and bioluminescence reporter gene assays. Anal Biochem 219:169–181

    PubMed  CAS  Google Scholar 

  • Bronstein I, Martin CS, Fortin JJ, Olesen CE, Voyta JC (1996) Chemiluminescence: sensitive detection technology for reporter gene assays. Clin Chem 42:1542–1546

    PubMed  CAS  Google Scholar 

  • Brown BA, Cain M, Broadbent J, Tomkins S, Henrich G, Joseph R, Casto S, Harney H, Greene R, Delmondo R, Ng S (1997) Flash Plate™ technology. In: Devlin JP (ed) High throughput screening. The discovery of bioactive substances. Dekker, New York, pp 317–328

    Google Scholar 

  • Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nature Genet 21 [Suppl 1]:33–37

    Google Scholar 

  • Brown RK, Proulx A (1997) Accelerating the discovery process with automation and robotics: a sure bet or a risky venture? In: Devlin JP (ed) High throughput screening. The discovery of bioactive substances. Dekker, New York, pp 509–523

    Google Scholar 

  • Browne MJ (2000) Analysis of large gene databases for discovery of novel therapeutic agents. J Biotechnol 78:247–259

    PubMed  CAS  Google Scholar 

  • Brueggemann A, George M, Klau M, Beckler M, Steindl J, Behrends JC, Fertig N (2004) The channel drug discovery and research: the automated Nano-Patch-Clamp technology. Curr Drug Discov Technol 1:91–96

    PubMed  CAS  Google Scholar 

  • Bruns RF, Daly JW, Snyder SH (1980) Adenosine receptors in brain membranes: binding of N 6-cyclohexyl [3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci USA 77:5547–5551

    PubMed  CAS  Google Scholar 

  • Bullingham R (2001) Pharmacogenomics: how gene variants can ruin good drugs. Curr Drug Discov 1:17–20

    Google Scholar 

  • Bunney WE, Bunney BG, Vawter MP, Tomita H, Li J, Evans SJ, Choudary PVPV, Myers RM, Jones EG, Watson SJ, Akil H (2003) Microarray technology: a review of new strategies to discover candidate vulnerability genes in psychiatric disorders. Am J Psychiatry 160:657–666

    PubMed  Google Scholar 

  • Burbaum JJ, Sigal NH (1997) New technologies for high‐throughput screening. Curr Opin Chem Biol 1:72–78

    PubMed  CAS  Google Scholar 

  • Burch RM (1991) Mass ligand binding screening for receptor antagonists: prototype new drugs and blind alleys. J Receptor Res 11:1–4

    Google Scholar 

  • Burke HB (2000) Discovering patterns in microarray data. Mol Diagn 5:349–357

    PubMed  CAS  Google Scholar 

  • Burke M, Bührle CH (2006) BOLD response during uncoupling of neuronal activity and CBF. Neuroimage 32:1–8

    PubMed  CAS  Google Scholar 

  • Burkhard P, Hommel U, Sanner M, Walkinshaw MD (1999) The discovery of steroids and other FKBP inhibitors using a molecular docking program. J Mol Biol 287:853–858

    PubMed  CAS  Google Scholar 

  • Burley SK, Almo SC, Bonanno JB, Capel M, Chance MR, Gaasterland T, Lin D, Sali A, Studier FW, Swaminathan S (1999) Structural genomics: beyond the human gene project. Nat Genet 23:151–157

    PubMed  CAS  Google Scholar 

  • Bylund DB, Snyder SH (1976) Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol Pharmacol 12:568–580

    PubMed  CAS  Google Scholar 

  • Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneimittelforschung 19:1363–1372

    PubMed  Google Scholar 

  • Callingham BA (1971) Current aspects of pharmacology, clonidine. Pharm J 207:431–433

    CAS  Google Scholar 

  • Campbell SF (2000) Science, art and drug discovery: a personal perspective. Clin Sci (Lond) 99:255–260

    CAS  Google Scholar 

  • Cancilla MT, Leavell MD, Chow J, Leary JA (2000) Mass spectrometry and immobilized enzymes for the screening of inhibitor libraries. Proc Natl Acad Sci USA 97:12008–12013

    PubMed  CAS  Google Scholar 

  • Carr SA, Annan RS (1997) Overview of peptide and protein analysis by mass spectrometry. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 10.21.1–10.21.27

    Google Scholar 

  • Carriero S, Damha MJ (2003) Template‐mediated synthesis of laraiat RNA and DNA. J Org Chem 68:8328–8338

    PubMed  CAS  Google Scholar 

  • Carulli JP, Artinger M, Swain PM, Root CD, Chee L, Tulig C, Guerin J, Osborne M, Stein G, Lian J, Lomedico PT (1998) High throughput analysis of differential gene expression. J Cell Biochem Suppl 30–31:286–296

    Google Scholar 

  • Catterjee‐Kishore M (2006) From genome to phenome – RNAi library screening and hit characterization using signaling pathway analysis. Curr Opin Drug Discov Dev 9:231–239

    Google Scholar 

  • Celis JE, Kruhøffer M, Gromova I, Frederiksen C, Østergaard M, Thykjaer T, Gromov P, Yu J, Pálsdóttir H, Magnusson N, Ørntoft TF (2000) Gene expression profiling: monitoring transcription and translation using DNA microarrays and proteomics. FEBS Lett 480:2–16

    PubMed  CAS  Google Scholar 

  • Chalfie M (1995) Green fluorescent protein. Photochem Photobiol 62:651–656

    PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher CD (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    PubMed  CAS  Google Scholar 

  • Charter JM (2004) A guide to HTS assay development. D&MD Publications, Westborough, Mass.

    Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    PubMed  CAS  Google Scholar 

  • Cheng ZJ, Miller LJ (2001) Agonist‐dependent dissociation of oligomeric complexes of G-protein‐coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. J Biol Chem 276:48040–48047

    PubMed  CAS  Google Scholar 

  • Chin J, Adams AD, Bouffard A, Green A, Lacson RG, Smith T, Fischer PA, Menke JG, Sparrow CP, Mitnaul LJ (2003) Miniaturization of cell-based beta‐lactamase‐dependent FRET assays to ultra-high throughput formats to identify agonists of human liver X receptors. Assay Drug Dev Technol 1:777–787

    PubMed  CAS  Google Scholar 

  • Chittajallu R, Braithwaite SP, Clarke VJR, Henley JM (1999) Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 20:26–35

    PubMed  CAS  Google Scholar 

  • Clark DE, Pickett SD (2000) Computational methods for the prediction of “drug-likeness”. Drug Discov Today 5:49–58

    PubMed  CAS  Google Scholar 

  • Cocks BG, Theriault TP (2004) Development in effective application of small inhibitory RNA (siRNA) technology in mammalian cells. Drug Discov Today Targets 3:165–171

    Google Scholar 

  • Colinge J, Masselot A, Giroin M Dessingy T, Magnin J (2003) OLAV: towards high‐throughput tandem mass spectroscopy data identification. Proteomics 3:1454–1463

    PubMed  CAS  Google Scholar 

  • Colland F, Daviet L (2004) Integrating a functional proteomic approach into the target discovery process. Biochemie 86:625–632

    CAS  Google Scholar 

  • Collins FS, Green ED, Guttmacher AE, Guyer MS (2003) A vision for the future of genomics research. A blueprint for the genomic era. Nature 422:835–847

    PubMed  CAS  Google Scholar 

  • Conway BR, Minor LK, Xu JZ, Gunnet HW, DeBiasio R, D'Andrea MR, Rubin R, Giuliano K, Zhou LB, Demarest KT (1999) Quantification of G-protein coupled receptor internalization using G-protein coupled receptor-green fluorescent protein conjugates with the ArrayScan™ high-content screening system. J Biomol Screen 4:75–86

    PubMed  CAS  Google Scholar 

  • Coombes CE, Boeke JD (2005) An evaluation of detection methods for large lariat RNAs. RNA 11:323–331

    PubMed  CAS  Google Scholar 

  • Courvoisier S (1956) Pharmacodynamic basis for the use of chlorpromazine in psychiatry. J Clin Exp Psychopathol 17:25–37

    PubMed  CAS  Google Scholar 

  • Coward P, Chan SD, Wada HG, Humphries GM, Conklin BR (1999) Chimeric G proteins allow a high‐throughput signaling assay of Gi-coupled receptors. Anal Biochem 270:242–248

    PubMed  CAS  Google Scholar 

  • Cox B, Denyer JC, Binnie A, Donnelly MC, Evans B, Green DVS, Lewis JA, Mander TH, Merritt AT, Valler MJ, Watson SP (2000) Application of high‐throughput screening techniques to drug discovery. Progr Med Chem 37:83–133

    CAS  Google Scholar 

  • Creese I (1978) Receptor binding as a primary drug screening device. In: Yamamura et al. (eds) Neurotransmitter receptor binding. Raven, New York, pp 141–170

    Google Scholar 

  • Crossley R (2004) The design of screening libraries targeted at G-protein coupled receptors. Curr Top Med Chem 4:581–588

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P (2006) Drug discovery in jeopardy. J Clin Invest 116:2837–2842

    PubMed  CAS  Google Scholar 

  • Cullen CJ, Wooton RCR, de Mello AJ (2004) Microfluidic systems for high‐throughput and combinatorial chemistry. Curr Opin Drug Discov Dev 7:798–806

    CAS  Google Scholar 

  • Dahanukar SH, Thatte UM (1989) Ayurveda Revisited. Popular Prakashan, Bombay

    Google Scholar 

  • Daly DS, White AM, Varnum SM, Anderson KK, Zangar RC (2005) Evaluation concentration estimation errors in ELISA microarray experiments. BMC Bioinformatics 6:17

    PubMed  Google Scholar 

  • Dancík V, Addona TA, Clauser KR, Vath JE, Pevzner P (1999) De novo peptide sequencing via tandem mass spectroscopy. J Comput Biol 6:327–342

    PubMed  Google Scholar 

  • Danin‐Kreiselman M, Lee CY, Chanfreau G (2003) RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns. Mol Cell 11:1279–1289

    PubMed  Google Scholar 

  • Danser AHJ, Schunkert H (2000) Renin‐angiotensin system gene polymorphisms: potential mechanisms for their association with cardiovascular disease. Eur J Pharmacol 410:303–316

    PubMed  CAS  Google Scholar 

  • Dash VB, Junius AMM (1987) A handbook of Ayurveda. Concept, New Delhi

    Google Scholar 

  • David CA, Middleton T, Montgomery D, Lim HB, Kati W, Molla A, Xuei X, Warrior U, Kofron JL, Burns DJ (2002) Microarray compound screening (µARCS) to identify inhibitors of HIV integrase. J Biomol Screen 7:259–266

    PubMed  CAS  Google Scholar 

  • Davies JW, Glick M, Jenkins JL (2006) Streamlining discovery by aligning in silico and high‐throughput screening. Curr Opin Chem Biol 10:343–351

    PubMed  CAS  Google Scholar 

  • De Hoog CL, Mann M (2004) Proteomics. Annu Rev Genomics Hum Genet 5:267–293

    PubMed  Google Scholar 

  • De Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephentoin metabolism in humans. J Biol Chem 269:15419–15422

    PubMed  Google Scholar 

  • DeRisi JL, Iyer VR (1999) Genomics and array technology. Curr Opin Oncol 11:76–79

    PubMed  CAS  Google Scholar 

  • Debouck C, Goodfellow PN (1999) DNA microarrays in drug discovery and development. Nat Genet 21 [1 Suppl]:48–50

    Google Scholar 

  • Debouck C, Metcalf B (2000) The impact of genomics on drug discovery. Annu Rev Pharmacol Toxicol 40:193–208

    PubMed  CAS  Google Scholar 

  • Delay J, Deniker P (1952) Trente-huit cas de psychoses traitées par le cure prolongée et continue de 4560 RP. Le Congrès de Al. et Neurol. de Langue Fr. In: Compte rendu du Congrès. Masson et Cie, Paris

    Google Scholar 

  • Deloire‐Grassin MS, Brochet B, Quesson B, Delalande C, Canioni P, Petry KG (2000) In vivo evaluation of remyelinization in rat brain by magnetic transfer imaging. J Neurol Sci 178:10–16

    PubMed  Google Scholar 

  • Deng G, Gu RF, Marmor S, Fisher SL, Jahic H, Sanyal G (2004) Development of an LC-MS based enzyme activity assay for MurC: application to evaluation of inhibition and kinetic analysis. J Pharm Biomed Anal 35:817–828

    PubMed  CAS  Google Scholar 

  • Denli AM, Tops BBJ, Plasterk RAH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    PubMed  CAS  Google Scholar 

  • Devasahayam N, Murugesan R, Matsumoto K, Mitchell JB, Cook JA, Subramanian S, Krishna MC (2004) Tailored sinc pulses for uniform excitation and artefact-free radio frequency time-domain EPR imaging. J Magn Reson 168:110–117

    PubMed  CAS  Google Scholar 

  • Devlin JP (ed) (1997) High throughput screening. The discovery of bioactive substances. Dekker, New York

    Google Scholar 

  • Deyholos M, Wang H, Galbraith D (2001) Microarrays for gene discovery and metabolic pathway analysis in plants. Origins 2:6–8

    Google Scholar 

  • DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econom 22:151–185

    Google Scholar 

  • Dick P (1959) Therapeutic action of a monoamino oxidas inhobitot, marsilid (iproniazid) on depressive states. Schweiz Med Wschr 89:1288–1291

    PubMed  CAS  Google Scholar 

  • Diehn M, Eisen MB, Botstein D, Brown PQ (2000) Large-scale identification of secreted and membrane‐associated gene products using DNA microarrays. Nat Genet 25:58–62

    PubMed  CAS  Google Scholar 

  • Dietel M, Sers C (2006) Personalized medicine and development of targeted therapies: the upcoming challenge for diagnostic molecular pathology. A review. Virchows Arch 448:744–755

    PubMed  Google Scholar 

  • Diller DJ, Hobbs DW (2004) Deriving knowledge through data mining high‐throughput screening data. J Med Chem 47:6373–6383

    PubMed  CAS  Google Scholar 

  • Dillon KJ, Smith GCM, Martin NMB (2003) A FlashPlate assay for the identification of PARP-1 inhibitors. J Biomol Screen 8:347–552

    PubMed  CAS  Google Scholar 

  • Divers M (1999) What is the future of high throughput screening? J Biomol Screen 4:177–178

    Google Scholar 

  • Do JH, Choi DK (2006) Normalization of microarray data: single‐labeled and dual-labeled arrays. Mol Cell 22:254–261

    CAS  Google Scholar 

  • Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ (1991) Model systems for the study of seven‐transmembrane‐segment receptors. Annu Rev Biochem 60:653–688

    PubMed  CAS  Google Scholar 

  • Dooley CT, Houghten RA (1999) New opioid peptides, peptidomimetics, and heterocyclic compounds from combinatorial libraries. Biopolymers (Peptide Science) 51:379–390

    CAS  Google Scholar 

  • Dove A (1999) Proteomics: translating gene into products? Nature Biotechnol 17:233–236

    Google Scholar 

  • Drake KA, Zhang JH, Harrison RK, McGeehan GM (2002) Development of a homogeneous, fluorescence resonance energy transfer-based in vitro recruitment assay for peroxisome proliferators‐activated receptor δ via selection of active LXXLL coactivator peptides. Anal Biochem 304:63–69

    PubMed  CAS  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    PubMed  CAS  Google Scholar 

  • Drews J (2000) Quo vadis, biotech? (Part 1). Drug Discov Today 5:547–553

    PubMed  Google Scholar 

  • Drews J (2001) Quo vadis, biotech? (Part 2). Drug Discov Today 6:21–26

    PubMed  Google Scholar 

  • Duncan MW, Hunsucker SW (2005) Proteomics as a tool for clinically relevant biomarker discovery and validation. Exp Biol Med 230:808–817

    CAS  Google Scholar 

  • Dunn D, Orlowski M, McCoy P, Gastgeb F, Appell K, Ozgur L, Webb M, Burbaum J (2000) Ultra-high throughput screen of two-million‐member combinatorial compound collection in a miniaturized 1536-well assay format. J Biomol Screen 5:177–187

    PubMed  CAS  Google Scholar 

  • Dunn DA, Feygin I (2000) Challenges and solutions to ultra-high‐throughput screening assay miniaturization: submicroliter fluid handling. Drug Discov Today HTS Suppl 5:S84–S91

    CAS  Google Scholar 

  • Dupriez VJ, Maes K, Le-Poul E, Burgeon E, Detheux M (2002) Aequorin-based functional assays for G-protein‐coupled receptors, ion channels, and tyrosine kinase receptors. Receptors Channels 8:319–330

    Google Scholar 

  • Dutt MJ, Lee KH (2000) Proteomic analysis. Curr Opin Biotechnol 11:176–179

    PubMed  CAS  Google Scholar 

  • Eaton GR, Eaton SE, Ohno K (eds) (1991) EPR imaging and in vivo EPR. CRC, Boca Raton, Fla.

    Google Scholar 

  • Edwards BS, Oprea T, Prossnitz ER, Sklar LA (2004) Flow cytometry for high‐throughput, high-content screening. Curr Opin Chem Biol 8:392–398

    PubMed  CAS  Google Scholar 

  • Edwards PJ (2003) Purification strategies for combinatorial and parallel chemistry. Comb Chem High Throughput Screen 6:11–27

    PubMed  CAS  Google Scholar 

  • Eggeling C, Kask P, Winkler D, Jäger S (2005) Rapid analysis of Förster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction. Biophys J 89:605–618

    PubMed  CAS  Google Scholar 

  • Eglen RM (1999) High throughput screening: myths and future realities. J Biomol Screen 4:179–181

    PubMed  Google Scholar 

  • Ehrhart G, Ruschig H (eds) (1972) Arzneimittel. Entwicklung, Wirkung Darstellung, vols 1–5. Verlag Chemie, Weinheim/Bergstrasse

    Google Scholar 

  • Elmén J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Ørum H, Koch T, Wahlestedt C (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33:439–447

    PubMed  Google Scholar 

  • Enjalbal C, Martinez J, Aubagnac JL (2000) Mass spectrometry in combinatorial chemistry. Mass Spectrometry Rev 19:139–161

    CAS  Google Scholar 

  • Enna SJ (1978) Radioreceptor assay techniques for neurotransmitters and drugs. In: Yamamura et al. (eds) Neurotransmitter receptor binding. Raven, New York, pp 127–139

    Google Scholar 

  • Enna SJ (2000) Drug stories of origins and uses. In: Stone T, Darlington G (eds) Pills, potions and poisons. How drugs work. Oxford University Press, New York, pp 492–493

    Google Scholar 

  • Epstein CB, Butow RA (2000) Microarray technology – enhanced versatility, persistent challenge. Curr Opin Biotechnol 11:36–41

    PubMed  CAS  Google Scholar 

  • Epstein JR, Walt DR (2003) Fluorescence-based fibre optic arrays: a universal platform for sensing. Chem Soc Rev 32:203–214

    PubMed  CAS  Google Scholar 

  • Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491

    PubMed  CAS  Google Scholar 

  • Fang X, Li JJ, Perlette J, Tan W, Wang K (2000) Molecular beacons. Novel fluorescent probes. Anal Chem 72:747A–753A

    PubMed  CAS  Google Scholar 

  • Farber GK (1999) New approaches to rational drug design. Pharmacol Ther 84:327–332

    PubMed  CAS  Google Scholar 

  • Fecik RA, Frank KE, Gentry EJ, Menin SR, Mitscher LA, Telikepalli H (1998) The search for orally active medications through combinatorial chemistry. Med Res Rev 18:149–185

    PubMed  CAS  Google Scholar 

  • Feiglin MN, Skwish S, Laab M, Heppel A (2000) Implementing multilevel dynamic scheduling for a highly flexible 5-rail high throughput screening system. J Biomol Screen 5:39–48

    PubMed  CAS  Google Scholar 

  • Feldman AL, Costouros NG, Wang E, Qian M, Marincola FM, Alexander HR, Libutti SK (2002) Advantages of mRNA amplification for microarray analysis. Biotechniques 33:906–914

    PubMed  CAS  Google Scholar 

  • Feng HP (2000) A protein microarray. Nat Struct Biol 7:829–830

    PubMed  CAS  Google Scholar 

  • Fernandes PB (1998) Technological advances in high‐throughput screening. Curr Opin Chem Biol 2:597–603

    PubMed  CAS  Google Scholar 

  • Firestein GS, Pisetsky DS (2002) DNA microarrays: boundless technology of bound by technology? Guidelines for studies using microarray technology. Arthritis Rheum 46:859–861

    PubMed  Google Scholar 

  • Fischer A, Borensztein P, Roussel C (2005) The European rare disease therapeutic initiative. PLoS Med 2:2243

    Google Scholar 

  • Forster T, Costa Y, Roy D, Cooke HJ, Maratu K (2004) Triple‐target microarray experiments: a novel experimental strategy. BMC Genomics 5:13

    PubMed  Google Scholar 

  • Fowler A, Swift D, Longman E, Acornley A, Hemsley P, Murray D, Unitt J, Dale I, Sullivan E, Coldwell M (2002) An evaluation of fluorescence polarization and lifetime discriminated polarization for high throughput screening of serine/threonine kinases. Anal Biochem 308:223–231

    PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Wang GI, Ding YS, Dewey SL (1999) PET and rug research and development. J Nucl Med 40:1154–1163

    PubMed  CAS  Google Scholar 

  • Fox S, Farr-Jones S, Sopchak L, Boggs A, Comley J (2004) High‐throughput screening: searching for higher productivity. J Biomol Screen 9:354–358

    PubMed  CAS  Google Scholar 

  • Fox S, Farr-Jones S, Yund MA (1999) High throughput screening for drug discovery: continually transitioning into new technology. J Biomol Screen 4:183–186

    PubMed  CAS  Google Scholar 

  • Fox S, Wang H, Sopchak L, Khoury R (2001) Increasing the changes of lead discovery. Drug Disc World 2:35–44

    Google Scholar 

  • Francis R, Friedman SH (2003) An interference-free fluorescent assay of telomerase for the high‐throughput analysis of inhibitors. Anal Biochem 323:65–73

    PubMed  CAS  Google Scholar 

  • Franke H, Fuchs J (1955) Über ein neues antidiabetisches Prinzip. Ergebnisse klinischer Untersuchungen. Dtsch Med Wschr 80:1449–1452

    PubMed  CAS  Google Scholar 

  • Furchgott RF (1966) The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor‐agonist complexes. Adv Drug Res 3:21–55

    Google Scholar 

  • Gaasterland D, Berikanow S (2000) Making the most of microarray data. Nat Genet 24:204–206

    PubMed  CAS  Google Scholar 

  • Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994) Application of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem 37:1233–1251

    PubMed  CAS  Google Scholar 

  • Game SM, Rajapurohit PK, Clifford M, Bird MI, Priest R, Bovin NV, Nifantev NE, O'Beirne G, Cook ND (1998) Scintillation proximity assay for E-, P-, and L-selectin utilizing polyacrylamide-based neoglycoconjugates as ligands. Anal Biochem 258:127–135

    PubMed  CAS  Google Scholar 

  • Gaspari F, Mariani M, Sola F, Galvani A (2004) Quantification of the proliferation index of human dermal fibroblast cultures with the ArrayScan™ high-content screening reader. J Biomol Screen 9:232–243

    Google Scholar 

  • Gaudet EA, Huang KS, Zhang Y, Huang W, Mark D, Sportsman JR (2003) A homogeneous fluorescence polarization assay adaptable for a range of protein serine/threonine and tyrosine kinases. J Biomol Screen 8:164–175

    PubMed  CAS  Google Scholar 

  • Gauglitz G (2000) Optical detection methods for combinatorial libraries. Curr Opin Chem Biol 4:351–355

    PubMed  CAS  Google Scholar 

  • Ge H (2000) UPA, a universal protein array system for quantitative detection of protein‐protein, protein-DNA, protein-RNA, and protein‐ligand interactions. Nucleic Acids Res 28:e3

    PubMed  CAS  Google Scholar 

  • Gebauer M (2004) Microarray applications: emerging technologies and perspectives. Drug Discov Today 9:915–917

    PubMed  Google Scholar 

  • Gericke CA, Riesberg A, Busse R (2005) Ethical issues in funding orphyn drug research and development. J Med Ethics 31:164–168

    PubMed  CAS  Google Scholar 

  • Gibbons I (2000) Microfluidic arrays for high‐throughput submicroliter assays using capillary electrophoresis. Drug Discov Today HTS Suppl 1:33–38

    CAS  Google Scholar 

  • Gill S, Gill R, Lee S, Hesketh JC, Fedida D, Rezazadeh S, Stankovich L, Liang D (2003) Flux assays in high throughput screening of ion channels in drug discovery. Assay Drug Dev Technol 1:709–717

    PubMed  CAS  Google Scholar 

  • Giuliano KA, DeBiasio RL, Dunlay RT, Gough A, Volosky JM, Zock J, Pavlakis GN, Taylor DL (1997) High-content screening: a new approach to easing key bottlenecks in the drug discovery process. J Biomol Screen 2:249–259

    CAS  Google Scholar 

  • Glickman JF, Wu X, Mercuri R, Illy C, Bowen R, He Y, Sills M (2002) A comparison of ALPHAScreen, TR-FRET and TRF as assay methods for FXR nuclear receptors. J Biomol Screen 7:3–10

    PubMed  CAS  Google Scholar 

  • Glover CJ, Hite K, DeLosh R, Scudiero DA, Fivash MJ, Smith LR, Fisher RJ, Wu JW, Shi Y, Kipp RA, McLendon GL, Sausville EA, Shoemaker RH (2003) A high‐throughput screen for identification of molecular mimics of Smac/DIABLO utilizing a fluorescence polarization assay. Anal Biochem 320:157–169

    PubMed  CAS  Google Scholar 

  • Goddard JP, Reymond JL (2004) Enzyme assays for high‐throughput screening. Curr Opin Biotechnol 15:314–322

    PubMed  CAS  Google Scholar 

  • Godfraind T, Vanhoutte PM (1998) The IUPHAR compendium of receptor characterization and classification. IUPHAR, London

    Google Scholar 

  • Goedde HW, Argwal DP, Harada S (1983) Pharmacogenetics of alcohol sensitivity. Pharmacol Biochem Behav 18 [Suppl 1]:161–166

    Google Scholar 

  • Golebiowski A, Klopfenstein SR, Portlock DE (2003) Lead compounds discovered from libraries: Part 2. Curr Opin Chem Biol 7:308–305

    PubMed  CAS  Google Scholar 

  • Golla R, Seethal R (2004) A sensitive, robust high‐throughput electrochemiluminescence assay for rat insulin. J Biomol Screen 9:62–70

    PubMed  CAS  Google Scholar 

  • Golman K, Leunbach I, Ardenkjaer‐Larsen JH, Ehnholm GI, Wistrand LG, Peterson JS, Jarvi A, Vahasalo S (1998) Overhauser‐enhanced MR imaging (OMRI). Acta Radiol 39:10–17

    PubMed  CAS  Google Scholar 

  • Golman K, Leunbach I, Petersson JS, Holz D, Overweg J (2002) Overhauser‐enhanced MRI. Acad Radiol 9 [Suppl 1]:S104–S108

    Google Scholar 

  • Gonzales FJ (1990) Molecular genetics of the P-450 superfamily. Pharmacol Ther 45:1–38

    Google Scholar 

  • González JE, Negulescu PA (1998) Intracellular detection assays for high‐throughput screening. Curr Opin Biotechnol 9:624–631

    PubMed  Google Scholar 

  • Goodnow RA Jr (2001) Current practices in generation of small molecule new leads. J Cell Biochem Suppl 37:13–21

    PubMed  Google Scholar 

  • Goodnow RA Jr, Guba W, Haap W (2003) Library design practices for success in lead generation with small molecule libraries. Comb Chem High Throughput Screen 6:649–660

    PubMed  CAS  Google Scholar 

  • Gopalakrishnan SM, Karvinen J, Kofron JL, Burns DJ, Warrior U (2002) Application of Micro Arrayed Compound Screening (microARCS) to identify inhibitors of caspase-3. J Biomol Screen 7:317–323

    PubMed  CAS  Google Scholar 

  • Gordon EM, Barrett RW, Dower WJ, Fodor SPA, Gallop MA (1994) Application of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem 37:1385–1401

    PubMed  CAS  Google Scholar 

  • Gosalia DN, Diamond SL (2003) Printing chemical libraries on microarrays for fluid phase nanoliter reactions. Proc Natl Acad Sci USA 110:8721–8726

    Google Scholar 

  • Goto A, Yamada K (1998) An approach to the development of novel antihypertensive drugs: potential role of sodium pump inhibitors. Trends Pharmacol Sci 19:201–204

    PubMed  CAS  Google Scholar 

  • Grant SF (2001) Pharmacogenetics and pharmacogenomics: tailored drug therapy for the 21th century. Trends Pharmacol Sci 22:3–4

    PubMed  CAS  Google Scholar 

  • Green DV (2003) Virtual screening of virtual libraries. Prog Med Chem 41:61–97

    PubMed  CAS  Google Scholar 

  • Greenstein BD (1991) Some uses of Scatchard plot and other parameters of ligand binding. In: Greenstein B (ed) Neuroendocrine research methods, Vol 2. Harwood Academic, Chur, pp 617–629

    Google Scholar 

  • Gruner OC (1930) A treatise on the canon of medicine of Avicenna. Luzac, London

    Google Scholar 

  • Grépin C (2004) Multiplexed cell-based assays: an intermediary screening format between high throughput screening and high content screening. ICP Conference San Diego 2004

    Google Scholar 

  • Grépin C, Lionne B, Borie C, Palmer M, Pernelle C (2001) High throughput quantification of the endogenous cFos. New Drugs 1:38–41

    Google Scholar 

  • Grépin C, Pernelle C (2000) High‐throughput screening. Evolution of homogeneous time resolved fluorescence (HTRF) technology for HTS. Drug Discov Today 5:212–214

    PubMed  Google Scholar 

  • Guillausseau PJ, Tielmans D, Virally-Monod M, Assayag M (1997) Diabetes: from phenotypes to genotypes. Diabetes Metab Res 23 [Suppl 2]:14–21

    Google Scholar 

  • Haberman AB (2003) Model organisms: tools for drug discovery and development. Drug Discov Des 9:1–16

    Google Scholar 

  • Haffner ME (2002) Orphan drug product regulation – United States. Int J Clin Pharmacol 40:84–88

    CAS  Google Scholar 

  • Hajduk PJ, Gerfin T, Boehlen JM, Häberli M, Marek D, Fesik SE (1999) High‐throughput nuclear magnetic resonance-based screening. J Med Chem 42:2315–2317

    PubMed  CAS  Google Scholar 

  • Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294:126–131

    PubMed  CAS  Google Scholar 

  • Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P (2004) Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro 18:703–710

    PubMed  CAS  Google Scholar 

  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    PubMed  CAS  Google Scholar 

  • Hanash S (2003) Disease proteomics. Nature 422:226–232

    PubMed  CAS  Google Scholar 

  • Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378

    PubMed  CAS  Google Scholar 

  • Hardiman G (2004) Microarray platforms – comparisons and contrasts. Pharmacogenomics 5:487–502

    PubMed  CAS  Google Scholar 

  • Harding D, Banks M, Fogarty S, Binnie A (1997) Development of an automated high‐throughput screening system: a case history. Drug Discov Today 2:385–390

    Google Scholar 

  • Harris T (2000) Genetics, genomics and drug discovery. Med Res Rev 20:203–211

    PubMed  CAS  Google Scholar 

  • Harvey A (2000) Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today 5:294–300

    PubMed  Google Scholar 

  • Hatzimanikatis V, Choe LH, Lee KH (1999) Proteomics: theoretical and experimental considerations. Biotechnol Prog 15:312–318

    PubMed  CAS  Google Scholar 

  • Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95:13573–13578

    PubMed  CAS  Google Scholar 

  • Haupts U, Rüdiger M, Pope AJ (2000) Macroscopic versus microscopic fluorescence techniques in (ultra)-high‐throughput screening. Drug Discov Today HTS Suppl 1:3–9

    CAS  Google Scholar 

  • Haystead TAJ (2001) Proteome mining: exploiting serendipity in drug discovery. Curr Drug Discov 1:22–24

    Google Scholar 

  • Heding A (2004) Use of the BRET 7TM receptor/beta-arrestin assay in drug discovery and screening. Expert Rev Mol Diagn 4:403–411

    PubMed  CAS  Google Scholar 

  • Heeren RMA, Kleinnijenhuis AJ, McDonnell LA, Mize TH (2004) A mini-review of mass spectrometry using high‐performance FTICR-MS methods. Anal Bioanal Chem 378:1048–1058

    PubMed  CAS  Google Scholar 

  • Heilker R, Zemanova L, Valler MJ, Nienhaus GU (2005) Confocal fluorescence microscopy for high‐throughput screening of G-protein coupled receptors. Curr Med Chem 12:2551–2559

    PubMed  CAS  Google Scholar 

  • Heller‐Uszynska K, Kilian A (2004) Microarray TRAP – a high‐throughput assay to quantitate telomerase activity. Biochem Biophys Res Commun 323:465–472

    PubMed  Google Scholar 

  • Hemmilä IA, Hurskainen P (2002) Novel strategies in drug discovery. Drug Discov Today Suppl 7:S150–S156

    Google Scholar 

  • Henry TR (2003) The history of valproate in clinical neuroscience. Psychopharm Bull 37 [Suppl 2]:5–16

    Google Scholar 

  • Hertzberg RP, Pope AJ (2000) High‐throughput screening: new technology for the 21th century. Curr Opin Chem Biol 4:445–451

    PubMed  CAS  Google Scholar 

  • Hodder P, Mull R, Cassaday J, Berry K, Strulovici B (2004) Miniaturization of intracellular calcium functional assays to 1536-well plate format using a fluorometric imaging plate reader. J Biomol Screen 9:417–426

    PubMed  CAS  Google Scholar 

  • Hogan JC Jr (1996) Directed combinatorial chemistry. Nature 384 [Suppl 17–19]:6604

    Google Scholar 

  • Holubar K (1991) Serendipity: its basis and importance. Wien Klin Wschr 103:533–535

    PubMed  CAS  Google Scholar 

  • Hornak JP (2007) The basics of MRI. Magnetic Resonance Laboratory, Center of Imaging Service, Rochester Institute of Technology, Rochester, N.Y.

    Google Scholar 

  • Horrobin DF (2000) Innovation in the pharmaceutical industry. J R Soc Med 93:341–345

    PubMed  CAS  Google Scholar 

  • Horrobin DF (2001) Realism in drug discovery – could Cassandra be right? Nature Biotechnol 19:1099–1100

    Google Scholar 

  • Horrobin DF (2002) Effective clinical innovation: an ethical imperative. Lancet 359:1857–1858

    PubMed  Google Scholar 

  • Horrobin DF (2003) Modern biomedical research: an internally self‐consistent universe with little contact with medical reality? Nat Rev Drug Discov 2:151–154

    Google Scholar 

  • Houghten RA (2000) Parallel array and mixture-based synthetic combinatorial chemistry: tools for the next millennium. Annu Rev Pharmacol Toxicol 40:273–282

    PubMed  CAS  Google Scholar 

  • Hoult DI, Busby SJ, Gadian DG, Radda GK, Richards RE, Seeley PJ (1974) Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature252:285–287

    Google Scholar 

  • Houston JG, Banks M (1997) The chemical‐biological interface: developments in automated and miniaturized screening technology. Curr Opin Biotechnol 8:734–740

    PubMed  CAS  Google Scholar 

  • Howbrook DN, van der Valk AM, O'Shaughnessy MC, Sarker DK, Baker SC, Lloyd AW (2003) Developments in microarray technologies. Drug Discov Today 8:642–651

    PubMed  CAS  Google Scholar 

  • Hsieh HB, Fitch J, White D, Torres F, Roy J, Matusiak R, Krivacic B, Kowalski B, Bruce R, Elrod S (2004) Ultra-high‐throughput microarray generation and liquid dispensing using disposable piezoelectric ejectors. J Biomol Screen 9:85–94

    PubMed  CAS  Google Scholar 

  • Hughes DA, Tunnage B, Yeo ST (2005) Drugs for exceptionally rage diseases. Do they deserve special status of funding? Q J Med 98:829–836

    Google Scholar 

  • Huth JR, Mendoza R, Olejniczak ET, Johnson RW, Cothron DA, Liu Y, Lerner GC, Chen J, Hajduk PJ (2005) ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. J Am Chem Soc 127:217–224

    PubMed  CAS  Google Scholar 

  • Hynes J, Floyd S, Soini A, O'Connor R, Papkovsky D (2003) Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J Biomol Screen 8:264–272

    PubMed  CAS  Google Scholar 

  • Imbeaud S, Auffray C (2005) “The 39 steps” in gene expression profiling: critical issues and proposed best practices for microarray experiments. Drug Discov Today 10:1175–1182

    PubMed  CAS  Google Scholar 

  • In vivo Pharmacology Training Group (2002) The fall and rise of in vivo pharmacology. Trends Pharmacol Sci 23:13–18

    Google Scholar 

  • Inoue K, Fukunaga M, Kiriyama T, Komura S (1984) Accumulation of acetaldehyde in alcohol‐sensitive Japanese: relation to ethanol and acetaldehyde oxidizing capacity. Alcohol Clin Exp Res 8:319–322

    PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • Isailovic D, Li HW, Phillips GJ, Yeung ES (2005) High‐throughput single-cell fluorescence spectroscopy. Appl Spectrosc 59:221–226

    PubMed  CAS  Google Scholar 

  • Isom LL, DeJongh KS, Catterall WA (1994) Auxiliary subunits of voltage-gated ion channels. Neuron 12:1183–1194

    PubMed  CAS  Google Scholar 

  • Jain KK (2000) Application of biochip and microarray systems in pharmacogenomics. Pharmacogenomics 1:289–307

    PubMed  CAS  Google Scholar 

  • Jain KK (2001) Proteomics: new technologies and their applications. Drug Discov Today 6:457–459

    PubMed  Google Scholar 

  • James P (2001) Proteome research: mass spectrometry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jenkins JL, Kao RY, Shapiro R (2003) Virtual screening to enrich hit lists from high‐throughput screening: a case study on small-molecule inhibitors of angiogenin. Proteins 50:81–83

    PubMed  CAS  Google Scholar 

  • Jepsen JS, Sorensen MD, Wengel J (2004) Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. Oligonucleotides 14:130–146

    PubMed  CAS  Google Scholar 

  • Jimonet P, Jäger R (2004) Strategies for designing GPCR-focused libraries and screening sets. Curr Opin Drug Discov Dev 7:325–333

    CAS  Google Scholar 

  • Jones DA, Fitzpatrick FA (1999) Genomics and the discovery of new drug targets. Curr Opin Chem Biol 3:71–76

    PubMed  CAS  Google Scholar 

  • Jones PA, King AV (2003) High throughput screening (HTS) for phototoxicity hazard using the in vitro 3T3 neutral red uptake assay. Toxicol In Vitro 17:703–708

    PubMed  CAS  Google Scholar 

  • Jones SW, de Souza PM, Lindsay MA (2004) siRNA gene silencing: a route to drug target discovery. Curr Opin Pharmacol 4:522–527

    PubMed  CAS  Google Scholar 

  • Jordan B (2001) DNA microarrays: gene expression applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Juliano RL, Astriab‐Fisher A, Falke D (2001) Macromolecular therapeutics: emerging strategies for drug discovery in the postgenome era. Mol Interv 1:40–54

    PubMed  CAS  Google Scholar 

  • Jungblut PR, Zimny-Arndt U, Zeindl‐Eberhart E, Stulik J, Koupilova K, Pleissner KP, Otto A, Müller EC, Sokolowska‐Kohler W, Grabner G, Stoffler G (1999) Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis 20:2100–2110

    PubMed  CAS  Google Scholar 

  • Jäger S, Brand L, Eggeling C (2003a) New fluorescence techniques for high‐throughput drug discovery. Curr Pharm Biotechnol 4:463–476

    PubMed  Google Scholar 

  • Jäger S, Garbow N, Kirsch A, Preckel H, Gandenberger FU, Herrenknecht K, Rüdiger M, Hutchinson JP, Bingham RP, Ramon F, Bardera A, Martin J (2003b) A modular, fully integrated ultra-high‐throughput screening system based on confocal fluorescence analysis techniques. J Biomol Screen 8:648–659

    PubMed  Google Scholar 

  • Kain SR (1999) Green fluorescent protein (GRP): applications in cell-based assays for drug discovery. Drug Discov Today 4:304–312

    PubMed  CAS  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    PubMed  CAS  Google Scholar 

  • Kamb A, Ramaswami M (2001) A simple method for statistical analysis of intensity differences in microarray‐derived gene expression data. BMC Biotechnol 1:8

    PubMed  CAS  Google Scholar 

  • Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41:1007–1010

    PubMed  CAS  Google Scholar 

  • Karvinen J, Hurskainen P, Gopalakrishnan S, Burns D, Warrior U, Hemmila I (2002) Homogenous time-resolved fluorescence quenching assays (LANCE) for caspases-3. J Biomol Screen 7:223–231

    PubMed  CAS  Google Scholar 

  • Kebabian JW, Neumeyer JL (1994) The RBI handbook of receptor classification. Research Biochemicals International, Natick, Mass.

    Google Scholar 

  • Kenny BA, Bushfiled M, Parry-Smith DJ, Fogarty S, Treherne JM (1998) The application of high‐throughput screening to novel lead discovery. Prog Drug Res 51:245–269

    PubMed  CAS  Google Scholar 

  • Keogh BP, Cordes D, Stanberry L, Figler DB, Robbins CA, Tempel BL, Green CG, Emmi A, Maravilla KM, Schwartzkroin PA (2005) BOLD-fMRI of PTZ-induced seizures in rats. Epilepsy Res 66:75–90

    PubMed  CAS  Google Scholar 

  • Killion PJ, Sherlock G, Iyer VR (2003) The Longhorn Array Database (LAD): an open-source, MIAME compliant implementation of the Stanford Microarray Database. BMC Informatics 4:32–38

    Google Scholar 

  • Kiyama R, Tamura Y, Watanabe F, Tsizuki H, Ohtani M, Yodo M (1999) Homology modelling of gelatinase catalytic domains and docking simulations of novel sulfonamide inhibitors. J Med Chem 42:1723–1738

    PubMed  CAS  Google Scholar 

  • Kleyn PW, Vesell ES (1998) Genetic variation as a guide to drug development. Science 281:1820–1821

    PubMed  CAS  Google Scholar 

  • Kline NS (1958) Clinical experience with iproniazid (MARSILID). J Clin Exp Psychopathol Suppl 19:72–78

    Google Scholar 

  • Klumpp M, Boettcher A, Becker D, Meder G, Blank J, Leder L, Forstner M, Ottl J, Mayr LM (2006) Readout technologies for highly miniaturized kinase assays applicable to high‐throughput screening in a 1536-well format. J Biomol Screen 11:617–633

    PubMed  CAS  Google Scholar 

  • Kobinger W, Walland A (1967) Investigations into the mechanism of the hypotensive effect of 2-(2,6‐dichlorphenylamino)-2‐imidazoline-HCl. Eur J Pharmacol 2:155–162

    PubMed  CAS  Google Scholar 

  • Kochweser J, Schechter PJ (1978) Schmiedeberg in Strassburg 1872–1918: the making of modern pharmacology. Life Sci 22:13–15

    Google Scholar 

  • Koecher F (1963) Die babylonisch‐assyrische Medizin in Texten und Untersuchungen, Vols 1–6. Walter de Gruyter, Berlin

    Google Scholar 

  • Kolb AJ, Burke JW, Mathis G (1997) Homogeneous, time-resolved fluorescence method for drug discovery. In: Devlin JP (ed) High throughput screening. The discovery of bioactive substances. Dekker, New York, pp 345–360

    Google Scholar 

  • Koltermann A, Kettling U, Bieschke J, Winkler T, Eigen M (1998) Rapid assay processing by integration of dual-color fluorescence cross‐correlation spectroscopy: high throughput screening for enzyme activity. Proc Natl Acad Sci USA 95:1421–1426

    PubMed  CAS  Google Scholar 

  • Koshkin AA, Singh S, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE, Wengel J (1998) LNA (locked nucleic acids): synthesis of the adenosine, cytosine, guanine, 5‐methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54:3607–3630

    CAS  Google Scholar 

  • Kotarsky K, Antonsson L, Owman C, Olde B (2003) Optimized reporter gene assays based on a synthetic multifunctional promoter and a secreted luciferase. Anal Biochem 316:208–215

    PubMed  CAS  Google Scholar 

  • Kowalski P, Stoerker J (2000) Accelerating discoveries in the proteome and genome with MALDI TOF MS. Pharmacogenomics 1:359–366

    PubMed  CAS  Google Scholar 

  • Kreider BL (2000) PROfusion: genetically tagged proteins for functional proteomics and beyond. Med Res Rev 20:212–215

    PubMed  CAS  Google Scholar 

  • Krishna MC, English S, Yamda K, Yoo J, Murugesan R, Devasahayam N, Cook JA, Golman K, Ardenkjær-Larsen HJ, Subramanian S, Mitchell JB (2002) Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration. Proc Natl Acad Sci USA 99:2216–2221

    PubMed  CAS  Google Scholar 

  • Kroeger KM, Hanyaloglu AC, Seeber EM, Miles LE, Eidne KA (2001) Constitutive and agonist‐dependent homo‐oligomerization of the thyrotropin‐releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J Biol Chem 276:12736–12743

    PubMed  CAS  Google Scholar 

  • Krogsgaard‐Larsen P, Ferkany JW, Nielsen E, Madsen U, Ebert B, Johansen JS, Diemer NH, Bruh T, Beattie DT, Curtis DR (1991) Novel class of amino acid antagonists at non-N-methyl-D-aspartic acid excitatory amino acid receptors. Synthesis, in vitro and in vivo pharmacology, and neuroprotection. J Med Chem 34:123–130

    PubMed  Google Scholar 

  • Kuhlmann J, Neumann‐Haefelin C, Belz U, Kalisch J, Juretschke HP, Stein M, Kleinschmidt E, Kramer W, Herling AW (2003) Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H-spectroscopic study in Zucker diabetic fatty rats. Diabetes 52:138–144

    PubMed  CAS  Google Scholar 

  • Kuhn R (1958) The treatment of depressive states with G22355 (imipramine hydrochloride). Am J Psychiatry 115:459–464

    PubMed  CAS  Google Scholar 

  • Kuntzweiler TA, Arneric SP, Donnelly‐Roberts DL (1998) Rapid assessment of ligand actions with nicotinic acetylcholine receptors using calcium dynamics and FLIPR. Drug Dev Res 44:14–20

    CAS  Google Scholar 

  • Kunz‐Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-D cultures for high‐throughput screening: the multicellular spheroid model. J Biomol Screen 9:273–285

    PubMed  Google Scholar 

  • Kurhanewicz J, Vigneron D, Hricak H, Carroll P, Narayan P, Nelson S (1996) Three‐dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high ((0.24–0.1 CM(3)) spatial resolution. Radiology 198:795–805

    PubMed  CAS  Google Scholar 

  • Kurhanewicz J, Vigneron DB, Nelson SJ (2000) Three‐dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia 2:166–189

    PubMed  CAS  Google Scholar 

  • Kurrek J (2004) Expediting target identification and validation through RNAi. Expert Opin Biol Ther 4:427–429

    Google Scholar 

  • Kusnezow W, Hoheisel JD (2002) Antibody microarrays: promises and problems. BioTechniques 33:S14–S23

    Google Scholar 

  • Kusnezow W, Jacob A, Waijew A, Diehl F, Hoheisel JD (2003) Antibody microarrays: an evaluation of production parameters. Proteomics 3:254–264

    PubMed  CAS  Google Scholar 

  • Kuzell WC, Schaffarzick RW (1952) Phenylbutazone (butazolidin) and Butapyrin®. Calif Med 77:319–325

    PubMed  CAS  Google Scholar 

  • Kyranos JN, Cai H, Wie D, Goetzinger WK (2001) High‐throughput high‐performance liquid chromatography/mass spectrometry for drug discovery. Curr Opin Biotechnol 12:105–111

    PubMed  CAS  Google Scholar 

  • Köhr G, Eckhardt S, Luddens H, Monyer H, Seeburg PH (1994) NMDA receptor channels: subunit‐specific potentiation by reducing agents. Neuron 12:1031–1040

    PubMed  Google Scholar 

  • Laborit H, Huguenard P, Allaume R (1952) Un noveau stabilisateur végétatif (LE 4560 RP). Presse Med 60:206–208

    PubMed  CAS  Google Scholar 

  • Labute P (1999) Binary QSAR: a new method for the determination of quantitative structure assay. Pacific Symp Biocomput 4:444–455

    Google Scholar 

  • Lahana R (1999) How many leads from HTS? Drug Discov Today 4:447–448

    Google Scholar 

  • Lal SP, Christopherson RI, dos Remedios CG (2002) Antibody arrays: an embryonic but rapidly growing technology. Drug Discov Today Suppl 7:S143–S149

    CAS  Google Scholar 

  • Landro JA, Taylor ICA, Stirtan WG, Osterman DG, Kristie J, Hunnicutt EJ, Rae PMM, Sweetman PM (2000) HTS in the new millennium. The role of pharmacology and flexibility. J Pharmacol Toxicol Methods 44:273–289

    PubMed  CAS  Google Scholar 

  • Lane CS (2005) Mass‐spectrometry-based proteomics in the life sciences. Cell Mol Life Sci 62:848–869

    PubMed  CAS  Google Scholar 

  • Langer SZ, Hicks PE (1984) Alpha‐adrenoceptor subtypes in blood vessels. Physiology and pharmacology. J Cardiovasc Pharmacol 6 [Suppl 4]:S547–S548

    Google Scholar 

  • Lazo JS, Wipf P (2000) Combinatorial chemistry and contemporary pharmacology. J Pharmacol Exp Ther 293:705–709

    PubMed  CAS  Google Scholar 

  • Le-Poul E, Hisada S, Mizuguchi Y, Dupriez VJ, Burgeon E, Detheux M (2002) Adaptation of aequorin functional assay to high throughput screening. J Biomol Screen 7:57–65

    PubMed  CAS  Google Scholar 

  • LeProust E, Pellois JP, Yu P, Zhang H, Gao X, Srivannavit O, Gulari E, Zhou X (2000) Digital light-directed synthesis. A microarray platform that permits rapid reaction optimization on a combinatorial basis. J Comb Chem 2:349–354

    PubMed  CAS  Google Scholar 

  • Lee HO, Herndon JM, Barriero R, Griffith TS, Ferguson TA (2002) TRAIL: a mechanism of tumor surveillance in an immune privileged site. J Immunol 169:4739–4744

    PubMed  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    PubMed  CAS  Google Scholar 

  • Lee Y, Jeon K, Lee Jt, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Google Scholar 

  • Lee Y, Kang DK, Chang SI, Han MH, Kang IC (2004) High‐throughput screening of novel peptide inhibitors of an integrin receptor from the hexapeptide library by using a protein microarray chip. J Biomol Screen 9:687–694

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Williams LT (1977) Catecholamine binding to the β-adrenergic receptor. Proc Natl Acad Sci USA 74:515–519

    PubMed  CAS  Google Scholar 

  • Lemmo AV, Rose DJ, Tisone TC (1998) Inkjet dispensing technology: applications for drug discovery. Curr Opin Biotechnol 9:615–617

    PubMed  CAS  Google Scholar 

  • Lenigk R, Liu RH, Athavale M, Chen Z, Ganser D, Yang J, Rauch C, Liu Y, Chan B, Yu H, Ray M, Marrero R, Grodzinski P (2002) Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays. Anal Biochem 311:40–49

    PubMed  CAS  Google Scholar 

  • Lennon GG (2000) High‐throughput gene expression analysis for drug discovery. Drug Discov Today 5:59–66

    PubMed  CAS  Google Scholar 

  • Lepple‐Wienhues A, Ferlinz K, Seeger A, Schäfer A (2003) Flip the tip: an automated, high quality, cost‐effective patch clamp screen. Receptor Channels 9:13–17

    Google Scholar 

  • Lewandowski K, Murer P, Svec F, Frechet JMJ (1999) A combinatorial approach to recognition of chirality: preparation of highly enantioselective aryl‐dihydropyrimidine selectors for chiral HPLC. J Comb Chem 1:105–112

    PubMed  CAS  Google Scholar 

  • Li Z, Mehdi S, Patel I, Kawooya J, Judkins M, Zhang W, Diener K, Lozada A, Dunnington D (2000) An ultra-high throughput screening approach for an adenine transferase using fluorescence polarization. J Biomol Screen 5:31–38

    PubMed  CAS  Google Scholar 

  • Liang RQ, Li W, Li Y, Tan CY, Li JX, Jin YX, Ruan KC (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probes. Nucleic Acids Res 33:e17

    PubMed  Google Scholar 

  • Liggett SB (1997) Polymorphisms of the β2-adrenergic receptor and asthma. Am J Respir Crit Care Med 156:S156–S162

    PubMed  CAS  Google Scholar 

  • Lightbody B, Alderman EM (2001) Robotics development simplified. New Drugs 1:30–32

    Google Scholar 

  • Lim LP, Lau NC, Garrett‐Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis show that some microRNAs downregulate large number of target mRNAs. Nature 433:769–773

    PubMed  CAS  Google Scholar 

  • Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008

    PubMed  CAS  Google Scholar 

  • Lin S, Bock CL, Gardner DB, Webster JC, Favata MF, Trzaskos JM, Oldenburg KR (2002) A high‐throughput fluorescent polarization assay for nuclear receptor binding utilizing crude receptor extract. Anal Biochem 300:15–21

    PubMed  CAS  Google Scholar 

  • Link EM, Hardiman G, Sluder AE, Johnson CD, Liu LX (2000) Therapeutic target discovery using Caenorhabditis elegans. Pharmacogenomics 1:203–207

    PubMed  CAS  Google Scholar 

  • Liochev SI, Fridovich I (1997) Lucigenin luminescence as a measure of intracellular superoxide dismutase activity in Escherichia coli. Proc Natl Acad Sci USA 94:2891–2896

    PubMed  CAS  Google Scholar 

  • Lipshutz RJ, Fodor SPA Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nature Genetics 21 [Suppl 1]:20–24

    Google Scholar 

  • Liu B, Li S, Hu J (2004) Technological advances in high‐throughput screening. Am J Pharmacogenomics 4:263–276

    PubMed  CAS  Google Scholar 

  • Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC (1998) Mutation detection and single‐molecule counting using isothermal rolling‐circle amplification. Nat Genet 19:225–232

    PubMed  CAS  Google Scholar 

  • Loo JA, DeJohn DE, Du P, Stevenson TI, Ogorzalek-Loo RR (1999) Application of mass spectrometry for target identification and characterization. Med Res Rev 19:307–319

    PubMed  CAS  Google Scholar 

  • Loomans EE, van Doormalen AM, Wat JW, Zaman GJ (2003) High‐throughput screening with immobilized metal ion affinity-based fluorescence polarization detection, a homogeneous assay for protein kinases. Assay Drug Dev Technol 1:445–453

    PubMed  CAS  Google Scholar 

  • Loubatières A (1946) Étude physiologique et pharmacodynamique de certains dérivés sulfonamidés hypoglycémiants. Arch Intern Physiol 54:174–177

    Google Scholar 

  • Lu Z, Yin Z, James L, Syto R, Stafford JM, Koseoglu S, Mayhood T, Myers J, Windsor W, Kirschmeier P, Samatar AA, Malcolm B, Turek-Etienne TC, Kumar CC (2004) Development of a fluorescence polarization bead-based coupled assay to target activity/conformation states of a protein kinase. J Biomol Screen 9:309–321

    PubMed  CAS  Google Scholar 

  • Lukas TJ, Mirzoeva S, Slomczynska U, Watterson DM (1999) Identification of novel classes of protein kinase inhibitors using combinatorial peptide chemistry. J Med Chem 42:910–919

    PubMed  CAS  Google Scholar 

  • Lundin K, Blomberg K, Nordström T, Lindqvist C (2001) Development of a time-resolved fluorescence resonance energy transfer assay (cell TR-FRET) for protein detection in intact cells. Anal Biochem 299:92–97

    PubMed  CAS  Google Scholar 

  • Lundkvist J, Jonsson S, Rehnberg C (2006) The costs and benefits of regulation for reimbursement of new drugs. Health Policy 79:337–244

    PubMed  Google Scholar 

  • Luo Z, Geschwind DH (2001) Microarray applications in neuroscience. Neurobiol Dis 8:163–193

    Google Scholar 

  • Lurie DH, Hutchinson JMS, Bell JH Nicholsin I, Bussell DM, Mallerd JL (1989) Field cycled proton‐electron double resonance imaging of free radicals in large aqueous samples. J Magn Reson 84:431–437

    CAS  Google Scholar 

  • Lurie DJ, Bussell DM, Bell LH, Maillard JR (1988) Proton‐electron double magnetic resonance imaging of free radical solutions. J Magn Reson 76:366–370

    CAS  Google Scholar 

  • Lurie DJ, Davies GR, Foster MA, Hutchinson JMS (2005) Field-cycled PEDRI imaging of free radicals with detection at 450?mT. Magn Res Imag 23:175–181

    CAS  Google Scholar 

  • Ma H, Horiuchi KY (2006) Chemical microarray: a new tool for drug screening and discovery. Drug Discov Today 11:551–668

    Google Scholar 

  • MacBeath G, Koehler AN, Schriber SL (1999) Printing small molecules as microassays and detecting protein‐ligand interactions en masse. J Am Chem Soc 121:7967–7968

    CAS  Google Scholar 

  • Maclean D, Schullek JR, Murphy MM, Ni Z-J, Gordon EM, Gallop MA (1997) Encoded combinatorial chemistry: synthesis and screening of a library of highly functionalized pyrrolidines. Proc Natl Acad Sci USA 94:2805–2810

    PubMed  CAS  Google Scholar 

  • Mager J, Glaser G, Razin A, Izak G, Bien S, Noam M (1965) Metabolic effects of pyrimidines derived from fava bean glycosides on human erythrocytes deficient in glucose-6‐phosphate dehydrogenase. Biochem Biophys Res Commun 20:235–240

    PubMed  CAS  Google Scholar 

  • Maggio ET, Ramnarayan K (2001) Recent developments in computational proteomics. Trends Biotechnol 19:266–272

    PubMed  CAS  Google Scholar 

  • Major J (1999) What is the future of high throughput screening? J Biomol Screen 4:119

    Google Scholar 

  • Major JS (1995) Challenges of high throughput screening against cell surface receptors. J Recept Signal Transduction Res 15:595–607

    CAS  Google Scholar 

  • Maley D, Mei J, Lu H, Johnson DL, Ilyin S (2004) Multiplexed RT-PCR for high throughput screening applications. Comb Chem High Throughput Screen 7:727–732

    PubMed  CAS  Google Scholar 

  • Mander T (2000) Beyond uHTS? Ridiculously HTS? Drug Discov Today 6:223–225

    Google Scholar 

  • March R (2000) Pharmacogenomics: the genomics of drug response. Yeast 17:16–21

    PubMed  CAS  Google Scholar 

  • Maren TH (1960) A simplified micromethod for the determination of carbonic anhydrase and its inhibitors. J Pharmacol Exp Ther 130:26–29

    PubMed  CAS  Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev 47:595–781

    PubMed  CAS  Google Scholar 

  • Markela E, Ståhlberg TH, Hemmilä I (1993) Europium‐labelled recombinant protein G. A fast and sensitive immunoreagent for time resolved immunofluorometry. J Immunol Methods 161:1–6

    PubMed  CAS  Google Scholar 

  • Marks BD, Goossens TA, Braun HA, Ozers MS, Smith RW, Lebakken C, Trubetskoy OV (2003) High‐throughput screening assays for CYP2B6 metabolism and inhibition using fluorogenic Vivid substrates. AAPS Pharm Sci 5, Article 18

    Google Scholar 

  • Marks BD, Smith RW, Braun HA, Goossesn TA, Christenson M, Ozers MS, Lebakken CS, Trubetskoy OV (2002) A high throughput screening assay to screen for CYP2E1 metabolism and inhibition using a fluorogenic Vivid® P450 substrate. Assay Drug Dev Technol 1:73–81

    PubMed  CAS  Google Scholar 

  • Marks BD, Thompson DV, Goossens TA. Trubetskoy OV (2004) High‐throughput screening assays for the assessment of CYP2C9*1, CYP2C9*2, and CYP2C9*3 metabolism using fluorogenic Vivid® substrates. J Biomol Screen 9:439–449

    PubMed  CAS  Google Scholar 

  • Marshall E (2000) Human genome: rival genome sequencers celebrate a milestone together. Science 288:2294–2295

    PubMed  CAS  Google Scholar 

  • Martorana PA, Göbel H, Kettenbach P, Nitz RE (1982) Comparison of various methods for assessing infarct-size in the dog. Basic Res Cardiol 77:301–308

    PubMed  CAS  Google Scholar 

  • Mathes C (2006) QPatch: the past, present and future of automated patch clamp. Expert Opin Ther Targets 10.319–327

    Google Scholar 

  • Mathis G, Preaudat M, Trinquet E (1994) Homogeneous EGF receptor binding assay using rare earth cryptates, amplification by nonradiative energy transfer and time resolved fluorescence. CHI Proceedings of High Throughput Screening for Drug Development, Philadelphia

    Google Scholar 

  • Mathur S, Hassel M, Steiner F, Hollemeyer K, Hartmann RW (2003) Development of an new approach for screening combinatorial libraries using MALDI-TOF-MS and HPLC‐ESI-MS/MS. J Biomol Screen 8:136–148

    PubMed  CAS  Google Scholar 

  • Mazars G (1994) Traditional veterinary medicine india. Rev Sci Tech 13:433–451

    PubMed  CAS  Google Scholar 

  • McCabe C, Tsuchiya A, Claxton K, Raftery J (2006) Orphan drugs revisited. Q J Med 99:341–345

    CAS  Google Scholar 

  • McDonnel JM (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr Opin Chem Biol 5:572–577

    Google Scholar 

  • McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high‐throughput screening. J Med Chem 45:1712–1722

    PubMed  CAS  Google Scholar 

  • McGovern SL, Helfand BT, Feng B, Shoichet BK (2003) A specific mechanism of nonspecific inhibitors. J Med Chem 46:4265–4272

    PubMed  CAS  Google Scholar 

  • McPherson GA (1985a) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods 14:213–228

    PubMed  CAS  Google Scholar 

  • McPherson GA (1985b) KINETIC, EBDA, LIGAND, LOWRY. A collection of radioligand binding analysis programs. Elsevier, Amsterdam

    Google Scholar 

  • McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, Milligan G (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human δ-opioid receptor displays constitutive oligomerization at the cell surface, which is regulated by receptor occupancy. J Biol Chem 276:14092–14099

    PubMed  CAS  Google Scholar 

  • Meister G, Tuschi T (2004) Mechanisms of gene silencing by double‐stranded RNA. Nature 431:343–349

    PubMed  CAS  Google Scholar 

  • Meldrum D (2000a) Automation for genomics, part one: preparation for sequencing. Genome Res 10:1081–1092

    PubMed  CAS  Google Scholar 

  • Meldrum D (2000b) Automation for genomics, part two: sequencers, microarrays, and future trends. Genome Res 10:1288–1303

    PubMed  CAS  Google Scholar 

  • Meng YG, Liang J, Wong WL, Chisholm V (2000) Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene 242:201–207

    PubMed  CAS  Google Scholar 

  • Mere L, Bennett T, Casssin P, England P, Hamman B, Rink T, Zimmerman S, Negulescu P (1999) Miniaturized FRET assays and microfluidics: key components for ultra-high‐throughput screening. Drug Discov Today 4:363–369

    PubMed  CAS  Google Scholar 

  • Merk S, Lietz A, Kroner M, Valler M, Heilker R (2004) Time-resolved fluorescence measurements using microlens array and area imaging devices. Comb Chem High Throughput Screen 7:45–54

    PubMed  CAS  Google Scholar 

  • Messier TL, Dorman CM, Brauner‐Osborne H, Eubanks D, Brann RM (1995) High throughput assays of cloned adrenergic, muscarinic, neurokinin, and neurotropin receptors in living mammalian cells. Pharmacol Toxicol 76:308–311

    PubMed  CAS  Google Scholar 

  • Meyer UA (2000) Pharmacogenomics and adverse drug reactions. Lancet 356:1667–1671

    PubMed  CAS  Google Scholar 

  • Meza MB (2000) Bead-based HTS applications in drug discovery. Drug Discov Today HTS Suppl 1:38–41

    CAS  Google Scholar 

  • Miller TR, Witte DG, Ireland LM, Kang CH, Roch JM, Masters JN, Esbenshade TA, Hancock AA (1999) Analysis of apparent noncompetitive responses to competitive H1-histamine receptor antagonists in fluorescent imaging plate reader-based calcium assays. J Biomol Screen 4:249–258

    PubMed  CAS  Google Scholar 

  • Milligan G, Rees S (1999) Chimeric Gα proteins: their potential use in drug discovery. Trends Pharmacol Sci 20:118–124

    PubMed  CAS  Google Scholar 

  • Mirsattari SM, Bihari F, Leung LS, Menon RS, Wang Z, Ives JR, Bartha R (2005) Physiological monitoring of small animals during magnetic resonance imaging. J Neurosci Methods 144:207–213

    PubMed  Google Scholar 

  • Moran M (2005) A breakthrough in R&D for neglected diseases: new ways to get the drugs we need. PloS Med 2:e302

    PubMed  Google Scholar 

  • Morris HR, Paxton C, Langhorne J, Berg M, Bordoli RS, Hoyes J, Bateman RH (1996) High sensitivity collisionally‐activated decomposition tandem mass flight mass spectrometer, the Q-TOF, for low fentomole/attomole-range biopolymer sequencing. J Protein Chem 16:469–479

    Google Scholar 

  • Moshinski DJ, Ruslim L, Blake RA, Tang F (2003) A widely applicable high‐throughput TR-FRET assay for the measurement of kinase autophosphorylation: VEGRF-2 as prototype. J Biomol Screen 8:447–452

    Google Scholar 

  • Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, Hautaniemi S, Elkahloun AG, Lotufo RA, Choudary A, Dougherty ER, Suh E, Kallioniemi O (2003) RNAi microarray analysis in cultured mammalian cells. Genome Res 13:2341–2347

    PubMed  CAS  Google Scholar 

  • Munson PJ, Rodbard D (1980) LIGAND: a versatile computerized approach for characterization of ligand‐binding system. Anal Biochem 107:220–239

    PubMed  CAS  Google Scholar 

  • Murayama M (1966) Tertiary structure of sickle cell hemoglobin and its functional significance. J Cell Physiol 67 [Suppl. 1]:21–32

    Google Scholar 

  • Murphy MP (2000) Current pharmacogenomic approaches to clinical drug development. Pharmacogenomics 1:115–123

    PubMed  CAS  Google Scholar 

  • Myszka DG, Rich RL (2000) Implementing surface plasmon resonance biosensors in drug discovery. Pharm Sci Technol Today 3:310–317

    PubMed  CAS  Google Scholar 

  • Müller J (1982) Die pflanzlichen Heilmittel bei Hildegard von Bingen. Otto Müller, Salzburg

    Google Scholar 

  • Müller S, Neumann T, Lottspeich F (1998) Proteomics – a new way for drug target discovery. Arzneimittelforschung 48:93–95

    Google Scholar 

  • Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2++ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101:10554–19559

    PubMed  CAS  Google Scholar 

  • Nature Office (2000) Microarrays on the slide. Compiled by the Nature Office from information provided by the manufacturers. New gadgets, including some of the latest in microarray technology. Nature 406:659–600

    Google Scholar 

  • Nebert D (1999) Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet 56:247–258

    Google Scholar 

  • Neumann‐Haefelin C, Beha A, Kuhlmann J, Belz U, Gerl M, Quint M, Biemer-Daub G, Broenstrup M, Stein M, Kleinschmidt E, Schaefer HL, Schmoll D, Kramer W, Juretschke HP, Herling AW (2004) Muscle type specific intramyocellular and hepatic lipid metabolism during starvation in Wistar rat. Diabetes 53:528–634

    PubMed  Google Scholar 

  • Newman M, Josiah S (2004) Utilization of fluorescence polarization and time resolved fluorescence resonance energy transfer assay formats for SAR studies: Src kinase as a model system. J Biomol Screen 9:525–532

    PubMed  CAS  Google Scholar 

  • Nielsen H, Brunak S, van Heijne G (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 12:3–9

    PubMed  CAS  Google Scholar 

  • Nielsen PS, Ohlsson H, Alsbo C, Andersen MS, Kauppinen S (2005) Expression profiling by oligonucleotide microarrays spotted on coated polymer slides. J Biotechnol 116:125–134

    PubMed  CAS  Google Scholar 

  • Nieuwenhuijsen BW, Huang Y, Wang Y, Ramirez F, Kalgaonkar G, Young KH (2003) A dual luciferase multiplexed high‐throughput screening platform for protein‐protein interactions. J Biomol Screen 8:676–684

    PubMed  CAS  Google Scholar 

  • Novoradovskaya N, Whitfield ML, Basehore LS, Novoradovsky A, Pesich R, Usary J, Karaca M, Wong WK, Aprelikova O, Fero M, Perou CM, Botstein D, Braman J (2004) Universal Reference RNA as a standard for microarray experiments. BMC Genomics 5:20

    PubMed  Google Scholar 

  • O'Brien MA, Daily WJ, Hesselberth PE, Moravc RA, Scurria MA, Klaubet DH, Bulleit RF, Wood KV (2005) Homogenous, bioluminescent protease assays: caspases-3 as a model. J Biomol Screen 10:137–148

    PubMed  Google Scholar 

  • Obida S, Nanbu D, Hari Y, Andoh JI, Morio KI, Doi T, Imashini T (1998) Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′−O,4′ −C-methylenribonucleosides. Tetrahedron Lett 39:5401–5404

    Google Scholar 

  • Ogawa S, Tank DW, Menson R, Ellerman JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation – functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955

    PubMed  CAS  Google Scholar 

  • Ohlstein EH, Johnson AG, Romanic AM (2006) New strategies in drug discovery. Methods Mol Biol 316:1–11

    PubMed  Google Scholar 

  • Ohlstein EH, Ruffolo RR Jr, Elliot JD (2000) Drug discovery in the next millennium. Annu Rev Pharmacol Toxicol 40:177–191

    PubMed  CAS  Google Scholar 

  • Ortholand JY, Ganesan A (2004) Natural products and combinatorial chemistry: back to the future. Curr Opin Chem Biol 8:271–280

    PubMed  CAS  Google Scholar 

  • Owicki JC (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen 5:297–306

    PubMed  CAS  Google Scholar 

  • Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O'Shaughnessy A, Gnoj L, Scobia K, Chang K, Westbrook T, Clery M, Sachidamandam R, McCombie WR, Elledge SJ, Hannon GJ (2004) A resource for large-scale RNA‐interference-based screens in mammals. Nature 428:427–431

    PubMed  CAS  Google Scholar 

  • Pagel J (1906) Rudolf Virchow. Weicher, Leipzig

    Google Scholar 

  • Palo K, Brand L, Eggeling C, Jäger S, Kask P, Gall K (2002) Fluorescence intensity and lifetime distribution analysis: towards higher accuracy in fluorescence fluctuation spectroscopy. Biophys J 83:605–618

    PubMed  CAS  Google Scholar 

  • Parker GJ, Law TL, Lenoch FJ, Bolger RE (2000) Development of high throughput screening assays using fluorescence polarization: nuclear receptor‐ligand‐binding and kinase‐phosphatase assays. J Biomol Screen 5:77–88

    PubMed  CAS  Google Scholar 

  • Pasini P, Musiani M, Russo C, Valenti P, Aicardi G, Crabtree JE, Baraldini M, Roda A (1998) Chemiluminescence imaging in bioanalysis. J Pharm Biomed Anal 18:555–564

    PubMed  CAS  Google Scholar 

  • Pathirna C, Stein RB, Berger TS, Fenical W, Ianiro T, Torres A, Goldman ME (1995) Nonsteroidal human progesterone receptor modulators from the marine algae Cymopolia barbata. Mol Pharmacol 476:630–635

    Google Scholar 

  • Patterson SD (1998) Protein identification and characterization by mass spectrometry. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 10.22.1–10.22.24

    Google Scholar 

  • Patterson SD (2000) Mass spectrometry and proteomics. Physiol Genomics 2:59–65

    PubMed  CAS  Google Scholar 

  • Patterson SD (2003) Data analysis – the Achilles heel of proteomics. Nature Biotechnol 21:221–222

    CAS  Google Scholar 

  • Patterson SD, Aebersold R (1995) Mass spectrometric approaches for the identification of gel‐separated proteins. Electrophoresis 16:1791–11814

    PubMed  CAS  Google Scholar 

  • Patterson SD, Spahr CS, Daugas E, Susin SA, Irinopoulou T, Koehler C, Kroemer G (2000) Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Differ 7:137–144

    PubMed  CAS  Google Scholar 

  • Pazhanisamy S, Stuver CM, Livingston DJ (1995) Automation of high‐performance liquid chromatography-based enzyme assay: evaluation of inhibition constants for human immunodeficiency virus-1 protease inhibitors. Anal Biochem 229:48–53

    PubMed  CAS  Google Scholar 

  • Peet NP, Bey P (2001) Pharmacogenomics: challenges and opportunities. Drug Discov Today 6:495–498

    PubMed  Google Scholar 

  • Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74–81

    PubMed  CAS  Google Scholar 

  • Pfeiffer EF, Pfeiffer M, Ditschuneit H, Ahn CS (1959) Clinical and experimental studies of insulin secretion following tolbutamide and metahexamide administration. Ann NY Acad Sci 82:479–495

    PubMed  CAS  Google Scholar 

  • Pfleger KDG, Eidne KA (2004) New technologies: bioluminescence resonance energy transfer (BRET) for the detection of real time interactions involving G-protein coupled receptors. Pituitary 6:141–151

    Google Scholar 

  • Picardo M, Hughes KT (1997) Scintillation proximity assays. In: Devlin JP (ed) High throughput screening. The discovery of bioactive substances. Dekker, New York, pp 307–316

    Google Scholar 

  • Piggott AM, Karuso P (2004) Quality, not quantity: the role of natural products and chemical proteomics in modern drug discovery. Comb Chem High Throughput Screen 7:607–630

    PubMed  CAS  Google Scholar 

  • Podda M, Fiorelli G, Ideo G, Spano G, Dioguardi N (1969) In vitro effect of a fava bean extract and its fractions on reduced glutathione in glucose-6‐phosphate dehydrogenase deficient red cells. Folia Haematol Int Mag Klin Morphol Blutforsch 91:51–55

    PubMed  CAS  Google Scholar 

  • Pollard GT, Howard JL (1986) The staircase test: some evidence of nonspecificity for anxiolytics. Psychopharmacol Berl 89:14–19

    CAS  Google Scholar 

  • Pommereau A, Pap E, Kannt A (2004) Two simple and generic antibody‐independent assays: comparison of a bioluminescent and a microfluidic assay format. J Biomol Screen 9:409–416

    PubMed  CAS  Google Scholar 

  • Pope AJ, Haupts UM, Moore KJ (1999) Homogeneous fluorescence readouts for miniaturized high‐throughput screening. Drug Discov Today 4:350–362

    PubMed  CAS  Google Scholar 

  • Porkert M (1973) Die theoretischen Grundlagen der Chinesischen Medizin. Franz Steiner, Wiesbaden

    Google Scholar 

  • Post CB (2003) Exchange‐transferred NOE spectroscopy and bound ligand structure determination. Curr Opin Struct Biol 13:581–588

    PubMed  CAS  Google Scholar 

  • Qian J, Voorbach MJ, Huth JR, Coen ML, Zhang H, Ng SC, Comess KM, Petros AM, Rosenberg SH, Warrior U, Burns DJ (2004) Discovery of novel inhibitors of Bcl-xL using multiple high‐throughput screening platforms. Anal Biochem 328:131–138

    PubMed  CAS  Google Scholar 

  • Quadroni M, James P (1999) Proteomics and automation. Electrophoresis 20:664–677

    PubMed  CAS  Google Scholar 

  • Rabilloud T (2001) Proteome research: two‐dimensional gel electrophoresis and identification methods. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rademann J, Jung G (2000) Integrating combinatorial synthesis and bioassays. Science 287:1947–1948

    PubMed  CAS  Google Scholar 

  • Rados C (2003) Orphan products: hope for people with rare diseases. FDA Consumer Magazine, November‐December

    Google Scholar 

  • Raja SG, Nayak SH (2004) Sildenafil: emerging cardiovascular indications. Ann Thorac Surg 78:1496–1506

    PubMed  Google Scholar 

  • Ramm P (1999) Imaging systems in assay screening. Drug Discov Today 4:401–410

    PubMed  CAS  Google Scholar 

  • Rautenstrauss BW, Liehr T (2001) FISH technology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Reidenberg MM (2006) Are drugs for rare diseases “essential”? Bull World Health Org 84:9

    Google Scholar 

  • Relman AS, Porter R, Tobias JF, Schwartz WB (1960) The diuretic effects of large doses of acetazolamide and an analog lacking carbonic anhydrase inhibiting activity. J Clin Invest 39:1551–1559

    PubMed  CAS  Google Scholar 

  • Richter MM (2004) Electrochemiluminescense (ECL). Chem Rev 104:3003–3036

    PubMed  CAS  Google Scholar 

  • Rishton GM (2005) Failure and success in modern drug discovery: guiding principles in the establishment of high probability of success drug discovering organizations. Med Chem 2005:519–527

    Google Scholar 

  • Robinson JA, Jenkins NS, Holman NA, Roberts‐Thomson SJ, Monteith GR (2004) Ratiometric and nonratiometric Ca2+ indicators for the assessment of intracellular free Ca2+ in a breast cancer line using a fluorescence microplate reader. J Biochem Biophys Methods 31:227–237

    Google Scholar 

  • Rockett JC, Dix DJ (2000) DNA arrays: technology, options and toxicological applications. Xenobiotica 30:155–177

    PubMed  CAS  Google Scholar 

  • Rodbard D, Frazier GR (1975) Statistical analysis of radioligand assay data, vol 37. Academic Press, New York, pp 3–22

    Google Scholar 

  • Rondelez Y, Tresset G, Tabata KV, Arata H, Fujita H, Takeuchi S, Noji H (2005) Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nature Biotechnol 433

    Google Scholar 

  • Rondinone CM (2006) Therapeutic potential of RNAi in metabolic diseases. Biotechniques 40:S31–S36

    Google Scholar 

  • Rose D (1999) Microdispensing technologies in drug discovery. Drug Discov Today 4:411–419

    PubMed  CAS  Google Scholar 

  • Rougemont J, Hingamp P (2003) DNA microarray data and contextual analysis of correlation graphs. BMC Bioinformatics 4:15

    PubMed  Google Scholar 

  • Rouleau N, Turcotte S, Mondou MH, Roby P, Bossé R (2003) Development of a versatile platform for nuclear receptor screening using AlphaScreen™. J Biomol Screen 8:191–197

    PubMed  CAS  Google Scholar 

  • Ruch E (2001) The flexible approach to high throughput screening. New Drugs 1:34–36

    Google Scholar 

  • Rudin M, Allegrini P, Beckmann N, Gremlich HU, Kneuer R, Laurent D, Rausch M, Stoeckli M (2004b) Noninvasive imaging in drug discovery and development. Workshop Ernst Schering Research Foundation 48:47–75

    Google Scholar 

  • Rudin M, Allegrini PR, Rausch M (2006) MRI and MRS in animal models of focal cerebral ischemia. In: Beckmann N (ed): In vivo MR techniques in drug discovery and development. Taylor and Francis, New York, pp 123–145

    Google Scholar 

  • Rudin M, Beckmann N, Rausch M (2004a) Magnetic resonance imaging in biomedical research: Imaging of drugs and drug effects. Methods Enzymol 385:240–256

    PubMed  CAS  Google Scholar 

  • Rudin M, Beckmann R, Porszasz R, Reese T, Bochelen T, Sauter A (1999) In vivo magnetic resonance methods in pharmaceutical research: current status and perspectives. NMR Biomed 12:69–97

    PubMed  CAS  Google Scholar 

  • Rudin M, Tausch M, Stoeckli M (2005) Molecular imaging in drug discovery and development: potential and limitations of nonnuclear methods. Mol Imaging Biol 7:5–13

    PubMed  Google Scholar 

  • Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Res Drug Discov 2:132–131

    Google Scholar 

  • Rudolph U, Möhler H (1999) Genetically modified animals in pharmacological research: future trends. Eur J Pharmacol 375:327–337

    PubMed  CAS  Google Scholar 

  • Ryu DDY, Nam D-H (2000) Recent progress in biomolecular engineering. Biotechnol Prog 16:2–16

    PubMed  CAS  Google Scholar 

  • Rüdiger M, Haupts U, Moore KJ, Pope AJ (2001) Single‐molecule detection technologies in miniaturized high throughput screening: binding assays for G protein‐coupled receptors using fluorescence intensity distribution analysis and fluorescence anisotropy. J Biomol Screen 6:29–37

    PubMed  Google Scholar 

  • Sadée W (1999) Pharmacogenomics. Br Med J 319:1286–1290

    Google Scholar 

  • Salisbury CM, Maly DJ, Ellman JA (2002) Peptide microarrays for the determination of protease substrate specificity. J Am Chem Soc 124:14868–14870

    PubMed  CAS  Google Scholar 

  • Samani NJ, O'Toole L, Channer K, Woods KL (1996) A meta-analysis of the association of the deletion allele of the angiotensin‐converting enzyme gene with myocardial infarction. Circulation 94:708–712

    PubMed  CAS  Google Scholar 

  • Sams-Dodd F (2005) Target-based drug discovery: is something wrong? Drug Discov Today 10:139–147

    Google Scholar 

  • Sams-Dodd F (2006) Drug discovery: selecting the optimal approach. Drug Discov Today 11:465–472

    PubMed  CAS  Google Scholar 

  • Sandkühler J, Willmann E, Fu QG (1991) Characteristics of midbrain control of spinal nociceptive neurons and nonsomatosensory parameters in the pentobarbital‐anesthetized rat. J Neurophysiol 65:33–48

    PubMed  Google Scholar 

  • Santangelo PJ, Nix B, Tsourkas A, Boa G (2004) Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 32:e57

    PubMed  Google Scholar 

  • Sauter A, Reese T, Pórszász R, Baumann D, Rausch M, Rudin M (2002) Recovery of function in cytoprotected cerebral cortex in rat stroke model assessed by functional MRI. Magn Reson Med 47:759–765

    PubMed  Google Scholar 

  • Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    CAS  Google Scholar 

  • Schapira M, Raaka BM, Samuels HH, Abagyan R (2000) Rational discovery of nuclear hormone receptor antagonists. Proc Natl Acad Sci USA 97:1008–1013

    PubMed  CAS  Google Scholar 

  • Schefzick S, Kibbey C, Bradley MP (2004) Prediction of HPLC conditions using QSPR techniques: an effective tool to improve combinatorial library design. J Comb Chem 6:916–927

    PubMed  CAS  Google Scholar 

  • Scheirer W (1997) Reporter gene assay applications. In: Devlin JP (ed) High throughput screening. The discovery of bioactive substances. Dekker, New York, pp 401–412

    Google Scholar 

  • Scherer JR, Kheterpal I, Radhakrishnan A, Ja WWW, Mathies RA (1999) Ultra-high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis. Electrophoresis 20:1508–1517

    PubMed  CAS  Google Scholar 

  • Schild HO (1947) pA, a new scale for the measurement of drug antagonism. Br J Pharmacol 2:189–206

    CAS  Google Scholar 

  • Schmid DG, Grosche P, Bandel H, Jung G (2000) FTICR-mass spectroscopy for high‐resolution analysis in combinatorial chemistry. Biotechnol Bioeng 71:149–161

