Skip to main content

Motion Planning

  • Reference work entry
Springer Handbook of Robotics

Abstract

This chapter first provides a formulation of the geometric path planning problem in Sect. 5.1 and then introduces sampling-based planning in Sect. 5.2. Sampling-based planners are general techniques applicable to a wide set of problems and have been successful in dealing with hard planning instances. For specific, often simpler, planning instances, alternative approaches exist and are presented in Sect. 5.3. These approaches provide theoretical guarantees and for simple planning instances they outperform sampling-based planners. Section 5.4 considers problems that involve differential constraints, while Sect. 5.5 overviews several other extensions of the basic problem formulation and proposed solutions. Finally, Sect. 5.7 addresses some important and more advanced topics related to motion planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PRM:

probabilistic roadmap method

RLG:

random loop generator

RRT:

rapid random tree

References

  1. J.H. Reif: Complexity of the moverʼs problem and generalizations, IEEE Symp. Found. Comput. Sci. (1979) pp. 421–427

    Google Scholar 

  2. H.H. Gonzalez-Banos, D. Hsu, J.C. Latombe: Motion planning: Recent developments. In: Automous Mobile Robots: Sensing, Control, Decision-Making and Applications, ed. by S.S. Ge, F.L. Lewis (CRC, Boca Raton 2006)

    Google Scholar 

  3. S.R. Lindemann, S.M. LaValle: Current issues in sampling-based motion planning. In: Robotics Research: The Eleventh International Symposium, ed. by P. Dario, R. Chatila (Springer, Berlin 2005) pp. 36–54

    Google Scholar 

  4. J.T. Schwartz, M. Sharir: A survey of motion planning and related geometric algorithms, Artif. Intell. J. 37, 157–169 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, S. Thrun: Principles of Robot Motion: Theory, Algorithms, and Implementations (MIT Press, Cambridge 2005)

    MATH  Google Scholar 

  6. J.C. Latombe: Robot Motion Planning (Kluwer, Boston 1991)

    Google Scholar 

  7. S.M. LaValle: Planning Algorithms (Cambridge Univ. Press, Cambridge 2006)

    Book  MATH  Google Scholar 

  8. S. Udupa: Collision detection and avoidance in computer controlled manipulators. Ph.D. Thesis (Dept. of Electical Engineering, California Institute of Technology 1977)

    Google Scholar 

  9. T. Lozano-Pérez: Spatial planning: A configuration space approach, IEEE Trans. Comput. C-32(2), 108–120 (1983)

    Article  Google Scholar 

  10. J.T. Schwartz, M. Sharir: On the piano moversʼ problem: III. Coordinating the motion of several independent bodies, Int. J. Robot. Res. 2(3), 97–140 (1983)

    Article  MathSciNet  Google Scholar 

  11. J.T. Schwartz, M. Sharir: On the piano moversʼ problem: V. The case of a rod moving in three-dimensional space amidst polyhedral obstacles, Commun. Pure Appl. Math. 37, 815–848 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. J.F. Canny: The Complexity of Robot Motion Planning (MIT Press, Cambridge 1988)

    Google Scholar 

  13. D. Halperin, M. Sharir: A near-quadratic algorithm for planning the motion of a polygon in a polygonal environment, Discrete Comput. Geom. 16, 121–134 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. J.E. Hopcroft, J.T. Schwartz, M. Sharir: On the complexity of motion planning for multiple independent objects: PSPACE-hardness of the warehousemanʼs problem, Int. J. Robot. Res. 3(4), 76–88 (1984)

    Article  Google Scholar 

  15. J. Canny, J. Reif: New lower bound techniques for robot motion planning problems, IEEE Symp. Found. Comput. Sci. (1987) pp. 49–60

    Google Scholar 

  16. M.C. Lin, J.F. Canny: Efficient algorithms for incremental distance computation, IEEE Int. Conf. Robot. Autom. (1991)

    Google Scholar 

  17. P. Jiménez, F. Thomas, C. Torras: Collision detection algorithms for motion planning. In: Robot Motion Planning and Control, ed. by J.P. Laumond (Springer, Berlin 1998) pp. 1–53

    Google Scholar 

  18. M.C. Lin, D. Manocha: Collision and proximity queries. In: Handbook of Discrete and Computational Geometry, 2nd Ed, ed. by J.E. Goodman, J. OʼRourke (Chapman Hall/CRC, New York 2004) pp. 787–807

    Google Scholar 

  19. L.E. Kavraki, P. Svestka, J.C. Latombe, M.H. Overmars: Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  20. N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, D. Vallejo: OBPRM: an obstacle-based PRM for 3D workspaces, Workshop Algorith. Found. Robot. (1998) pp. 155–168

    Google Scholar 

  21. V. Boor, M.H. Overmars, A.F. van der Stappen: The Gaussian sampling strategy for probabilistic roadmap planners, IEEE Int. Conf. Robot. Autom. (1999) pp. 1018–1023

    Google Scholar 

  22. C. Holleman, L.E. Kavraki: A framework for using the workspace medial axis in PRM planners, IEEE Int. Conf. Robot. Autom. (2000) pp. 1408–1413

    Google Scholar 

  23. J.M. Lien, S.L. Thomas, N.M. Amato: A general framework for sampling on the medial axis of the free space, IEEE Int. Conf. Robot. Autom. (2003)

    Google Scholar 

  24. S.M. LaValle, M.S. Branicky, S.R. Lindemann: On the relationship between classical grid search and probabilistic roadmaps, Int. J. Robot. Res. 23(7/8), 673–692 (2004)

    Article  Google Scholar 

  25. T. Siméon, J.-P. Laumond, C. Nissoux: Visibility based probabilistic roadmaps for motion planning, Adv. Robot. 14(6), 477–493 (2000)

    Article  Google Scholar 

  26. J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, P. Raghavan: A random sampling scheme for robot path planning. In: Proceedings International Symposium on Robotics Research, ed. by G. Giralt, G. Hirzinger (Springer, New York 1996) pp. 249–264

    Google Scholar 

  27. A. Ladd, L.E. Kavraki: Measure theoretic analysis of probabilistic path planning, IEEE Trans. Robot. Autom. 20(2), 229–242 (2004)

    Article  Google Scholar 

  28. R. Geraerts, M. Overmars: Sampling techniques for probabilistic roadmap planners, Int. Conf. Intell. Auton. Syst. (2004)

    Google Scholar 

  29. D. Hsu, T. Jiang, J. Reif, Z. Sun: The bridge test for sampling narrow passages with probabilistic roadmap planners, IEEE Int. Conf. Robot. Autom. (2003)

    Google Scholar 

  30. R. Bohlin, L. Kavraki: Path planning using lazy PRM, IEEE Int. Conf. Robot. Autom. (2000)

    Google Scholar 

  31. B. Burns, O. Brock: Sampling-based motion planning using predictive models, IEEE/RSJ Int. Conf. Intell. Robot. Autom. (2005)

    Google Scholar 

  32. P. Isto: Constructing probabilistic roadmaps with powerful local planning and path optimization, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2002) pp. 2323–2328

    Google Scholar 

  33. P. Leven, S.A. Hutchinson: Using manipulability to bias sampling during the construction of probabilistic roadmaps, IEEE Trans. Robot. Autom. 19(6), 1020–1026 (2003)

    Article  Google Scholar 

  34. D. Nieuwenhuisen, M.H. Overmars: Useful cycles in probabilistic roadmap graphs, IEEE Int. Conf. Robot. Autom. (2004) pp. 446–452

    Google Scholar 

  35. S.M. LaValle, J.J. Kuffner: Rapidly-exploring random trees: progress and prospects. In: Algorithmic and Computational Robotics: New Direction, ed. by B.R. Donald, K.M. Lynch, D. Rus (A. K. Peters, Wellesley 2001) pp. 293–308

    Google Scholar 

  36. K.E. Bekris, B.Y. Chen, A. Ladd, E. Plaku, L.E. Kavraki: Multiple query probabilistic roadmap planning using single query primitives, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2003)

    Google Scholar 

  37. M. Strandberg: Augmenting RRT-planners with local trees, IEEE Int. Conf. Robot. Autom. (2004) pp. 3258–3262

    Google Scholar 

  38. J. J. Kuffner, S. M. LaValle: An efficient approach to path planning using balanced bidirectional RRT search, Techn. Rep. CMU-RI-TR-05-34 Robotics Institute, Carnegie Mellon University, Pittsburgh (2005)

    Google Scholar 

  39. J. Bruce, M. Veloso: Real-time randomized path planning for robot navigation, IEEE/RSJ Int. Conf. Intell. Robot. Autom. (2002)

    Google Scholar 

  40. E. Frazzoli, M.A. Dahleh, E. Feron: Real-time motion planning for agile autonomous vehicles, AIAA J. Guid. Contr. 25(1), 116–129 (2002)

    Article  Google Scholar 

  41. M. Kallmann, M. Mataric: Motion planning using dynamic roadmaps, IEEE Int. Conf. Robot. Autom. (2004)

    Google Scholar 

  42. A. Yershova, L. Jaillet, T. Simeon, S.M. LaValle: Dynamic-domain RRTs: efficient exploration by controlling the sampling domain, IEEE Int. Conf. Robot. Autom. (2005)

    Google Scholar 

  43. D. Hsu, J.C. Latombe, R. Motwani: Path planning in expansive configuration spaces, Int. J. Comput. Geom. Appl. 4, 495–512 (1999)

    Article  MathSciNet  Google Scholar 

  44. D. Hsu, R. Kindel, J.C. Latombe, S. Rock: Randomized kinodynamic motion planning with moving obstacles. In: Algorithmic and Computational Robotics: New Directions, ed. by B.R. Donald, K.M. Lynch, D. Rus (A.K. Peters, Wellesley 2001)

    Google Scholar 

  45. G. Sánchez, J.-C. Latombe: A single-query bi-directional probabilistic roadmap planner with lazy collision checking, ISRR Int. Symp. Robot. Res. (2001)

    Google Scholar 

  46. S. Carpin, G. Pillonetto: Robot motion planning using adaptive random walks, IEEE Int. Conf. Robot. Autom. (2003) pp. 3809–3814

    Google Scholar 

  47. A. Ladd, L.E. Kavraki: Fast exploration for robots with dynamics, Workshop Algorithm. Found. Robot. (Zeist, Amsterdam 2004)

    Google Scholar 

  48. K.E. Bekris, L.E. Kavraki: Greedy but safe replanning under differential constraints, IEEE Int. Conf. Robot. Autom. (2007)

    Google Scholar 

  49. C. OʼDunlaing, C.K. Yap: A retraction method for planning the motion of a disc, J. Algorithms 6, 104–111 (1982)

    Article  MathSciNet  Google Scholar 

  50. D. Leven, M. Sharir: Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams, Discrete Comput. Geom. 2, 9–31 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  51. M. Sharir: Algorithmic motion planning. In: Handbook of Discrete and Computational Geometry, 2nd edn., ed. by J. E. Goodman, J. OʼRourke (Chapman Hall/CRC Press, New York 2004) pp. 1037–1064

    Google Scholar 

  52. N.J. Nilsson: A mobile automaton: An application of artificial intelligence techniques, 1st Int. Conf. Artif. Intell. (1969) pp. 509–520

    Google Scholar 

  53. J. OʼRourke: Visibility. In: Handbook of Discrete and Computational Geometry, 2nd edn., ed. by J. E. Goodman, J. OʼRourke (Chapman Hall/CRC Press, New York 2004) pp. 643–663

    Google Scholar 

  54. B. Chazelle: Approximation and decomposition of shapes. In: Algorithmic and Geometric Aspects of Robotics, ed. by J.T. Schwartz, C.K. Yap (Lawrence Erlbaum, Hillsdale 1987) pp. 145–185

    Google Scholar 

  55. M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf: Computational Geometry: Algorithms and Applications, 2nd edn. (Springer, Berlin 2000)

    MATH  Google Scholar 

  56. J.M. Keil: Polygon decomposition. In: Handbook on Computational Geometry, ed. by J.R. Sack, J. Urrutia (Elsevier, New York 2000)

    Google Scholar 

  57. J.T. Schwartz, M. Sharir: On the piano moversʼ problem: I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers, Commun. Pure Appl. Math. 36, 345–398 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  58. O. Khatib: Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  59. J. Barraquand, J.-C. Latombe: Robot motion planning: A distributed representation approach, Int. J. Robot. Res. 10(6), 628–649 (1991)

    Article  Google Scholar 

  60. E. Rimon, D.E. Koditschek: Exact robot navigation using artificial potential fields, IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)

    Article  Google Scholar 

  61. J.P. Laumond: Trajectories for mobile robots with kinematic and environment constraints, Int. Conf. Intell. Auton. Syst. (1986) pp. 346–354

    Google Scholar 

  62. J.P. Laumond, S. Sekhavat, F. Lamiraux: Guidelines in nonholonomic motion planning for mobile robots. In: Robot Motion Planning and Control, ed. by J.P. Laumond (Springer, Berlin 1998) pp. 1–53

    Chapter  Google Scholar 

  63. B.R. Donald, P.G. Xavier, J. Canny, J. Reif: Kinodynamic planning, J. ACM 40, 1048–1066 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  64. C. OʼDunlaing: Motion planning with inertial constraints, Algorithmica 2(4), 431–475 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  65. J. Canny, A. Rege, J. Reif: An exact algorithm for kinodynamic planning in the plane, Discrete Comput. Geom. 6, 461–484 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  66. J. Go, T. Vu, J.J. Kuffner: Autonomous behaviors for interactive vehicle animations, SIGGRAPH Symp. Comput. Animat. (2004)

    Google Scholar 

  67. M. Pivtoraiko, A. Kelly: Generating near minimal spanning control sets for constrained motion planning in discrete state spaces, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2005)

    Google Scholar 

  68. J. Hollerbach: Dynamic scaling of manipulator trajectories, Tech. Rep. 700 (MIT A.I. Lab Memo, 1983)

    Google Scholar 

  69. K.G. Shin, N.D. McKay: Minimum-time control of robot manipulators with geometric path constraints, IEEE Trans. Autom. Contr. 30(6), 531–541 (1985)

    Article  MATH  Google Scholar 

  70. K.G. Shin, N.D. McKay: A dynamic programming approach to trajectory planning of robotic manipulators, IEEE Trans. Autom. Contr. 31(6), 491–500 (1986)

    Article  MATH  Google Scholar 

  71. S. Sastry: Nonlinear Systems: Analysis, Stability, and Control (Springer, Berlin 1999)

    MATH  Google Scholar 

  72. D.J. Balkcom, M.T. Mason: Time optimal trajectories for bounded velocity differential drive vehicles, Int. J. Robot. Res. 21(3), 199–217 (2002)

    Article  Google Scholar 

  73. P. Souères, J.-D. Boissonnat: Optimal trajectories for nonholonomic mobile robots. In: Robot Motion Planning and Control, ed. by J.P. Laumond (Springer, Berlin 1998) pp. 93–169

    Chapter  Google Scholar 

  74. P. Svestka, M.H. Overmars: Coordinated motion planning for multiple car-like robots using probabilistic roadmaps, IEEE Int. Conf. Robot. Autom. (1995) pp. 1631–1636

    Google Scholar 

  75. S. Sekhavat, P. Svestka, J.-P. Laumond, M.H. Overmars: Multilevel path planning for nonholonomic robots using semiholonomic subsystems, Int. J. Robot. Res. 17, 840–857 (1998)

    Article  Google Scholar 

  76. P. Ferbach: A method of progressive constraints for nonholonomic motion planning, IEEE Int. Conf. Robot. Autom. (1996) pp. 2949–2955

    Google Scholar 

  77. S. Pancanti, L. Pallottino, D. Salvadorini, A. Bicchi: Motion planning through symbols and lattices, IEEE Int. Conf. Robot. Autom. (2004) pp. 3914–3919

    Google Scholar 

  78. J. Barraquand, J.-C. Latombe: Nonholonomic multibody mobile robots: controllability and motion planning in the presence of obstacles, Algorithmica 10, 121–155 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  79. S.M. LaValle, J.J. Kuffner: Randomized kinodynamic planning, IEEE Int. Conf. Robot. Autom. (1999) pp. 473–479

    Google Scholar 

  80. A. M. Ladd, L. E. Kavraki: Motion planning in the presence of drift underactuation and discrete system changes. In: Robotics: Science and Systems I ed. by (MIT Press, Boston 2005) pp. 233–241

    Google Scholar 

  81. J.-P. Merlet: Parallel Robots (Kluwer, Boston 2000)

    MATH  Google Scholar 

  82. D. Cox, J. Little, D. OʼShea: Ideals, Varieties, and Algorithms (Springer, Berlin 1992)

    MATH  Google Scholar 

  83. R.J. Milgram, J.C. Trinkle: The geometry of configuration spaces for closed chains in two and three dimensions, Homol. Homot. Appl. 6(1), 237–267 (2004)

    MATH  MathSciNet  Google Scholar 

  84. J. Yakey, S.M. LaValle, L.E. Kavraki: Randomized path planning for linkages with closed kinematic chains, IEEE Trans. Robot. Autom. 17(6), 951–958 (2001)

    Article  Google Scholar 

  85. L. Han, N.M. Amato: A kinematics-based probabilistic roadmap method for closed chain systems. In: Algorithmic and Computational Robotics: New Directions, ed. by B.R. Donald, K.M. Lynch, D. Rus (A.K. Peters, Wellesley 2001) pp. 233–246

    Google Scholar 

  86. J. Cortés: Motion Planning Algorithms for General Closed-Chain Mechanisms. Ph.D. Thesis (Institut National Polytechnique do Toulouse, Toulouse 2003)

    Google Scholar 

  87. R. Alami, J.-P. Laumond, T. Siméon: Two manipulation planning algorithms. In: Algorithms for Robotic Motion and Manipulation, ed. by J.P. Laumond, M. Overmars (A.K. Peters, Wellesley 1997)

    Google Scholar 

  88. L.E. Kavraki, M. Kolountzakis: Partitioning a planar assembly into two connected parts is NP-complete, Inform. Process. Lett. 55(3), 159–165 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  89. M.T. Mason: Mechanics of Robotic Manipulation (MIT Press, Cambridge 2001)

    Google Scholar 

  90. K. Sutner, W. Maass: Motion planning among time dependent obstacles, Acta Informatica 26, 93–122 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  91. J.H. Reif, M. Sharir: Motion planning in the presence of moving obstacles, J. ACM 41, 764–790 (1994)

    Article  MATH  Google Scholar 

  92. M.A. Erdmann, T. Lozano-Pérez: On multiple moving objects, Algorithmica 2, 477–521 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  93. J. van den Berg, M. Overmars: Prioritized motion planning for multiple robots, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2005) pp. 2217–2222

    Google Scholar 

  94. T. Siméon, S. Leroy, J.-P. Laumond: Path coordination for multiple mobile robots: A resolution complete algorithm, IEEE Trans. Robot. Autom. 18(1), 42–49 (2002)

    Article  Google Scholar 

  95. R. Ghrist, J.M. OʼKane, S.M. LaValle: Pareto optimal coordination on roadmaps, Workshop Algorithm. Found. Robot. (2004) pp. 185–200

    Google Scholar 

  96. S.M. LaValle, S.A. Hutchinson: Optimal motion planning for multiple robots having independent goals, IEEE Trans. Robot. Autom. 14(6), 912–925 (1998)

    Article  Google Scholar 

  97. W.M. Boothby: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edn. (Academic, New York 2003)

    Google Scholar 

  98. A. Hatcher: Algebraic Topology (Cambridge Univ Press, Cambridge 2002)

    MATH  Google Scholar 

  99. G.S. Chirikjian, A.B. Kyatkin: Engineering Applications of Noncommutative Harmonic Analysis (CRC, Boca Raton 2001)

    MATH  Google Scholar 

  100. J. Arvo: Fast random rotation matrices. In: Graphics Gems III, ed. by D. Kirk (Academic, New York 1992) pp. 117–120

    Google Scholar 

  101. H. Niederreiter: Random Number Generation and Quasi-Monte-Carlo Methods (Society for Industrial and Applied Mathematics, Philadelphia 1992)

    MATH  Google Scholar 

  102. S. Basu, R. Pollack, M.-F. Roy: Algorithms in Real Algebraic Geometry (Springer, Berlin 2003)

    MATH  Google Scholar 

  103. B. Mishra: Computational real algebraic geometry. In: Handbook of Discrete and Computational Geometry, ed. by J.E. Goodman, J. OʼRourke (CRC, New York 1997) pp. 537–556

    Google Scholar 

  104. J.T. Schwartz, M. Sharir: On the piano moversʼ problem: II. General techniques for computing topological properties of algebraic manifolds, Commun. Pure Appl. Math. 36, 345–398 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  105. B.R. Donald: A search algorithm for motion planning with six degrees of freedom, Artif. Intell. J. 31, 295–353 (1987)

    Article  MATH  Google Scholar 

  106. D.S. Arnon: Geometric reasoning with logic and algebra, Artif. Intell. J. 37(1-3), 37–60 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  107. G.E. Collins: Quantifier elimination by cylindrical algebraic decomposition–twenty years of progress. In: Quantifier Elimination and Cylindrical Algebraic Decomposition, ed. by B.F. Caviness, J.R. Johnson (Springer, Berlin 1998) pp. 8–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lydia E. Kavraki Prof or Steven M. LaValle Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Kavraki, L.E., LaValle, S.M. (2008). Motion Planning. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics