Skip to main content

Distributed and Cellular Robots

  • Reference work entry
Springer Handbook of Robotics

Abstract

This chapter is organized according to a number of broad classes of problem where modular robotic systems can prove beneficial. For each such problem, the benefits of modularity are described, along with the ways that particular systems or proposed systems have explored those benefits. In particular, we discuss locomotion in Sect. 39.1, manipulation in Sect. 39.2, modular robot geometry in Sect. 39.3, and robust systems in Sect. 39.4. The systems under consideration in general have some level of independent computation on each module, and this discussion will focus on systems in which modules maintain some sort of kinematic constraint between them during operation. Compared to the types of multirobot teams described in Chap. 40, the systems of interest here are generally much more tightly coupled, both physically and conceptually. That is, we are primarily concerned with systems which, though they have many processors and independent actuators, have a single goal or small set of goals which can only be achieved collectively, rather than a set of goals which can be apportioned to single (or a small number of) robots within the team.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CEBOT:

cellular robot

CONRO:

configurable robot

DARS:

distributed autonomous robotics systems

DOF:

degree of freedom

MTRAN:

modular transformer

RMMS:

reconfigurable modular manipulator system

References

  1. M. Yim, D. Duff, K. Roufas: PolyBot: A modular reconfigurable robot, Proc. of IEEE ICRA (2000) pp. 514–520

    Google Scholar 

  2. Z. Butler, D. Rus: Distributed motion planning for modular robots with unit-compressible modules, Int. J. Robot. Res. 22(9), 699–716 (2003)

    Article  Google Scholar 

  3. S. Murata, E. Yoshida, K. Tomita, H. Kurokawa, A. Kamimura, S. Kokaji: Hardware design of modular robotic system, Proc. of IROS (2000) pp. 2210–2217

    Google Scholar 

  4. A. Castano, W.-M. Shen, P. Will: CONRO: Towards deployable robots with inter-robots metamorphic capabilities, Auton. Robot. 8(3), 309–324 (2000)

    Article  Google Scholar 

  5. Y. Zhang, M. Yim, C. Eldershaw, D. Duff, K. Roufas: Scalable and reconfigurable configurations and locomotion gaits for chain-type modular reconfigurable robots, Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (2003) pp. 893–899

    Google Scholar 

  6. Z. Butler, K. Kotay, D. Rus, K. Tomita: Generic decentralized locomotion control for lattice-based self-reconfigurable robots, Int. J. Robot. Res. 23(9), 919–938 (2004)

    Article  Google Scholar 

  7. M. Ohira, R. Chatterjee, T. Kamegawa, F. Matsuno: Development of three-legged modular robots and demonstration of collaborative task execution, Proc. of IEEE Intʼl. Conf. on Robotics and Automation (2007) pp. 3895–3900

    Google Scholar 

  8. V. Trianni, S. Nolfi, M. Dorigo: Cooperative hole avoidance in a swarm-bot, Robot. Auton. Syst. 54(2), 97–103 (2006)

    Article  Google Scholar 

  9. S. Murata, H. Kurokawa, S. Kokaji: Self-assembling machine, Proc. of IEEE ICRA (1994) pp. 442–448

    Google Scholar 

  10. D. Rus, M. Vona: A physical implementation of the crystalline robot, Proc. of IEEE ICRA (2000)

    Google Scholar 

  11. C. Ünsal, P. Khosla: Mechatronic design of a modular self-reconfiguring robotic system, Proc. of IEEE ICRA (2000) pp. 1742–1747

    Google Scholar 

  12. K. Kotay, D. Rus, M. Vona, C. McGray: The self-reconfiguring robotic molecule: design and control algorithms, Proc. of the Workshop on Algorithmic Foundations of Robotics (1998)

    Google Scholar 

  13. S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, S. Kokaji: M-TRAN: Self-reconfigurable modular robotic system, IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)

    Article  Google Scholar 

  14. W.-M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, J. Venkatesh: Multimode locomotion for reconfigurable robots, Auton. Robot. 20(2), 165–177 (2006)

    Article  Google Scholar 

  15. S. Hirose, T. Shiratsu, F.E. Fukushima: A proposal for cooperative robot ``gunryuʼʼ composed of autonomous segments, Proceedings of the International Conference on Intelligent Robots and Systems (1994) pp. 1532–1538

    Google Scholar 

  16. F. Mondada, L.M. Gambardella, D. Floreano, S. Nolfi, J.-L. Deneubourg, M. Dorigo: The cooperation of swarm-bots, IEEE Robot. Autom. Mag. 12(2), 21–28 (2005)

