Skip to main content

Behavior-Based Systems

  • Reference work entry

Abstract

Nature is filled with examples of autonomous creatures capable of dealing with the diversity, unpredictability, and rapidly changing conditions of the real world. Such creatures must make decisions and take actions based on incomplete perception, time constraints, limited knowledge about the world, cognition, reasoning and physical capabilities, in uncontrolled conditions and with very limited cues about the intent of others. Consequently, one way of evaluating intelligence is based on the creatureʼs ability to make the most of what it has available to handle the complexities of the real world. The main objective of this chapter is to clarify behavior-based systems and their use in single- and multi-robot autonomous control problems and applications. The chapter is organized as follows. Section 38.1 overviews robot control, introducing behavior-based systems in relation to other established approaches to robot control. Section 38.2 follows by outlining the basic principles of behavior-based systems that make them distinct from other types of robot control architectures. The concept of basis behaviors, the means of modularizing behavior-based systems, is presented in Sect. 38.3. Section 38.4 describes how behaviors are used as building blocks for creating representations for use by behavior-based systems, enabling the robot to reason about the world and about itself in that world. Section 38.5 presents several different classes of learning methods for behavior-based systems, validated on single-robot and multi-robot systems. Section 38.6 provides an overview of various robotics problems and application domains that have successfully been addressed with behavior-based control. Finally, Sect. 38.7 concludes the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAAI:

American Association for Artificial Intelligence

AuRA:

autonomous robot architecture

BLE:

broadcast of local eligibility

HRI:

human–robot interaction

RL:

reinforcement learning

References

  1. J.S. Albus: Outline for a theory of intelligence, IEEE Trans. Syst. Man Cybernet. 21(3), 473–509 (1991)

    Article  MathSciNet  Google Scholar 

  2. G. Girald, R. Chatila, M. Vaisset: An Integrated Navigation and Motion Control System for Autonomous Multisensory Mobile Robots, Proceedings First International Symposium on Robotics Research (MIT Press, Cambridge 1983)

    Google Scholar 

  3. H. Moravec, A. Elfes: High resolution maps from wide angle sonar, Proceedings IEEE International Conference on Robotics and Automation (1995)

    Google Scholar 

  4. J. Laird, P. Rosenbloom: An Investigation into Reactive Planning in Complex Domains, Proceedings Ninth National Conference of the American Association for Artificial Intelligence (MIT Press, Cambridge 1990) pp. 1022–1029

    Google Scholar 

  5. N. J. Nilsson: Shakey the Robot, Technical Report (325) (SRI International, 1984)

    Google Scholar 

  6. S.J. Rosenschein, L.P. Kaelbling: A situated view of representation and control, Artif. Intell. 73, 149–173 (1995)

    Article  Google Scholar 

  7. R.A. Brooks: Elephants donʼt play chess. In: Designing Autonomous Agents: Theory and Practive form Biology to Engineering and Back (The MIT Press, Bradford Book 1990) pp. 3–15

    Google Scholar 

  8. R. Brooks, J. Connell: Asynchrounous distributed control system for a mobile robot, Proceedings SPIE Intelligent Control and Adaptive Systems (1986) pp. 77–84

    Google Scholar 

  9. R.A. Brooks: A robust layered control system for a mobile robot, IEEE J. Robot. Autom. RA-2(1), 14–23 (1986)

    Article  Google Scholar 

  10. P.E. Agre, D. Chapman: Pengi: An implementation of a theory of activity, Proceedings Sixth National Conference of the American Association for Artificial Intelligence (1987) pp. 268–272

    Google Scholar 

  11. R.A. Brooks: Intelligence without representation, Artif. Intell. 47, 139–159 (1991)

    Article  Google Scholar 

  12. M. Schoppers: Universal plans for reactive robots in unpredictable domains, Proceedings International Joint Conference on Artificial Intelligence (1987) pp. 1039–1046

    Google Scholar 

  13. P.E. Agre, D. Chapman: What are plans for?. In: Designing Autonomous Agents: Theory and Practive form Biology to Engineering and Back, ed. by P. Maes (MIT Press, Bradford Book 1990) pp. 17–34

    Google Scholar 

  14. G.N. Saridis: Intelligent robotic control, IEEE Trans. Autom. Contr. AC-28(5), 547–557 (1983)

    Article  MathSciNet  Google Scholar 

  15. R.J. Firby: An investigation into reactive planning in complex domains, Proceedings AAAI Conference (1987) pp. 202–206

    Google Scholar 

  16. R. Arkin: Towards the unification of navigational planning and reactive control, Proceedings American Association for Artificial Intelligence, Spring Symposium on Robot Navigation (1989) pp. 1–5