    PubMed  CAS  Google Scholar 

  • Schmid EF, Smith DA (2005) Keynote review: is declining innovation in the pharmaceutical industry a myth? Drug Discov Today 10:1031–1039

    Google Scholar 

  • Schmid EL, Tairi AP, Hovius R, Vogel H (1998) Screening ligands for membrane protein receptors by total internal reflection fluorescence: the 5-HT3 serotonin receptor. Anal Chem 70:1331–1338

    PubMed  CAS  Google Scholar 

  • Schoelch C, Kuhlmann J, Gossel M, Mueller G, Neumann‐Haefelin C, Belz U, Kalisch J, Biemer-Daub G, Kramer W, Juretschke HP, Herling AW (2004) Characterization of adenosine-A1 receptor–mediated antilipolysis in rats by tissue microdialysis, 1H-spectroscopy, and glucose clamp studies. Diabetes 53:1920–1926

    PubMed  CAS  Google Scholar 

  • Schreiber SI (2000) Target‐oriented and diversity‐oriented organic synthesis in drug discovery. Science 287:1964–1969

    PubMed  CAS  Google Scholar 

  • Schuster M, Wasserbauer E, Einhauer A, Ortner C, Jungbauer A, Hammerschmid F, Werner G (2000) Protein expression strategies for identification of novel target proteins. J Biomol Sci 5:89–97

    CAS  Google Scholar 

  • Schwartz WB (1949) New Engl J Med 240:173

    PubMed  CAS  Google Scholar 

  • Schwarz AJ, Reese T, Gozzi A, Bifone A (2003) Functional MRI using intravascular contrast agents. Detrending of the relative cerebrovascular (rCBV) time course. Magn Reson Imaging 21:1191–1200

    PubMed  CAS  Google Scholar 

  • Schwille P, Kummer S, Heikal AA, Webb WW (2000) Fluorescence correlation spectroscopy reveals fast optical excitation‐driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97:151–156

    PubMed  CAS  Google Scholar 

  • Schöner E (1964) Das Viererschema in der antiken Humoralpathologie. Beiheft zu Sudhoffs Archiv für Geschichte der Medizin und Naturwissenschaften, No. 4. Franz Steiner, Wiesbaden

    Google Scholar 

  • Seidler J, McGovern SL, Doman TN, Shoichet BK (2003) Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem 46:4477–4486

    PubMed  CAS  Google Scholar 

  • Selvin PR (2002) Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct 31:275–302

    PubMed  CAS  Google Scholar 

  • Service RF (2000) Proteomics. Can Celera do it again? Science 287:2136–2138

    Google Scholar 

  • Sharma A, Srivastava GP, Sharma VK, Ramachandran S (2004) ArrayD: a general purpose software for microarray design. BMC Bioinformatics 5:142–150

    PubMed  Google Scholar 

  • Shaw I (1992) Receptor-based assays in screening of biologically active substances. Curr Opin Biotech 3:55–58

    PubMed  CAS  Google Scholar 

  • Sheehan M (2005) Orphan drugs and the NHS. Fairness in health care entails more that cost effectiveness. Br Med J 331:1144–1145

    Google Scholar 

  • Sherlock G, Hernandez‐Boussard T, Kasarskis A, Binkley G, Matese JC, Dwight SS, Kaloper M, Weng S, Jin H, Ball CA, Eisen MB, Spellman PT, Brown PO, Botstein D, Cherry JM (2001) The Stanford microarray database. Nucleic Acids Res 29:152–155

    PubMed  CAS  Google Scholar 

  • Shieh CC (2004) Automated high‐throughput patch clamp techniques. Drug Discov Today 9:551–552

    PubMed  Google Scholar 

  • Shimkets RA, Lifton RP (1996) Recent advances in the molecular genetics of hypertension. Curr Opin Nephrol Hypertens 2:162–165

    Google Scholar 

  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovery of high affinity ligands for proteins. SAR by NMR. Science 274:1531–1534

    PubMed  CAS  Google Scholar 

  • Siegel RE (1968) Galen's system of physiology and medicine: his doctrines and observations on blood flow, respiration, humors, and internal diseases.Karger, Basel

    Google Scholar 

  • Sillerud LO, Larson RS (2006) Nuclear magnetic resonance-based screening methods for drug discovery. Methods Mol Biol 316:227–289

    PubMed  Google Scholar 

  • Sills (1998)

    Google Scholar 

  • Sills MA (1998) Future considerations in HTS: the acute effect of chronic dilemmas. Drug Discov Today 3:304–312

    Google Scholar 

  • Silverman L, Campbell R, Broach JR (1998) New assay techniques for high throughput screening. Curr Opin Chem Biol 2:397–403

    PubMed  CAS  Google Scholar 

  • Sioud M (2004) Therapeutic siRNAs. Trends Pharmacol Sci 25:22–28

    PubMed  CAS  Google Scholar 

  • Sittampalam GS, Kahl SD, Janzen WP (1997) High throughput screening: advances in assay technologies. Curr Opin Chem Biol 1:384–391

    PubMed  CAS  Google Scholar 

  • Smith SA, Farrell JAD, Jones CK, Reich DS, Calabresi PA, van Zijl PCM (2006) Pulsed magnetization transfer imaging with body coil transmission at 3 Tesla: feasibility and application. Magnet Reson Med 56:8566–875

    Google Scholar 

  • Snider RM, Constantine JW, Lowe JA III, Longo KP, Lebel WS, Woody HA, Drozda SE, Desai MC, Vinick FJ, Spencer RW, Hess HJ (1991) A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 215:435–437

    Google Scholar 

  • Snyder LH (1932) Studies in human inheritance: IX. The inheritance of taste deficiency in man. Ohio J Sci 32:436–468

    Google Scholar 

  • Snyder SH, Creese I, Burt DR (1975) The brain's dopamine receptor: labeling with [3H]dopamine. Psychopharmacol Commun 1:663–673

    PubMed  CAS  Google Scholar 

  • Sobek J, Bartscherer K, Jacob A, Hoheisel JD, Angenendt P (2006) Microarray technology as a universal tool for high‐throughput analysis of biological systems. Comb Chem High Throughput Screen 9:365–380

    PubMed  CAS  Google Scholar 

  • Spear BB, Heath-Chiozzi M, Huff J (2001) Clinical applications of pharmacogenetics. Trends Mol Med 7:201–204

    PubMed  CAS  Google Scholar 

  • Sportsman JR, Daijo J, Gaudet EA (2003) Fluorescence polarization assays in signal discovery. Comb Chem High Throughput Screen 6:195–200

    PubMed  CAS  Google Scholar 

  • Sportsman JR, Leytes LJ (2000) Miniaturization of homogenous assays using fluorescence polarization. Drug Discov Today HTS Suppl 1:27–32

    CAS  Google Scholar 

  • Srijkers GJ, Mulder WJ, van Tilborg GA, Nikolay K (2007) MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7:291–305

    Google Scholar 

  • Srinivasan N, Kilburn JD (2004) Combinatorial approaches to synthetic receptors. Curr Opin Chem Biol 8:305–310

    PubMed  CAS  Google Scholar 

  • Stahl W (1999) What is the future of high throughput screening? J Biomol Screen 4:117–118

    Google Scholar 

  • Starke K (1987) Presynaptic α-autoreceptors. Rev Physiol Biochem Pharmacol 107:73–146

    PubMed  CAS  Google Scholar 

  • Steiner S, Anderson NL (2000) Expression profiling in toxicology – potentials and limitations. Toxicol Lett 112–113:467–471

    Google Scholar 

  • Stephenson RP (1956) A modification of receptor theory. Br J Pharmacol 11:379–393

    CAS  Google Scholar 

  • Stett A, Burkhardt C, Weber U, van Stiphout P, Kott T (2004) CYTOCENTERING. A novel technique enabling automated cell-by-cell patch clamping with the CYTOPATCH chip. Receptor Channels 9:59–66

    Google Scholar 

  • Stigers KD, Soth MJ, Nowick JS (1999) Designed molecules that fold to mimic protein secondary structure. Curr Opin Chem Biol 3:714–723

    PubMed  CAS  Google Scholar 

  • Stolk P, Willeman MJC, Leufkens HGM (2006) “Rare essentials”: drugs for rare diseases as essential medicines. Bull World Health Organ 84

    Google Scholar 

  • Su S, Vivier RG, Dickson MC, Kendrick MK, Williamson NM, Anson JG, Houston JG, Craig FF (1997) High throughput PT-PCR analysis of multiple transcripts using a microplate RNA isolation procedure. Biotechniques 22:1107–1113

    PubMed  CAS  Google Scholar 

  • Subramanian S, Matsumoto KI, Mitchell JB, Krishna MC (2004) Radio frequency continuous-wave and time‐dependent EPR imaging and Overhauser‐enhanced magnetic resonance imaging of small animals: instrumental developments and comparison of relative merits for functional imaging. NMR Biomed 17:263–294

    PubMed  CAS  Google Scholar 

  • Sullivan E, Tucker EM, Dale IL (1999) Measurement of Ca2+ using the Fluorometric Imaging Plate Reader (FLIPR). Methods Mol Biol 114:125–133

    PubMed  CAS  Google Scholar 

  • Sundberg SA (2000) High‐throughput and ultra-high‐throughput screening: solution- and cell-based approaches. Curr Opin Biotechnol 11:47–53

    PubMed  CAS  Google Scholar 

  • Swartzman EE, Miraglia SJ, Mellentin‐Michelotti J, Evangelista L, Yuan PM (1999) A homogeneous and multiplexed immunoassay for high throughput screening using fluorometric microvolume assay technology. Anal Biochem 271:143–151

    PubMed  CAS  Google Scholar 

  • Tallarida RJ, Murray RB (1987) Manual of pharmacologic calculations with computer programs, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tan W, Wang K, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8:547–553

    PubMed  CAS  Google Scholar 

  • Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114

    PubMed  CAS  Google Scholar 

  • Taniguchi M, Mura K, Iwao H, Yamanaka S (2001) Quantitative assessment of DNA microarrays – comparison with Western blot analyses. Genomics 71:34–39

    PubMed  CAS  Google Scholar 

  • Temkin L (1941) Four Treatises of Theophrastus von Hohenheim, called Paracelsus. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Templin MF, Stoll D, Schrenk M, Traub PC, Vöhringer CF, Joos TO (2002) Protein microarray technology. Drug Discov Today 7:815–822

    PubMed  CAS  Google Scholar 

  • Terstappen GC, Reggiani A (2001) In silico research in drug discovery. Trends Pharmacol Sci 22:23–26

    PubMed  CAS  Google Scholar 

  • Thoene JG (2004) Orphan drugs and orphan tests in the USA. Community Genet 7:169–172

    PubMed  Google Scholar 

  • Thomassin H, Kress C, Grange T (2004) MethylQuant: a sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res 32:e168

    PubMed  Google Scholar 

  • Tijsterman M, Plasterk RHA (2004) Dicers at RISC: the mechanism of RNAi. Cell 117:1–4

    PubMed  CAS  Google Scholar 

  • Timmernans PB, van Zwieten PA (1980) Vasoconstriction mediated by postsynaptic alpha 2‐adrenoceptor stimulation. Naunyn‐Schmiedbergs Arch Pharmacol 313:17–20

    Google Scholar 

  • Timmernans PB, van Zwieten PA (1981) Mini-review: the postsynaptic alpha 2‐adrenoceptor. J Auton Pharmacol 1:171–183

    Google Scholar 

  • Ting AY, Kain KH, Klemke RL, Tsien RY (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci USA 98:15003–15008

    PubMed  CAS  Google Scholar 

  • Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S (2003) OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res 31:3758–3762

    PubMed  CAS  Google Scholar 

  • Treherne JM (2006) Exploiting high‐throughput ion channel screening technologies in integrated drug discovery. Curr Pharm Des 12:497–406

    Google Scholar 

  • Trist DG, Humphrey PPA, Leff P, Shankley NP (1997) Receptor classification. The integration of operational, structural, and transductional information. Ann NY Acad Sci 812:1–244

    Google Scholar 

  • Turconi S, Shea K, Ashman S, Fantom K, Ernshaw DL, Bingham RP, Haupts UM, Brown MJB, Pope AJ (2001) Real experiences of uHTS: a prototypic 1536-welll fluorescence anisotropy-based uHTS screen and application of well-level quality control procedures. J Biomol Screen 6:275–290

    PubMed  CAS  Google Scholar 

  • Turek-Etienne TC, Small EC, Soh SC, Gaitonde TA, Barrabee PV, Hart EB, Bryant RW (2003) Evaluation of fluorescent compound interference in 4 fluorescence polarization assays: 2 kinases, 1 protease, and 1 phosphatase. J Biomol Screen 8:176–184

    PubMed  CAS  Google Scholar 

  • U'Prichard DC, Bechtel WD, Rouot B, Snyder SH (1979) Multiple apparent alpha‐noradrenergic receptor binding sites in rat brain: effect of 6‐hydroxydopamine. Mol Pharmacol 15:47–60

    Google Scholar 

  • U'Prichard DC, Bylund DB, Snyder SH (1978) (±)-3H-Epinephrine and (–)-3H-dihydroalprenolol binding to β1 and β2 noradrenergic receptors in brain, heart and lung membranes. J Biol Chem 253:5090–5102

    PubMed  Google Scholar 

  • Unschuld PU (1973) Pen-ts'ao – 2000 Jahre traditionelle pharmazeutische Literatur Chinas. Heinz Moos, Munich

    Google Scholar 

  • Unschuld PU (1986) Medicine in China. A history of pharmaceutics. University of California Press, Berkeley

    Google Scholar 

  • Uttamchandani M, Walsh DP, Yao SQ, Chang YT (2005) Small molecule microarrays: recent advances and applications. Curr Opin Chem Biol 9:4–13

    PubMed  CAS  Google Scholar 

  • Valler MJ, Green D (2000) Diversity screening versus focussed screening in drug discovery. Drug Discov Today 5:286–293

    PubMed  Google Scholar 

  • Van Oosterhout AJM (1998) Genomics and drug discovery. Trends Pharmacol Sci 19:157–160

    Google Scholar 

  • Vanhecke D, Janitz M (2005) Functional genomics using high‐throughput RNA interference. Drug Discov Today 10:205–212

    PubMed  CAS  Google Scholar 

  • Vanhoutte PM, Humphrey PPA, Spedding M (1996) International Union of Pharmacology. XI. Recommendations for nomenclature of new receptor subtypes. Pharmacol Rev 48:1–2

    PubMed  CAS  Google Scholar 

  • Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    PubMed  CAS  Google Scholar 

  • Vesell ES (2000) Advances in pharmacogenetics and pharmacogenomics. J Clin Pharmacol 40:930–938

    PubMed  CAS  Google Scholar 

  • Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43:13233–13241

    PubMed  CAS  Google Scholar 

  • Vidalain PO, Boxem M, Ge H, Li S, Vidal M (2004) Increasing specificity in high‐throughput yeast two-hybrid experiments. Methods 32:363–370

    PubMed  CAS  Google Scholar 

  • Vogel F (1959) Moderne Probleme der Humangenetik. Erg Inn Med Kinderheilkd 12:52–125

    Google Scholar 

  • Vogel HG (1991) Similarities between various systems of traditional medicine. Considerations for the future of ethnopharmacology. J Ethnopharmacol 35:179–190

    PubMed  CAS  Google Scholar 

  • Vogel HG, Vanderbeeke O (1990) “In vitro / in vivo” pharmacology. Mathematical models for screening strategy. Internal Presentation at Hoechst AG

    Google Scholar 

  • Vollert H (1998) Development of a robust miniaturized screening system. Proceeding, IBC, Practical Aspects for Assay Miniaturization and Design for Drug Discovery, Boston, Mass., USA

    Google Scholar 

  • Vollert H, Jordan B, Winkler I (2000) Wandel in der Wirkstoffsuche – Ultra-High‐Throughput‐Screening‐Systeme in der Pharmaindustrie. Transkript Laborwelt 1:5–10

    Google Scholar 

  • Von Oehsen (1989) Orphan Drug Act on congressional agenda. Physician Exec 15:34–35

    PubMed  CAS  Google Scholar 

  • Vrecl M, Jorgennsen R, Pogačnik A, Heiding A (2004) Development of a BRET2 screening assay using β-arrestin 2 mutants. J Biomol Screen 9:322–333

    PubMed  CAS  Google Scholar 

  • Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175

    PubMed  Google Scholar 

  • Waldeck B (1996) Some pharmacodynamic aspects on long‐acting beta‐adrenoceptor agonists. Gen Pharmacol 27:575–580

    PubMed  CAS  Google Scholar 

  • Wallace JC, Edmonds M (1983) Polyadenylated nuclear RNA contains branches. Proc Natl Acad Sci USA 80:950–954

    PubMed  CAS  Google Scholar 

  • Wallace RW, Goldman ME (1997) Bioassay design and implementation. In: Devlin JP (ed) High throughput screening. The discovery of bioactive substances. Dekker, New York, pp 279–305

    Google Scholar 

  • Waller A, Simons PC, Biggs SM, Edwards BS, Prossnitz ER (2004) Techniques: GPCR assembly, pharmacology and screening by flow cytometry. Trends Pharmacol Sci 25:663–669

    PubMed  CAS  Google Scholar 

  • Wallrabe H, Periasami A (2005) Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16:19–29

    PubMed  CAS  Google Scholar 

  • Wang Y, Silverman SK (2003) Deoxyribozymes that synthesize branched and lariat RNA. J Am Chem Soc 125:6880–6881

    PubMed  CAS  Google Scholar 

  • Warr WA (2003) Strategies for improving pharmaceutical R&D productivity. Drug Discov Des 7:1–15

    Google Scholar 

  • Watling KJ (1998) The RBI handbook of receptor classification, 3rd edn. Research Biochemicals International, Natick, Mass.

    Google Scholar 

  • Watson SK, deLeeuw RJ, Ishkanian AS, Malloff CA, Lam WL (2004) Methods for high throughput validation of amplified fragment pools of BAC DNA for constructing high resolution of CHG assays. BMC Genomics 5:6

    PubMed  Google Scholar 

  • Watt AP, Morrison D, Evans DC (2000) Approaches to higher‐throughput pharmacokinetics (HTPK) in drug discovery. Drug Discov Today 5:17–24

    PubMed  CAS  Google Scholar 

  • Watts P, Haswell SJ (2003) Microfluidic combinatorial chemistry. Curr Opin Chem Biol 7:380–387

    PubMed  CAS  Google Scholar 

  • Weaver TA (2001) High‐throughput SNP discovery and typing for genome-wide genetic analysis. New technologies for life sciences: a trends guide 1:36–42

    Google Scholar 

  • Weber WW (1999) Populations and genetic polymorphisms. Mol Diagn 4:299–307

    PubMed  CAS  Google Scholar 

  • Weinstein MC (1991) The cost‐effectiveness of orphan drugs. Am J Publ Health 81:414–415

    CAS  Google Scholar 

  • Wess J (1993) Molecular basis of muscarinic acetylcholine receptor function. Trends Pharmacol Sci 14:308–313

    PubMed  CAS  Google Scholar 

  • West DB, Iakougova O, Olsson C, Ross D, Ohmen J, Chatterjee A (2000) Mouse genetics/genomics: an effective approach for drug target discovery and validation. Med Res Rev 20:216–230

    PubMed  CAS  Google Scholar 

  • White RE (2000) High‐throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu Rev Pharmacol Toxicol 40:133–157

    PubMed  CAS  Google Scholar 

  • Whitehurst CE, Nazef N, Annis DA, Hou Y, Murphy DM, Spacciapoli P, Yao Z, Ziebell MR, Cheng CC, Shipps GW Jr, Felsch JS, Lau D, Nash HM (2006) Discovery and characterization of orthosteric and allosteric muscarinic M2 acetylcholine receptor ligands by affinity selection-mass spectrometry. J Biomol Screen 11:194–207

    PubMed  Google Scholar 

  • Wieczorek SJ, Tsongalis GJ (2001) Pharmacogenomics: will it change the field of medicine? Clin Chim Acta 308:1–8

    Google Scholar 

  • Wilhelmi G (1949) Über die pharmakologischen Wirkungen von Irgapyrin, einem neuen Präparat aus der Pyrazolonreihe. Schweiz Med Wschr 79:577

    PubMed  CAS  Google Scholar 

  • Wilhelmi G (1950) Über die antiphlogistische Wirkung von Pyrazolonen, speziell von Irgayrin, 'bei peroraler and parenteraler Verabreichung. Schweiz Med Wschr 80:936

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Google Scholar 

  • William M (1991) Receptor binding in the drug discovery process. Med Res Rev 11:147–184

    Google Scholar 

  • Williams JL, Hathaway CA, Kloster KL, Layne BH (1997) Low power, type-II errors, and other statistical problems in recent cardiovascular research. Am J Physiol 273:H487–H493

    PubMed  CAS  Google Scholar 

  • Williams KL (1999) Genomes and proteomes: toward a multidimensional view of biology. Electrophoresis 20:678–688

    PubMed  CAS  Google Scholar 

  • Williams M (2003) Target validation. Curr Opin Pharmacol 3:571–577

    PubMed  CAS  Google Scholar 

  • Willumsen NJ, Bech M, Olesen SP, Jensen BS, Korsgaard MPG, Christophersen P (2003) High throughput electrophysiology: new perspectives for ion channel discovery. Receptor Channels 9:3–12

    CAS  Google Scholar 

  • Wilm MS, Mann M (1994) Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? Int J Mass Spectrom Ion Processes 136:167–180

    Google Scholar 

  • Wilson S, Bergsma DJ, Chambers JK, Muir AI, Fantom KGM, Ellis C, Murdock PR, Herrity NC, Stadel JM (1998) Orphan G-protein‐coupled receptors: the next generation of drug targets? Br J Pharmacol 125:1387–1392

    Google Scholar 

  • Wingfield J (1998) Developing effective assays on HTS. Drug Discov Today 3:97–99

    Google Scholar 

  • Winkelmann BR (2001) Genomics and large scale phenotypic databases. Pharmacogenomics 2:3–5

    PubMed  CAS  Google Scholar 

  • Winkelmann BR, Marz W, Boehm BO, Zotz R, Hager J, Hellstern P, Senges J (2001) Rationale and design of the LURIC study – a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics 2 [Suppl 1]:S1–S73

    Google Scholar 

  • Winkler T, Kettling U, Koltermann E, Eigen M (1999) Confocal fluorescence coincidence analysis: an approach to ultra high‐throughput screening. Proc Natl Acad Sci USA 96:1375–1378

    PubMed  CAS  Google Scholar 

  • Wisden W, Seeburg PH (1992) GABAA receptor channels: from subunits to functional entities. Curr Opin Neurobiol 2:263–269

    PubMed  CAS  Google Scholar 

  • Wolcke J, Ullmann D (2001) Miniaturized HTS technologies – uHTS. Drug Discov Today 6:637–646

    PubMed  Google Scholar 

  • Wolf CR, Smith G (1999) Pharmacogenetics. Br Med Bull 55:366–386

    PubMed  CAS  Google Scholar 

  • Wu S, Liu B (2005) Application of scintillation proximity assay in drug discovery. BioDrugs 19:383–392

    PubMed  CAS  Google Scholar 

  • Xin H, Bernal A, Amato FA, Pinhasov A, Kauffman J, Brenneman DE, Derian CK, Anrade‐Gordon P, Plata-Salamán CR, Ilyin SE (2004) High‐throughput siRNA-based functional target validation. J Biomol Screen 9:286–293

    PubMed  CAS  Google Scholar 

  • Yamamoto R, Kumar PKR (2000) Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells 5:389–396

    PubMed  CAS  Google Scholar 

  • Yan YX, Boldt-Houle DM, Tillotson BP, Gee MA, D'Eon BJ, Chang XJ, Olesen CEM, Palmer MAJ (2002) Cell-based high‐throughput screening assay system for monitoring G protein‐coupled receptor activation using β-galactosidase enzyme complementation technology. J Biomol Screen 7:451–459

    PubMed  CAS  Google Scholar 

  • Yang H, Leland IK, Yost D, Mssey RJ (1994) Electrochemiluminescence: a new diagnostic and research tool. Biotechnology 12:193–194

    PubMed  CAS  Google Scholar 

  • Yates JR 3rd (2000) Mass spectrometry. From genomics to proteomics. Trends Genet 16:5–8

    PubMed  CAS  Google Scholar 

  • Yu N, Atienza JM, Bernard J, Blanc S, Zhu J, Wang X, Xu X, Abassi YA (2006) Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays. Anal Chem 78:35–43

    PubMed  CAS  Google Scholar 

  • Zambrowicz BP, Turner CA, Sands AT (2003) Predicting drug efficacy: knockouts model pipeline drugs of the pharmaceutical industry. Curr Opin Pharmacol 3:563–570

    PubMed  CAS  Google Scholar 

  • Zehender H, le Goff F, Lehmann N, Filipuzzi I, Mayr LM (2004) SpeedScreen: the “missing ling” between genomics and lead discovery. J Biomol Screen 9:498–505

    PubMed  CAS  Google Scholar 

  • Zhang J, McCombie G, Guenat C, Knochemmuss R (2005) FT-ICR mass spectrometry in the drug discovery process. Drug Discov Today 10:635–642

    PubMed  CAS  Google Scholar 

  • Zhang JH, Chen T, Nguyen SH, Oldenburg KR (2000a) A high‐throughput homogeneous assay for the reverse transcriptase using generic reagents and time-resolved fluorescence detection. Anal Biochem 281:182–186

    PubMed  CAS  Google Scholar 

  • Zhang JH, Chung TDY, Oldenburg KR (1999) A simple statistic parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    PubMed  Google Scholar 

  • Zhang JH, Chung TDY, Oldenburg KR (2000) Confirmation of primary active substances from high throughput screening of chemical and biological populations: a statistical approach and practical considerations. J Comb Chem 2:285–265

    Google Scholar 

  • Zhang MQ (1999) Large-scale gene expression data analysis: a new challenge to computational biologists. Genome Res 9:681–688

    PubMed  CAS  Google Scholar 

  • Zheng W, Brandish PE, Kolodin DG, Scolnick EM, Strulovici B (2004a) High‐throughput cell-based screening using scintillation proximity assay for the discovery of inositol phosphatase inhibitors. J Biomol Screen 9:132–140

    PubMed  CAS  Google Scholar 

  • Zheng W, Spencer RH, Kiss L (2004b) High throughput assay technologies for ion channel drug discovery. Assay Drug Dev Technol 2:543–552

    PubMed  CAS  Google Scholar 

  • Zhong XB, Lizardi PM, Huang XH, Bray-Ward PL, Ward DC (2001) Visualization of oligonucleotides probes and point mutations in interphase nuclei and DNA fibers using rolling circle amplification. Proc Natl Acad Sci USA 98:3940–3945

    PubMed  CAS  Google Scholar 

  • Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7:55–63

    PubMed  CAS  Google Scholar 

  • Zhu Z, Chen T, Lin JH, Bell A, Bryson J, Dubaquie Y, Yan N, Yanchunas J, Xie D, Stoffel R, Sinz M, Dickinson K (2004) Correlation of high‐throughput pregnane X receptor (PXR) transactivation and binding assays. J Biomol Screen 9:533–540

    PubMed  CAS  Google Scholar 

  • Ziauddin J, Sabatini DM (2001) Microarrays of cells expressing defined cDNAs. Nature 411:107–110

    PubMed  CAS  Google Scholar 

  • Zuck P, Lao ZG, Skwish S, Glickman JF, Yang K, Burbaum J, Inglese J (1999) Ligand‐receptor binding measured by laser-scanning imaging. Proc Natl Acad Sci USA 96:11122–11127

    PubMed  CAS  Google Scholar 

  • Zweiger G (1999) Knowledge discovery in gene‐expression‐microarray data: mining the information output of the genome. Trends Biotechnol 17:429–436

    PubMed  CAS  Google Scholar 

  • Zysk JR, Baumbach WR (1998) Homogeneous pharmacologic and cell-based screens provide diverse strategies in drug discovery. Somatostatin antagonists as a case study. Comb Chem High Throughput Screen 1:171–183

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Vogel, H. (2007). Introduction Strategies in Drug Discovery and Evaluation. In: Vogel, H.G. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70995-4_1

Download citation

Publish with us

Policies and ethics