    Article  Google Scholar 

  17. O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal: Coordination and decentralized cooperation of multiple mobile manipulators, J. Robot. Syst. 13(11), 755–764 (1996)

    Article  Google Scholar 

  18. M. Mataric, M. Nilsson, K. Simsarian: Cooperative multi-robot box pushing, Proceedings of the International Conference on Robotics and Automation (1995) pp. 556–561

    Google Scholar 

  19. B. Donald, J. Jennings, D. Rus: Information invariants for distributed manipulation, Int. J. Robot. Res. 16(5), 673–702 (1997)

    Article  Google Scholar 

  20. J. Luntz, W. Messner, H. Choset: Closed-loop operation of actuator arrays, Proc. of IEEE Intʼl. Conf. on Robotics and Automation (2000) pp. 3666–3671

    Google Scholar 

  21. A.A. Rizzi, J. Gowdy, R.L. Hollis: Agile assembly architecture: An agent-based approach to modular precision assembly systems, Proc. of IEEE Intʼl. Conf. on Robotics and Automation (1997) pp. 1511–1516

    Google Scholar 

  22. C. Paredis, H.B. Brown, P. Khosla: A rapidly deployable manipulator system, Proceedings of the International Conference on Robotics and Automation (1996) pp. 1434–1439

    Google Scholar 

  23. G.S. Chirikjian: A binary paradigm for robotic manipulators, Proc. of IEEE Intʼl. Conf. on Robotics and Automation (1994) pp. 3063–3069

    Google Scholar 

  24. T. Fukuda, T. Ueyama: Cellular Robotics and Microrobotic Systems (World Scientific, Singapore 1994)

    Google Scholar 

  25. R. Fitch, Z. Butler, D. Rus: In-place distributed heterogeneous reconfiguration planning, Proc. of Distributed Autonomous Robotic Systems (2004)

    Google Scholar 

  26. K. Tomita, S. Murata, H. Kurokawa, E. Yoshida, S. Kokaji: Self-assembly and self-repair method for a distributed mechanical system, IEEE Trans. Robot. Autom. 15(6), 1035–1045 (1999)

    Article  Google Scholar 

  27. P. White, V. Zykov, J. Bongard, H. Lipson: Three dimensional stochastic reconfiguration of modular robots, Proceedings of Robotics: Science and Systems (Cambridge 2005)

    Google Scholar 

  28. E. Klavins: Tuning reaction networks for programmed self-organization, Proceedings of the Third Conference on the Foundations of Nanoscience (2006) pp. 34–37

    Google Scholar 

  29. S. Vassilvitskii, M. Yim, J. Suh: A complete, local and parallel reconfiguration algorithm for cube style modular robots, Proc. of IEEE ICRA (2002) pp. 117–122

    Google Scholar 

  30. M. Vona, D. Rus: Self-reconfiguration planning with compressible unit modules, Proc. of IEEE Intʼl. Conf. on Robotics and Automation (1999) pp. 2513–2520

    Google Scholar 

  31. G. Chirikjian, A. Pamecha: Bounds for self-reconfiguration of metamorphic robos, Proceedings of the International Conference on Robotics and Automation (1996) pp. 1452–1457

    Google Scholar 

  32. T. Fukuda, S. Nakagawa, Y. Kawauchi, M. Buss: Structure decision method for self organizing robot based on cell-structure cebot, Proceedings of IEEE International Conference on Robotics and Automation (1989) pp. 695–700

    Google Scholar 

  33. J. von Neumann: Theory of Self-Replicating Automata (Univ. of Illinois Press, Chicago 1966)

    Google Scholar 

  34. J. Suthakorn, Y.T. Kwon, G. Chirikjian: An autonomous self-replicating robotic system, Proc. of the International Conference on Advanced Intelligent Mechatronics (2003) pp. 137–142

    Google Scholar 

  35. V. Zykov, E. Mytilinaios, B. Adams, H. Lipson: Self-reproducting machines, Nature 435, 163–164 (2005)

    Article  Google Scholar 

  36. R. Fitch, D. Rus, M. Vona: A basis for self-repair robots using self-reconfiguring crysta l modules, Intelligent Autonomous Systems 6 (2000)

    Google Scholar 

  37. M. Nilsson: Connectors for self-reconfiguring robots, Trans. Mechatron. 7(4), 473–474 (2002)

    Article  Google Scholar 

  38. D. Rus, Z. Butler, K. Kotay, M. Vona: Self-reconfiguring robots, Commun. ACM 45(3), 39–45 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zack Butler Prof or Alfred Rizzi Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Butler, Z., Rizzi, A. (2008). Distributed and Cellular Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics