Skip to main content

Networked Robots

  • Reference work entry
Springer Handbook of Robotics

Abstract

This chapter discusses networked robots, multiple robots operating together coordinating and cooperating by networked communication to accomplish a specified task. This chapter presents an overview of the field with an emphasis on recent results and research challenges. Multiple robots enable new capabilities and the communication network enables new approaches and solutions that are difficult with just perception and control. Communication enables new control and perception capabilities in the system (e.g., access to information outside the perception range of the robot system). Conversely, control enables solutions for problems that are difficult without mobility (e.g., localization). Section 41.1 defines the field, examines the benefits of networking in robot coordination, and discusses applications. Section 41.2 highlights a few projects focused on networked robotics and discusses the application potential of the field. Section 41.3 discusses the research challenges at the intersection of control, communication, and perception. Section 41.4 defines a model for the control of a networked system which is used in Sects. 41.541.8 to examine specific research issues and opportunities facilitated by the interplay between communication, control, and perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCP:

coverage configuration protocol

CRLB:

Cramer–Rao lower bound

DARPA:

Defense Advanced Research Projects Agency

EPFL:

Ecole Polytechnique Fédérale de Lausanne

GPS:

global positioning system

IEEE:

Institute of Electrical and Electronics Engineers

LAAS:

Laboratoire dʼAnalyse et dʼArchitecture des Systèmes

LAN:

local-area network

MLE:

maximum-likelihood estimation

NIMS:

networked infomechanical systems

PEAS:

probing environment and adaptive sleeping protocol

RPI:

Rensselaer Polytechnic Institute

SAIC:

Science Applications International, Inc.

SDR:

software for distributed robotics

TCP:

transmission control protocol

UAV:

unmanned aerial vehicles

UDP:

user data protocol

UGV:

unmanned ground vehicle

US:

ultrasound

References

  1. Z. Butler, K. Kotay, D.L. Rus, M. Vona: Self-reconfiguring Robots, Commun. ACM 45(3), 39–45 (2002)

    Google Scholar 

  2. O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal: Coordination and decentralized cooperation of multiple mobile manipulators, J. Robot. Syst. 13(11), 755–764 (1996)

    Article  Google Scholar 

  3. L.E. Parker: The effect of heterogeneity in teams of 100+ mobile robots. In: Multi-Robot Systems Vol- ume II: From Swarms to Intelligent Automata, ed. by A. Schultz, L.E. Parker, F. Schneider (Kluwer, Dordrecht 2003)

    Google Scholar 

  4. M. Yim, Y. Zhang, D. Duff: Modular robots, IEEE Spect. 39(22), 30–34 (2002)

    Article  Google Scholar 

  5. N. Hagita: Introduction to network robots, Introduction to Network Robots (Barcelona, 2005)

    Google Scholar 

  6. D. Estrin: Embedded, Everywhere (National Academies Press, Washington 2001)

    Google Scholar 

  7. J. Parrish, S. Viscido, D. Grunbaum: Self-organized fish schools: An examination of emergent properties, Biol. Bull. 202, 296–305 (2002)

    Article  Google Scholar 

  8. N. Franks, S. Pratt, E. Mallon, N. Britton, D. Sumpter: Information flow, opinion polling and collective intelligence in house-hunting social insects, Philos. Trans. R. Soc. London. B 357, 1567–1584 (2002)

    Article  Google Scholar 

  9. R.L. Jeanne: Group size, productivity, and information flow in social wasps. In: Information Processing in Social Insects (Birkhauser, Basel 1999)

    Google Scholar 

  10. Argo Floats: A global array of 3,000 free-drifting profiling floats for environmental monitoring (Argo Information Center, Ramonville 2007), http://www.argo.ucsd.edu/index.html

    Google Scholar 

  11. G.S. Sukhatme, A. Dhariwal, B. Zhang, C. Oberg, B. Stauffer, D.A. Caron: The design and development of a wireless robotic networked aquatic microbial observing system, Environmen. Eng. Sci. 24(2), 205–215 (2006)

    Google Scholar 

  12. W. Kaiser, G. Pottie, M. Srivastava, G.S. Sukhatme, J. Villasenor, D. Estrin: Networked infomechanical systems (nims) for ambient intelligence. In: Ambient Intelligence (Springer, Berlin, Heidelberg 2005) pp. 83–114

    Chapter  Google Scholar 

  13. Amarss: Networked minirhizotron planning and initial deployment (Center for Embedded Networkedsensing, Los Angeles 2007), http://research.cens.ucla.edu/

    Google Scholar 

  14. H. Singh, J. Catipovic, R. Eastwood, L. Freitag, H. Henriksen, F.F. Hover, D. Yoerger, J.G. Bellingham, B.A. Moran: An integrated approach to multiple AUV communications, navigation and docking, IEEE Oceans (1996) pp. 59–64

    Google Scholar 

  15. I. Vasilescu, M. Dunbabin, P. Corke, K. Kotay, D. Rus: Data collection, storage, and retrieval with an underwater sensor network, Proceedings of the ACM Sensys 2005 (San Diego, 2005)

    Google Scholar 

  16. N. Leonard, D. Paley, F. Lekien, R. Sepulchre, D.M. Fratantoni, R. Davis: Collective motion, sensor networks and ocean sampling, Proc. IEEE (2006)

    Google Scholar 

  17. D.O. Popa, A.S. Sanderson, R.J. Komerska, S.S. Mupparapu, D.R. Blidberg, S.G. Chappell: Adaptive sampling algorithms for multiple autonomous underwater vehicles, IEEE/OES AUV2004: A Workshop on Multiple Autonomous Underwater Vehicle Operations (2004)

    Google Scholar 

  18. M.A. Hsieh, A. Cowley, J.F. Keller, L. Chaimowicz, B. Grocholsky, V. Kumar, C.J. Talyor, Y. Endo, R. Arkin, B. Jung, D. Wolf, G. Sukhatme, D.C. MacKenzie: Adaptive teams of autonomous aerial and ground robots for situational awareness, J. Field Robot. 24(11–12), 991–1014 (2007)

    Article  Google Scholar 

  19. A. Howard, L.E. Parker, G.S. Sukhatme: Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment and detection, Int. J. Robot. Res. 25(5–6), 431–447 (2006)

    Article  Google Scholar 

  20. L. Chaimowicz, A. Cowley, B. Grocholsky, M.A. Hsieh, J.F. Keller, V. Kumar, C.J. Taylor: Deploying air-ground multi-robot teams in urban environments, Third Multi-Robot Systems Workshop (Washington, 2005)

    Google Scholar 

  21. B. Grocholsky, R. Swaminathan, J. Keller, V. Kumar, G. Pappas: Information driven coordinated air-ground proactive sensing, IEEE International Conference on Robotics and Automation (IEEE, Barcelona 2005)

    Google Scholar 

  22. D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, B. Stewart: Distributed multi-robot exploration and mapping, Proc. IEEE (2006)

    Google Scholar 

  23. J. Seyfied, M. Szymanski, N. Bender, R. Estana, M. Theil, H. Worn: The I-Swarm Project: Intelligent Small World Autonomous Robots for Micro-manipulation, SAB 2004 International Workshop (Santa Monica 2004)

    Google Scholar 

  24. F. Mondada, G.C. Pettinaro, A. Guignard, I.W. Kwee, D. Floreano, J.-L. Deneubourg, S. Nofli, L.M. Gambardella, M. Dorigo: Swarm-Bot: A new distributed robotic concept, Auton. Robot. 17, 193–221 (2004)

    Article  Google Scholar 

  25. A. Ollero, S. Lacroix, L. Merino, J. Gancet, J. Wiklund, V. Remuss, I. Veiga, L.G. Gutierrez, D.X. Viegas, M.A. Gonzalez, A. Mallet, R. Alami, R. Chatila, G. Hommel, F.J. Colmenero, B. Arrue, J. Ferruz, R. Martinez de Dios, F. Caballero: Architecture and perception issues in the COMETS multi-UAV project, IEEE Robot. Autom. Mag. (2005)

    Google Scholar 

  26. Q. Li, D. Rus: Navigation protocols in sensor networks, ACM Trans. Sensor Netw. 1(1), 3–35 (2005)

    Article  Google Scholar 

  27. R. Bajcsy: Active perception, Proc. IEEE 76, 996–1005 (1988)

    Article  Google Scholar 

  28. T. Eren, D. Goldenberg, W. Whitley, Y.R. Yang, S. Morse, B.D.O. Anderson, P.N. Belhumeur: Rigidity, computation, and randomization of network localization, Proceedings of IEEE INFOCOM ʼ04 (Hong Kong 2004)

    Google Scholar 

  29. A. Hsieh, A. Cowley, V. Kumar, C.J. Taylor: Towards the deployment of a mobile robot network with end-to-end performance guarantees, IEEE Intʼl Conf. on Robotics and Automation (Orlando, 2006)

    Google Scholar 

  30. B. Grocholsky, S. Bayraktar, V. Kumar, C.J. Taylor, G. Pappas: Synergies in feature localization by air-ground teams, Proc. 9th Intʼl Symposium of Experimental Robotics (Singapore 2004)

    Google Scholar 

  31. B. Grocholsky, E. Stump, V. Kumar: An extensive representation for range-only SLAM, International Symposium on Experimental Robotics (Rio de Janeiro, 2006)

    Google Scholar 

  32. A. Howard, M.J. Matarić, G.S. Sukhatme: An incremental self-deployment algorithm for mobile sensor networks, Auton. Robot. 13(2), 113–126 (2002), Special Issue on Intelligent Embedded Systems

    Article  MATH  Google Scholar 

  33. Z. Butler, D. Rus: Controlling mobile networks for monitoring events with coverage constraints, Proceedings of the IEEE International Conference on Robotics and Automation (2003)

    Google Scholar 

  34. M. Chu, J. Reich, F. Zhao: Distributed attention for large video sensor networks, Intelligent Distributed Surveillance Systems 2004 seminar (2004)

    Google Scholar 

  35. B. Jung, G.S. Sukhatme: Tracking targets using multiple robots: The effect of environment occlusion, Auton. Robot. 13(3), 191–205 (2002)

    Article  MATH  Google Scholar 

  36. R.M. Murray, K.J. Åström, S.P. Boyd, R.W. Brockett, G. Stein: Future directions in control in an information-rich world, IEEE Contr. Syst. Mag. (2003)

    Google Scholar 

  37. A. Pant, P. Seiler, K. Hedrick: Mesh stability of look-ahead interconnected systems, IEEE Trans. Autom. Control. 47, 403–407 (2002)

    Article  MathSciNet  Google Scholar 

  38. T. Sugar, J. Desai, V. Kumar, J.P. Ostrowski: Coordination of multiple mobile manipulators, Proc. IEEE Int. Conf. Robot. Autom. 3, 2022–2027 (2001)

    Google Scholar 

  39. R.W. Beard, J. Lawton, F.Y. Hadaegh: A coordination architecture for spacecraft formation control, IEEE Trans. Control Syst. Technol. 9, 777–790 (2001)

    Article  Google Scholar 

  40. A. Das, J. Spletzer, V. Kumar, C. Taylor: Ad hoc networks for localization and control, Proc. of the IEEE Conf. on Decision and Control (2002) pp. 2978–2983

    Google Scholar 

  41. J. Manyika, H. Durrant-Whyte: Data Fusion and Sensor Management: An Information-Theoretic Approach (Prentice Hall, Upper Saddle River 1994)

    Google Scholar 

  42. H.G. Tanner, A. Jadbabaie, G.J. Pappas: Stable flocking of mobile agents, part i: Fixed topology, Proceedings of the 42nd IEEE Conference on Decision and Control (2003) pp. 2010–2015

    Google Scholar 

  43. Q. Li, D. Rus: Navigation Protocols in Sensor Networks, ACM Trans. Sensor Netw. 1(1), 3–35 (2005)

    Article  Google Scholar 

  44. J.M. Fowler, R. DʼAndrea: Distributed control of close formation flight, Proc. of the IEEE Conf. on Decision and Control (2002) pp. 2972–2977

    Google Scholar 

  45. J.P. Desai, J.P. Ostrowski, V. Kumar: Modeling and control of formations of nonholonomic mobile robots, IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)

    Article  Google Scholar 

  46. H.G. Tanner, V. Kumar, G.J. Pappas: Leader-to-formation stability, IEEE Trans. Robot. Autom. 20(3) (2004)

    Google Scholar 

  47. S. Loizou, V. Kumar: Relaxed input to state stability properties for navigation function based systems, Proceedings of the 45th IEEE Conference on Decision and Control (San Diego, 2006)

    Google Scholar 

  48. M. Batalin, G.S. Sukhatme: Coverage, exploration and deployment by a mobile robot and communication network, Telecommun. Syst. J. 26(2), 181–196 (2004), Special Issue on Wireless Sensor Networks

    Article  Google Scholar 

  49. K. J. Oʼhara, V. Bigio, S. Whitt, D. Walker, T. R. Balch: Evaluation of a Large Scale Pervasive Embedded Network for Robot Path Planning (ICRA 2006) pp. 2072–2077

    Google Scholar 

  50. V. Kumar, N. Leonard, A.S. Morse (eds.): Cooperative Control, Vol. 309 of Lecture Notes in Control and Information Sciences (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  51. J. Chen, S. Teller, H. Balakrishnan: Pervasive pose-aware applications and infrastructure, IEEE Comput. Graph. Appl. 23(4), 14–18 (2003)

    Article  Google Scholar 

  52. A. Savvides, C.-C. Han, M. Srivastava: Dynamic Fine-Grained localization in Ad-Hoc networks of sensors, Proceedings of the Seventh Annual International Conference on Mobile Computing and Networking (MOBICOM-01) (ACM, New York 2001) pp. 166–179

    Chapter  Google Scholar 

  53. D. Moore, J. Leonard, D. Rus, S.J. Teller: Robust distributed network localization with noisy range measurements, SenSys ʼ04: Proceedings of the 2nd International conference on Embedded networked sensor systems (2004) pp. 50–61

    Google Scholar 

  54. C. Detweiler, J. Leonard, D. Rus, S. Teller: Passive Mobile Robot Localization within a Fixed Beacon Field, Proceedings of the 2006 International Workshop on Algorithmic Foundations of Robotics (2006)

    Google Scholar 

  55. N. Bulusu, J. Heidemann, D. Estrin: Adaptive beacon placement, Proceedings of the 21st International Conference on Distributed Computing Systems (ICDCS-01) (Los Alamitos 2001) pp. 489–498

    Google Scholar 

  56. S. N. Simic, S. Sastry: Distributed localization in wireless ad hoc networks, Technical Report UCB/ERL M02/26, EECS Department (University of California, Berkeley 2001), http://www.eecs.berkeley.edu/Pubs/TechRpts/2002/4010.html

    Google Scholar 

  57. P. Corke, R. Peterson, D. Rus: Communication-assisted localization and navigation for networked robots, Int. J. Robot. Res. 4(9), 116 (2005)

    Google Scholar 

  58. R. Nagpal, H.E. Shrobe, J. Bachrach: Organizing a global coordinate system from local information on an ad hoc sensor network, Lect. Notes Comput. Sci. 2634, 333–348 (2003)

    Article  Google Scholar 

  59. A. Howard, M.J. Matarić, G.S. Sukhatme: Putting the `iʼ in `teamʼ: An ego-centric approach to cooperative localization, IEEE International Conference on Robotics and Automation (Taipei, 2003) pp. 868–892

    Google Scholar 

  60. A. Howard, M.J. Matarić, G.S. Sukhatme: Localization for mobile robot teams using maximum likelihood estimation, IEEE/RSJ International Conference on Intelligent Robots and Systems (Lausanne, 2002) pp. 434–459

    Google Scholar 

  61. R. Vidal, O. Shakernia, H.J. Kim, D.H. Shim, S. Sastry: Probabilistic pursuit-evasion games: Theory, implementation and experimental evaluation, IEEE Trans. Robot. Autom. 18(5), 662–669 (2002)

    Article  Google Scholar 

  62. M. Batalin, M.H. Rahimi, Y. Yu, D. Liu, A. Kansal, G.S. Sukhatme, W. Kaiser, M. Hansen, G. Pottie, M. Srivastava, D. Estrin: Call and response: Experiments in sampling the environment, ACM SenSys (Baltimore, 2004) pp. 25–38

    Google Scholar 

  63. M.H. Rahimi, W. Kaiser, G.S. Sukhatme, D. Estrin: Adaptive sampling for environmental field estimation using robotic sensors, IEEE/RSJ International Conference on Intelligent Robots and Systems (2005) pp. 747–753

    Google Scholar 

  64. F. Zhao, L. Guibas: Wireless Sensor Networks: An Information Processing Approach (Morgan Kaufmann, New York 2004)

    Google Scholar 

  65. F. Zhang, B. Grocholsky, V. Kumar: Formations for localization of robot networks, IEEE Intʼl Conf. on Robotics and Automation (New Orleans, 2004)

    Google Scholar 

  66. J. Cortes, S. Martinez, T. Karatas, F. Bullo: Coverage control for mobile sensing networks, IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  67. J. Cortes, S. Martinez, F. Bullo: Spatially-distributed coverage optimization and control with limited-range interactions, ESAIM Contr. Optim. Calc. Variat. 11, 691–719 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  68. M. Schwager, J. McLurkin, D. Rus: Distributed coverage control with sensory feedback for networked robots, Proc. Robot. Sci. Syst. (RSS) (2006)

    Google Scholar 

  69. M. Schwager, J.-J. Slotine, D. Rus: Decentralized Adaptive Control for Coverage for Networked Robots, Proceedings of the 2007 International Conference on Robotics and Automation (2007)

    Google Scholar 

  70. A. Krause, C. Guestrin, A. Gupta, J. Kleinberg: Near-optimal sensor placements: Maximizing information while minimizing communication cost, Fifth International Conference on Information Processing in Sensor Networks (IPSNʼ06) (2006)

    Google Scholar 

  71. V. Chvatal: A combinatorial theorem in plane geometry, J. Combin. Theory Ser. 18, 39–41 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  72. J. OʼRourke: Art Gallery Theorems and Algorithms (Oxford Univ. Press, New York 1987)

    MATH  Google Scholar 

  73. S. Fisk: A short proof of Chvatalʼs watchmen theorem, J. Combin. Theory Ser. 24, 374 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  74. A. Jadbabaie, J. Lin, A.S. Morse: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  75. S. Sinha, M. Pollefeys: Camera network calibration from dynamic silhouettes, Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  76. R. Collins, A. Lipton, H. Fujiyoshi, T. Kanade: Algorithms for cooperative multisensor surveillance, Proc. IEEE (2001)

    Google Scholar 

  77. A. Kansal, W. Kaiser, G. Pottie, M. Srivastava, G.S. Sukhatme: Reconfiguration methods for mobile sensor networks. Submitted to ACM Transactions on Sensor Networks (2006)

    Google Scholar 

  78. D. Payton, M. Daily, R. Estkowski, M. Howard, C. Lee: Pheromone robotics, Auton. Robot. 11, 319–324 (2001)

    Article  MATH  Google Scholar 

  79. A. Howard, M.J. Matarić, G.S. Sukhatme: Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem, Proceedings of the International Symposium on Distributed Autonomous Robotic Systems (2002) pp. 299–308

    Google Scholar 

  80. S. Poduri, G.S. Sukhatme: Constrained coverage for mobile sensor networks, IEEE International Conference on Robotics and Automation (New Orleans 2004) pp. 165–172

    Google Scholar 

  81. R. Wattenhofer, L. Li, P. Bahl, Y.M. Wang: A cone-based distributed topology-control algorithm for wireless multi-hop networks, IEEE/ACM Trans. Netw. (2005)

    Google Scholar 

  82. H. Zhang, J.C. Hou: On deriving the upper bound of alphalifetime for large sensor networks, ACM Trans. Sensor Netw. 1(6) (2005)

    Google Scholar 

  83. S. Poduri, S. Pattem, B. Krishnamachari, G.S. Sukhatme: A unifying framework for tunable topology control in sensor networks. Technical Report CRES-05-004 (2005)

    Google Scholar 

  84. M.A. Hsieh, V. Kumar: Pattern generation with multiple robots, IEEE Intʼl Conf. on Robotics and Automation (Orlando, 2006)

    Google Scholar 

  85. F. Ye, G. Zhong, J. Cheng, L. Zhang, S. Lu: Peas: A robust energy conserving protocol for long-lived sensor networks, International Conference on Distributed Computing Systems (2003)

    Google Scholar 

  86. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, C. Gill: Integrated coverage and connectivity configuration in wireless sensor networks, First ACM Conf. on Embedded Networked Sensor Systems, SenSys (2003)

    Google Scholar 

  87. D. Tian, N.D. Georganas: Connectivity maintenance and coverage preservation in wireless sensor networks. AdHoc Networks (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay Kumar Prof , Daniela Rus Prof or Gaurav S. Sukhatme Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Kumar, V., Rus, D., Sukhatme, G.S. (2008). Networked Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics