Skip to main content

2 Molecular Evidence on Primate Origins and Evolution

  • Reference work entry
  • First Online:
Handbook of Paleoanthropology

Abstract

Over the last decade, research on primate phylogeny has been of increasing interest to the scientific community. From the perspective of molecular evolution, this is mainly due to the fact that the mass generation of molecular sequences has become easy and cost effective. With the generation of complete sequences for several eutherian organisms including humans and the mouse, a well-accepted phylogenetic interpretation for all members of the Euarchontoglires and all major groups of the primate order is feasible and would represent a new starting point for meaningful comparative research. Such a phylogenetic framework would link humans with the mouse, which is generally regarded as the main eutherian model organism. Thus, our knowledge of primate origins and the evolution of primates is a prerequisite for a postgenomic era in which aspects of functional genetics and character evolution will form a focal point of genetic research. Despite the pace at which primate sequences can be generated in whole genome shotgun (WGS)-sequencing projects, primate origins as well as several branching events in primate divergence remain far from settled. First, complete primate genome sequences are currently available for two representatives of the Old World monkeys and hominoids and humans only. Information is lacking on the deeper primate splits and comparative data are restricted to parts of primate genomes (ENCODE project). Second, it is obvious that the peculiar mode of sequence evolution (including gene-, lineage-, and position-specific evolutionary rates), combined with deep splitting events that often occurred during small time intervals may possibly lead to incongruence between gene and species trees. To avoid this, it will be necessary to have enormous amounts of sequence data and the implementation of more realistic assumptions about sequence evolution models in sequence-based phylogenetic tree reconstructions. Moreover, alternative molecular approaches, including both the incorporation of data of so-called “rare genomic changes” (RGCs) and a combination of both neontological and paleontological morphological data in total evidence approaches, are likely to contribute considerably to a firm interpretation on the origin and evolution of primates. Below I summarize and discuss molecular evidence obtained for the origin and evolution of primates, stressing the potential of the inclusion of “RGCs,” mainly retropositions of short interspersed nuclear elements (SINEs) in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews TD, Jermiin LS, Easteal S (1998) Accelerated evolution of cytochrome b in simian primates: adaptive evolution in concert with other mitochondrial proteins? J Mol Evol 47: 249–257

    Article  CAS  PubMed  Google Scholar 

  • Arnason U, Gullberg A, Janke A (1998) Molecular timing of primate divergences as estimated by two nonprimate calibration points. J Mol Evol 47: 718–727

    Article  CAS  PubMed  Google Scholar 

  • Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Milsson M, Short RV, Xu XF, Janke A (2002) Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA 99: 8151–8156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batzer MA, Deninger PL (1991) A human-specific subfamily of Alu sequences. Genomics 9: 481–487

    Article  CAS  PubMed  Google Scholar 

  • Batzer MA, Stoneking M, Alegria-Hartman M, Bazan H, Kass DH, Shaikh TH, Novick GE, Ioannou PA, Scheer WD, Herrera RJ, et al (1994) African origin of human-specific polymorphic Alu insertions. Proc Natl Acad Sci USA 91: 12288–12292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batzer MA, Deininger PL, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin CM, Schmid CW, Zietkiewicz E, Zuckerkandl E (1996) Standardized nomenclature for Alu repeats. J Mol Evol 42: 3–6

    Article  CAS  PubMed  Google Scholar 

  • Cheng JF, Printz R, Callaghan T, Shuey D, Hardison RC (1984) The rabbit C family of short, interspersed repeats. Nucleotide sequence determination and transcriptional analysis. J Mol Biol 176: 1–20

    Article  CAS  PubMed  Google Scholar 

  • Daniels GR, Deininger PL (1991) Characterization of a third major SINE family of repetitive sequences in the galago genome. Nucleic Acids Res 19: 1649–1656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deininger PL, Batzer MA (1993) Evolution of retroposons. Evol Biol 27: 157–196

    Article  Google Scholar 

  • Deininger PL, Batzer MA, Hutchison CA III, Edgell MH (1992) Master genes in mammalian repetitive DANN amplification. Trends Genet 8: 307–311

    Article  CAS  PubMed  Google Scholar 

  • ENCODE Project Consortium (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306: 636–640

    Google Scholar 

  • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905–916

    Article  CAS  PubMed  Google Scholar 

  • Goodman M, Grossman LI, Wildman DE (2005) Moving primate genomics beyond the chimpanzee genome. Trends Genet 9: 511–517

    Article  Google Scholar 

  • Groves CP (2001) Primate taxonomy. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Hacia JG (2001) Genome of the apes. Trends Genet 17: 637–645

    Article  CAS  PubMed  Google Scholar 

  • Han JS, Boeke JD (2005) LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays 27: 775–784

    Article  CAS  PubMed  Google Scholar 

  • Hedges DJ, Batzer MA (2005) From the margins of the genome: mobile elements shape primate evolution. Bioessays 27: 785–794

    Article  CAS  PubMed  Google Scholar 

  • Jacobs GH, Deegan JF II (2003) Diurnality and cone photopigment polymorphism in strepsirhines: examination of linkage in Lemur catta. Am J Phys Anthropol 122: 66–72

    Article  PubMed  Google Scholar 

  • Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci USA 94: 1872–1877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kajikawa M, Okada N (2002) LINEs mobilize SINEs in the eel through a shared 3 sequence. Cell 111: 433–444

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH Jr, Moran JV (1998) The impact of L1 retrotransposons on the human genome. Nat Genet 19: 19–24

    Article  CAS  PubMed  Google Scholar 

  • Korenberg JR, Rykowski MC (1988) Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53: 391–400

    Article  CAS  PubMed  Google Scholar 

  • Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4(4): e91

    Article  PubMed Central  PubMed  Google Scholar 

  • Kriener K, O'hUigin C, Klein J (2001) Alu elements support independent origin of prosimian, platyrrhine, and catarrhine Mhc-DRB genes. Genome Res 10: 634–643

    Article  Google Scholar 

  • Kuryshev VY, Skryabin BV, Kremerskothen J, Jurka J, Brosius J (2001) Birth of a gene: locus of neuronal BC200 snmRNA in three prosimians and human BC200 pseudogenes as archives of change in the Anthropoidea lineage. J Mol Biol 309: 1049–1066

    Article  CAS  PubMed  Google Scholar 

  • Li WH, Gu Z, Wang H, Nekrutenko A (2001) Evolutionary analyses of the human genome. Nature 409: 847–849

    Article  CAS  PubMed  Google Scholar 

  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605

    Article  CAS  PubMed  Google Scholar 

  • Madsen O, Scally M, Douady CJ, Kao DJ, Debry RW, Adkins R, Amrine HM, Stanhope MJ, de Jong WW, Springer MS (2001) Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614

    Article  CAS  PubMed  Google Scholar 

  • Makalowski W, Mitchell GA, Labuda D (1994) Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet 10: 188–193

    Article  CAS  PubMed  Google Scholar 

  • Matera AG, Hellmann U, Hintz MF, Schmid CW (1990) Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res 18: 6019–6023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001b) Resolution of the early placental mammal radiation using bayesian phylogenetics. Science 294: 2348–2351

    Article  CAS  PubMed  Google Scholar 

  • Napier JR, Napier PH (1967) A handbook of living primates. Academic Press, London

    Google Scholar 

  • Nishihara H, Terai Y, Okada N (2002) Characterization of novel Alu- and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol Biol Evol 19: 1964–1972

    Article  CAS  PubMed  Google Scholar 

  • Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356: 121–125

    Article  CAS  PubMed  Google Scholar 

  • Okada N (1991a) SINEs. Curr Opin Genet Dev 1: 498–504

    Article  CAS  PubMed  Google Scholar 

  • Okada N (1991b) SINEs: short interspersed repeated elements of the eucaryotic genome. Trends Ecol Evol 6: 358–361

    Article  CAS  PubMed  Google Scholar 

  • Olson LE, Sargis EJ, Martin RD (2005) Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol 35: 656–673

    Article  CAS  PubMed  Google Scholar 

  • Perna NT, Batzer MA, Deininger PL, Stoneking M (1992). Alu insertion polymorphism: a new type of marker for human population studies. Hum Biol 64: 641–648

    CAS  PubMed  Google Scholar 

  • Piskurek O, Nikaido M, Boeadi, Baba M, Okada N (2003) Unique mammalian tRNA-derived repetitive elements in dermopterans: the t-SINE family and its retrotransposition through multiple sources. Mol Biol Evol 20: 1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Pumo DE, Finamore PS, Franek WR, Phillips CJ, Tarzami S, Balzarano D (1998) Complete mitochondrial genome of a Neotropical fruit bat, Artibeus jamaicensis, and a new hypothesis of the relationships of bats to other eutherian mammals. J Mol Evol 47: 709–717

    Article  CAS  PubMed  Google Scholar 

  • Quentin Y (1992a) Fusion of a free left Alu monomer and a free right Alu monomer at the origin of the Alu family in the primate genomes. Nucleic Acids Res 20: 487–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quentin Y (1992b) Origin of the Alu family: a family of Alulike monomers gave birth to the left and the right arms of the Alu elements. Nucleic Acids Res 20: 3397–3401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quentin Y (1994) A master sequence related to a free left Alu monomer (FLAM) at the origin of the B1 family in rodent genomes. Nucleic Acids Res 22: 2222–2227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raina SZ, Faith JJ, Disotell TR, Seligmann H, Stewart CB, Pollock DD (2005) Evolution of base-substitution gradients in primate mitochondrial genomes. Genome Res 15: 665–673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ray DA, Xing J, Hedges DJ, Hall MA, Laborde ME, Anders BA, White BR, Stoilova N, Fowlkes JD, Landry KE, Chemnick LG, Ryder OA, Batzer MA (2005) Alu insertion loci and platyrrhine primate phylogeny. Mol Phylogenet Evol 35: 117–126

    Article  CAS  PubMed  Google Scholar 

  • Roos C, Schmitz J, Zischler H (2004) Primate jumping genes elucidate strepsirrhine phylogeny. Proc Natl Acad Sci USA 101: 10650–10654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rowe N (1996) The pictorial guide to the living primates. Pogonias Press, East Hampton

    Google Scholar 

  • Ryan SC, Dugaiczyk A (1989) Newly arisen DNA repeats in primate phylogeny. Proc Natl Acad Sci USA 86: 9360–9364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakamoto K, Okada N (1985) Rodent type 2 Alu family, rat identifier sequence, rabbit C family, and bovine or goat 73-bp repeat may have evolved from tRNA genes. J Mol Evol 22: 134–140

    Article  CAS  PubMed  Google Scholar 

  • Salem AH, Ray DA, Xing J, Callinan PA, Myers JS, Hedges DJ, Garber RK, Witherspoon DJ, Jorde LB, Batzer MA (2003) Alu elements and hominid phylogenetics. Proc Natl Acad Sci USA 100: 12787–12791

    Article  PubMed Central  PubMed  Google Scholar 

  • Samonte RV, Eichler EE (2002) Segmental duplications and the evolution of the primate genome. Nat Rev Genet 3: 65–72

    Article  CAS  PubMed  Google Scholar 

  • Schmid C, Maraia R (1992) Transcriptional regulation and transpositional selection of active SINE sequences. Curr Opin Genet Dev 2: 874–882

    Article  CAS  PubMed  Google Scholar 

  • Schmitz J, Zischler H (2003) A novel family of tRNA-derived SINEs in the colugo and two new retrotransposable markers separating dermopterans from primates. Mol Phylogenet Evol 28: 341–349

    Article  CAS  PubMed  Google Scholar 

  • Schmitz J, Zischler H (2004) Molecular cladistic markers and the infraordinal phylogenetic relationship of primates. In: Ross CF, Kay RF (eds) Anthropoid origins: new visions. Kluwer Academic/Plenum Publishers, New York, pp 65–77

    Chapter  Google Scholar 

  • Schmitz J, Ohme M, Zischler H (2001) SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157: 777–784

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitz J, Ohme M, Zischler H (2002a) The complete mitochondrial sequence of Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Mol Biol Evol 19: 544–553

    Article  CAS  PubMed  Google Scholar 

  • Schmitz J, Ohme M, Suryobroto B, Zischler H (2002b) The colugo (Cynocephalus variegatus, Dermoptera): the primates’ gliding sister? Mol Biol Evol 19: 2308–2312

    Article  CAS  PubMed  Google Scholar 

  • Shedlock AM, Okada N (2000) SINE insertions: powerful tools for molecular systematics. Bioessays 22: 148–160

    Article  CAS  PubMed  Google Scholar 

  • Shoshani J, Groves CP, Simons EL, Gunnell GF (1996) Primate phylogeny: morphological vs. molecular results. Mol Phylogenet Evol 5: 102–154

