Skip to main content

Mechanisms and Actuation

  • Reference work entry

Abstract

This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections discuss characteristics of the mechanisms and actuation that affect the performance of a robot. The first four sections discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. The next two sections focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final section relates these design features to various performance metrics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ASV:

adaptive suspension vehicle

DOF:

degree of freedom

MEMS:

microelectromechanical systems

MTBF:

mean time between failure

NASA:

National Aeronautics and Space Agency

PI:

policy iteration

SMA:

shape-memory alloy

VR:

virtual reality

References

  1. D.T. Greenwood: Classical Dynamics (Prentice-Hall, Upper Saddle River 1977)

    Google Scholar 

  2. F.C. Moon: Applied Dynamics (Wiley-Interscience, New York 1998)

    Book  MATH  Google Scholar 

  3. S.-M. Song, K.J. Waldron: Machines that Walk: The Adaptive Suspension Vehicle (MIT Press, Cambridge 1988)

    Google Scholar 

  4. M.T. Mason, J.K. Salisbury: Robot Hands and the Mechanics of Manipulation (MIT Press, Cambridge 1985)

    Google Scholar 

  5. R.P. Paul: Robot Manipulators: Mathematics, Programming, and Control (MIT Press, Cambridge 1981)

    Google Scholar 

  6. J.J. Craig: Introduction to Robotics: Mechanics and Control (Addison-Wesley, Publ., Reading 1989)

    MATH  Google Scholar 

  7. O. Bottema, B. Roth: Theoretical Kinematics (North-Holland, New York 1979), (reprinted by Dover, New York)

    MATH  Google Scholar 

  8. J.M. McCarthy: An Introduction to Theoretical Kinematics (MIT Press, Cambridge 1990)

    Google Scholar 

  9. L.W. Tsai: Robot Analysis, The Mechanics of Serial and Parallel Manipulators (Wiley, New York 1999)

    Google Scholar 

  10. T. Lozano-Perez: Spatial Planning: A configuration space approach, IEEE Trans. Comput. 32(2), 108–120 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. J.C. Latombe: Robot Motion Planning (Kluwer Academic, Boston 1991)

    Google Scholar 

  12. R. Vijaykumar, K. Waldron, M.J. Tsai: Geometric optimization of manipulator structures for working volume and dexterity. In: Kinematics of Robot Manipulators, ed. by J.M. McCarthy (MIT Press, Cambridge 1987) pp. 99–111

    Google Scholar 

  13. K. Gupta: On the nature of robot workspace. In: Kinematics of Robot Manipulators, ed. by J.M. McCarthy (MIT Press, Cambridge 1987) pp. 120–129

    Google Scholar 

  14. I. Chen, J. Burdick: Determining task optimal modular robot assembly configurations, Proc. IEEE Robot. Autom. Conf. (1995) pp. 132–137

    Google Scholar 

  15. P. Chedmail, E. Ramstei: Robot mechanisms synthesis and genetic algorithms, Proc. IEEE Robot. Autom. Conf. (1996) pp. 3466–3471

    Google Scholar 

  16. P. Chedmail: Optimization of multi-DOF mechanisms. In: Computational Methods in Mechanical Systems, ed. by J. Angeles, E. Zakhariev (Springer, Berlin 1998), pp.97–129

    Google Scholar 

  17. C. Leger, J. Bares: Automated Synthesis and Optimization of Robot Configurations, CD-ROM Proc. ASME DETCʼ98 (Atlanta 1998), paper no. DETC98/Mech-5945

    Google Scholar 

  18. F.C. Park: Distance metrics on the rigid body motions with applications to mechanism design, ASME J. Mech. Des. 117(1), 48–54 (1995)

    Article  Google Scholar 

  19. J.M.R. Martinez, J. Duffy: On the metrics of rigid body displacements for infinite and finite bodies, ASME J. Mech. Des. 117(1), 41–47 (1995)

    Article  Google Scholar 

  20. M. Zefran, V. Kumar, C. Croke: Choice of Riemannian metrics for rigid body kinematics, CD-ROM Proc. ASME DETCʼ96 (Irvine 1996), paper no. DETC96/Mech-1148

    Google Scholar 

  21. Q. Lin, J.W. Burdick: On well-defined kinematic metric functions, Proc. Int. Conf. on Robotics and Automation (San Francisco 2000) pp. 170–177

    Google Scholar 

  22. C. Gosseli: On the design of efficient parallel mechanisms. In: Computational Methods in Mechanical Systems, ed. by J. Angeles, E. Zakhariev (Springer, Berlin, Heidelberg 1998), pp.68–96

    Google Scholar 

  23. J.V. Albro, G.A. Sohl, J.E. Bobrow, F. Park: On the computation of optimal high-dives, Proc. Int. Conf. on Robotics and Automation (San Francisco 2000) pp. 3959–3964

    Google Scholar 

  24. G.E. Shilov: An Introduction to the Theory of Linear Spaces (Dover, New York 1974)

    MATH  Google Scholar 

  25. J.K. Salisbury, J.J. Craig: Articulated hands: Force control and kinematic issues, Int. J. Robot. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  26. J. Angeles, C.S. Lopez-Cajun: Kinematic isotropy and the conditioning index of serial manipulators, Int. J. Robot. Res. 11(6), 560–571 (1992)

    Article  Google Scholar 

  27. J. Angeles, D. Chabla: On isotropic sets of points in the plane. Application to the design of robot architectures. In: Advances in Robot Kinematics, ed. by J. Lenarčič, M.M. Stanišić (Kluwer Academic, Dordrecht 2000) pp. 73–82

    Google Scholar 

  28. E.F. Fichter: A Stewart platform-based manipulator: General theory and practical construction. In: Kinematics of Robot Manipulators, ed. by J.M. McCarthy (MIT Press, Cambridge 1987) pp. 165–190

    Google Scholar 

  29. J.P. Merlet: Parallel Robots (Kluwer Academic, Dordrecht 1999)

    Google Scholar 

  30. J.M. Hervé: Analyse structurelle des méchanismes par groupe des déplacements, Mechanism Machine Theory 13(4), 437–450 (1978)

    Article  Google Scholar 

  31. J.M. Hervé: The Lie group of rigid body displacements, a fundamental tool for mechanism design, Mechanism Machine Theory 34, 719–730 (1999)

    Article  MATH  Google Scholar 

  32. A.P. Murray, F. Pierrot, P. Dauchez, J.M. McCarthy: A planar quaternion approach to the kinematic synthesis of a parallel manipulator, Robotica 15(4), 361–365 (1997)

    Article  Google Scholar 

  33. A. Murray, M. Hanchak: Kinematic synthesis of planar platforms with RPR, PRR, and RRR chains. In: Advances in Robot Kinematics, ed. by J. Lenarčič, M.M. Stanišić (Kluwer Academic, Dordrecht 2000) pp. 119–126

    Google Scholar 

  34. J.M. McCarthy: Geometric Design of Linkages (Springer, Berlin, Heidelberg 2000)

    MATH  Google Scholar 

  35. V. Kumar: Instantaneous kinematics of parallel-chain robotic mechanisms, J. Mech. Des. 114(3), 349–358 (1992)

    Article  Google Scholar 

  36. C. Gosselin, J. Angeles: The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator, ASME J. Mech. Transmiss. Autom. Des. 110(3), 35–41 (1988)

    Article  Google Scholar 

  37. J. Lee, J. Duffy, M. Keler: The optimum quality index for the stability of in-parallel planar platform devices, CD-ROM Proc. 1996 ASME Design Engineering Technical Conferences (Irvine 1996), 96-DETC/MECH-1135

    Google Scholar 

  38. J. Lee, J. Duffy, K. Hunt: A practical quality index based on the octahedral manipulator, Int. J. Robot. Res. 17(10), 1081–1090 (1998)

    Article  Google Scholar 

  39. S.E. Salcudean, L. Stocco: Isotropy and actuator optimization in haptic interface design, Proc. Int. Conf. on Robotics and Automation (San Francisco 2000) pp. 763–769

    Google Scholar 

  40. L.-W. Tsai, S. Joshi: Kinematics and optimization of a spatial 3-UPU parallel manipulator, J. Mech. Des. 122, 439–446 (2000)

    Article  Google Scholar 

  41. Q. Jin, T.-L. Yang: Theory for topology synthesis of parallel manipulators and its application to three-dimension-translation parallel manipulators, J. Mech. Des. 126(3), 625–639 (2004)

    Article  Google Scholar 

  42. X. Kong, C.M. Gosselin: Type synthesis of three-degree-of-freedom spherical parallel manipulators, Int. J. Robot. Res. 23, 237–245 (2004)

    Article  Google Scholar 

  43. T.A. Hess-Coelho: Topological synthesis of a parallel wrist mechanism, J. Mech. Des. 128(1), 230–235 (2006)

    Article  Google Scholar 

  44. E.I. Rivin: Mechanical Design of Robots (McGraw-Hill, New York 1988) p. 368

    Google Scholar 

  45. R.C. Juvinall, K.M. Marshek: Fundamentals of Machine Component Design, 4th edn. (Wiley, New York 2005) p. 832

    Google Scholar 

  46. J.E. Shigley, C.R. Mischke: Mechanical Engineering Design, 7th edn. (McGraw-Hill, Upper Saddle River 2004) p. 1056

    Google Scholar 

  47. J.E. Shigley, C.R. Mischke: Standard Handbook of Machine Design, 2nd edn. (McGraw-Hill, Upper Saddle River 1996) p. 1700

    Google Scholar 

  48. N. Sclater, N. Chironis: Mechanisms and Mechanical Devices Sourcebook, 4th edn. (McGraw Hill, Upper Saddle River 2007) p. 512

    Google Scholar 

  49. J.P. Trevelyan: Sensing and control for shearing robots, IEEE Trans. Robot. Autom. 5(6), 716–727 (1989)

    Article  Google Scholar 

  50. J.P. Trevelyan, P.D. Kovesi, M. Ong, D. Elford: ET: A wrist mechanism without singulat positions, Int. J. Robot. Res. 4(4), 71–85 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victor Scheinman Prof or J. Michael McCarthy PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Scheinman, V., McCarthy, J.M. (2008). Mechanisms and Actuation. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics