Skip to main content

A Priori and A Posteriori Error Analysis in Chemistry

  • Reference work entry
  • First Online:
Encyclopedia of Applied and Computational Mathematics
  • 293 Accesses

Synonyms

Convergence analysis; Error estimates; Guaranteed accuracy; Refinement

Definition

For a numerical discretization chosen to approximate the solution of a given problem or for an algorithm used to solve the discrete problem resulting from the previous discretization, a priori analysis explains how the method behaves and to which extent the numerical solution that is produced from the discretization/algorithm is close to the exact one. It also allows to compare the numerical method of interest with another one. With a priori analysis though, there is no definite certainty that a given computation provides a good enough approximation. It is only when the number of degrees of freedom and the complexity of the computation is large enough that the convergence of the numerical method can be guaranteedly achieved. On the contrary, a posteriori analysis provides bounds on the error on the solution or the output coming out of the simulation. The concept of a posteriori analysis can even...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 999.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boulton, L., Boussa, N., Lewin, M.: Generalized Weyl theorem and spectral pollution in the Galerkin method. http://arxiv.org/pdf/1011.3634v2

  2. Boys, S.F.: Electronic wavefunction I. A general method of calculation for the stationary states of any molecular system. Proc. R. Soc. A 200, 542–554 (1950)

    Article  MATH  Google Scholar 

  3. Braess, D.: Asymptotics for the approximation of wave functions by sums of exponential sums. J. Approx. Theory 83, 93–103 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezzi, F., Canuto, C., Russo, A.: A self-adaptive formulation for the Euler/NavierStokes coupling. CMAME Arch. 73(3), 317–330 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Cancès, E., Ehrlacher, V., Maday, Y.: Periodic Schrdinger operators with local defects and spectral pollution, arXiv:1111.3892

    Google Scholar 

  6. Cancès, E., LeBris, C.: On the convergence of SCF algorithms for the HartreeFock equations. Math. Model. Numer. Anal. 34, 749–774 (2000)

    Article  MathSciNet  Google Scholar 

  7. Cancès, E., LeBris, C., Maday, Y., Turinici, G.: Towards reduced basis approaches in ab initio electronic structure computations. J. Sci. Comput. 17(1), 461–469 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cancès, E., LeBris, C., Maday, Y.: Méthodes Mathématiques en chimie quantique: une Introduction (in French). Mathématiques and Applications (Berlin), vol. 53. Springer, Berlin (2006)

    Google Scholar 

  9. Conte, D., Lubich, C.: An error analysis of the multi-configuration time-dependent Hartree method of quantum dynamics. ESAIM M2AN 44, 759–780 (2010)

    Google Scholar 

  10. El Alaoui, L., Ern, A., Vohralk, M.: Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Method Appl. Mech. Eng. 200, 2782–2795 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friesecke, G.: The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Ration. Mech. Anal. 169, 35–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  13. Kobus, J., Quiney, H.M., Wilson, S.: A comparison of finite difference and finite basis set Hartree-Fock calculations for the N2 molecule with finite nuclei. J. Phys. B Atomic Mol. Opt. Phys. 34, 10 (2001)

    Google Scholar 

  14. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  15. Kudin, K., Scuseria, G.E., Cancès, E.: A black-box self-consistent field convergence algorithm: one step closer. J. Chem. Phys. 116, 8255–8261 (2002)

    Article  Google Scholar 

  16. Kutzelnigg, W.: Theory of the expansion of wave functions in a Gaussian basis. Int. J. Quantum Chem. 51, 447–463 (1994)

    Article  Google Scholar 

  17. Lewin, M.: Solution of multiconfiguration equations in quantum chemistry. Arch. Ration. Mech. Anal. 171, 83–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lewin, M., Séré, É.: Spectral pollution and how to avoid it (with applications to Dirac and periodic Schrödinger operators). Proc. Lond. Math. Soc. 100(3), 864–900 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maday, Y., Razafison, U.: A reduced basis method applied to the restricted HartreeFock equations. Comptes Rendus Math. 346(3–4), 243–248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maday, Y., Turinici, G.: Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations. Numer. Math. 94, 739–770 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Maday, Y. (2015). A Priori and A Posteriori Error Analysis in Chemistry. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_255

Download citation

Publish with us

Policies and ethics