    Article  CAS  PubMed  Google Scholar 

  • Singer SS, Schmitz J, Schwiegk C, Zischler H (2003) Molecular cladistic markers in New World monkey phylogeny (Platyrrhini, Primates). Mol Phylogenet Evol 26: 490–501

    Article  CAS  PubMed  Google Scholar 

  • Smit AF, Riggs AD (1995) MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res 23: 98–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soligo C, Martin RD (2006) Adaptive origins of primates revisited. J Hum Evol 50(4): 414–430

    Google Scholar 

  • Stewart CB, Disotell TR (1998) Primate evolution—in and out of Africa. Curr Biol 13: R582–R588

    Article  Google Scholar 

  • Springer MS, Stanhope MJ, Madsen O, de Jong WW (2004) Molecules consolidate the placental mammal tree. Trends Ecol Evol 19: 430–438

    Article  PubMed  Google Scholar 

  • Sverdlov ED (2000) Retroviruses and primate evolution. Bioessays 22: 161–171

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Terai Y, Nishida M, Okada N (2001) Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol Biol Evol 18: 2057–2066

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Li W-H (1999) Trichromatic vision in prosimians. Nature 402: 36

    Article  CAS  PubMed  Google Scholar 

  • Tavaré S, Marshall CR, Will O, Soligo C, Martin RD (2002) Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature 416: 726–729

    Article  PubMed  Google Scholar 

  • Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188–192

    Article  CAS  PubMed  Google Scholar 

  • Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, Margulies EH, Blanchette M, Siepel AC, Thomas PJ, McDowell JC, Maskeri B, Hansen NF, Schwartz MS, Weber RJ, Kent WJ, Karolchik D, Bruen TC, Bevan R, Cutler DJ, Schwartz S, Elnitski L, Idol JR, Prasad AB, Lee-Lin SQ, Maduro VV, Summers TJ, Portnoy ME, Dietrich NL, Akhter N, Ayele K, Benjamin B, Cariaga K, Brinkley CP, Brooks SY, Granite S, Guan X, Gupta J, Haghighi P, Ho SL, Huang MC, Karlins E, Laric PL, Legaspi R, Lim MJ, Maduro QL, Masiello CA, Mastrian SD, McCloskey JC, Pearson R, Stantripop S, Tiongson EE, Tran JT, Tsurgeon C, Vogt JL, Walker MA, Wetherby KD, Wiggins LS, Young AC, Zhang LH, Osoegawa K, Zhu B, Zhao B, Shu CL, De Jong PJ, Lawrence CE, Smit AF, Chakravarti A, Haussler D, Green P, Miller W, Green ED (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424: 788–793

    Article  CAS  PubMed  Google Scholar 

  • van de Lagemaat LN, Gagnier L, Medstrand P, Mager DL (2005) Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Res 15: 1243–1249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48: 1–5

    Article  CAS  PubMed  Google Scholar 

  • Xing J, Wang H, Han K, Ray DA, Huang CH, Chemnick LG, Stewart CB, Disotell TR, Ryder OA, Batzer MA (2005) A mobile element based phylogeny of Old World monkeys. Mol Phylogenet Evol 37: 872–880

    Article  CAS  PubMed  Google Scholar 

  • Zietkiewicz E, Richer C, Labuda D (1999) Phylogenetic affinities of tarsier in the context of primate Alu repeats. Mol Phylogenet Evol 11: 77–83

    Article  CAS  PubMed  Google Scholar 

  • Zingler N, Willhoeft U, Brose HP, Schoder V, Jahns T, Hanschmann KM, Morrish TA, Lower J, Schumann GG (2005) Analysis of 5′ junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5′-end attachment requiring microhomology-mediated end-joining. Genome Res 15: 780–789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks go to the members of the former Primate Genetics Group at the German Primate Center who worked on part of the topics mentioned in this review. Members of the EU-consortium INPRIMAT are gratefully acknowledged for discussions and providing comments and suggestions. Funding was received from the DFG and the EU (INPRIMAT, QLRI-CT-2002-01325).

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg New York

About this entry

Cite this entry

Zischler, H. (2007). 2 Molecular Evidence on Primate Origins and Evolution. In: Handbook of Paleoanthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33761-4_30

Download citation

Publish with us

Policies and ethics