    Google Scholar 

  17. C. Malcolm, T. Smithers: Symbol grounding via a hybrid architecture in an autonomous assembly system. In: Designing Autonomous Agents: Theory and Practive form Biology to Engineering and Back, ed. by P. Maes (MIT Press, Bradford Book 1990) pp. 123–144

    Google Scholar 

  18. J.H. Connell: SSS: A hybrid architecture applied to robot navigation, Proceedings IEEE International Conference on Robotics and Automation (1992) pp. 2719–2724

    Google Scholar 

  19. E. Gat: Integrating planning and reacting in a heterogeneous asynchronous architecture for controlling real-world mobile robots, Proceedings National Conference on Artificial Intelligence (1992) pp. 809–815

    Google Scholar 

  20. M. Georgeoff, A. Lansky: Reactive reasoning and planning, Proceedings Sixth National Conference of the American Association for Artificial Intelligence (1987) pp. 677–682

    Google Scholar 

  21. B. Pell, D. Bernard, S. Chien, E. Gat, N. Muscettola, P. Nayak, M. Wagner, B. Williams: An autonomous spacecraft agent prototype, Autonom. Robot. 1-2(5), 1–27 (1998)

    Google Scholar 

  22. R.C. Arkin: Behavior-Based Robotics (MIT Press, Bradford Book 1998)

    Google Scholar 

  23. M.J. Matarić: Reinforcement learning in the multi-robot domain, Autonom. Robot. 4(1), 73–83 (1997)

    Article  Google Scholar 

  24. P. Bonasso, R.J. Firby, E. Gat, D. Kortenkamp, D.P. Miller, M.G. Slack: Experiences with an architecture for intelligent reactive agents, Proceedings International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  25. P. Pirjanian: Multiple objective behavior-based control, Robot. Autonom. Syst. 31(1-2), 53–60 (2000)

    Article  Google Scholar 

  26. D. Payton, D. Keirsey, D. Kimble, J. Krozel, J. Rosenblatt: Do whatever works: A robust approach to fault-tolerant autonomous control, Appl. Intell. 2(3), 225–250 (1992)

    Article  Google Scholar 

  27. P. Maes: Situated agents can have goals. In: Designing Autonomous Agents: Theory and Practive form Biology to Engineering and Back, ed. by P. Maes (MIT Press, Bradford Book 1990) pp. 49–70

    Google Scholar 

  28. P. Maes: The dynamics of action selection, Proceedings International Joint Conference on Artificial Intelligence (1989) pp. 991–997

    Google Scholar 

  29. A. Saffiotti: The uses of fuzzy logic in autonomous robot navigation, Soft Comput. 1, 180–197 (1997)

    Google Scholar 

  30. F. Michaud: Selecting behaviors using fuzzy logic, Proceedings IEEE International Conference on Fuzzy Systems (1997) pp.

    Google Scholar 

  31. P. Pirjanian: Behavior coordination mechanisms–State-of-the-art, (Technical Report IRIS-99-375, University of Southern California, Institute of Robotics and Intelligent Systems) (1999)

    Google Scholar 

  32. E. Gat: On three-layer architectures. In: Artificial Intelligence and Mobile Robotics, ed. by D. Kortenkamp, R. Bonasso, R. Murphy (MIT/AAAI Press, Cambridge 1998)

    Google Scholar 

  33. M.J. Matarić: Integration of representation into goal-driven behavior-based robots, IEEE Trans. Robot. Autom. 8(3), 304–312 (1992)

    Article  Google Scholar 

  34. M.J. Matarić: Navigating with a Rat Brain: A Neurobiologically-Inspired Model for Robot Spatial Representation, From Animals to Animats. Proceedings First International Conference on Simulation of Adaptive Behaviors (MIT Press, Bradford Book 1990) pp. 169–175

    Google Scholar 

  35. M. Nicolescu, M.J. Matarić: Experience-based representation construction: Learning from human and robot teachers, Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (2001) pp. 740–745

    Google Scholar 

  36. M. Nicolescu, M.J. Matarić: A hierarchical architecture for behavior-based robots, Proceedings International Joint Conference on Autonomous Agents and Multiagent Systems (2002)

    Google Scholar 

  37. L.E. Parker: ALLIANCE: An architecture for fault tolerant multirobot cooperation, IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  38. M.J. Matarić: Designing and understanding adaptive group behavior, Adapt. Behav. 4(1), 50–81 (1995)

    Google Scholar 

  39. O.C. Jenkins, M.J. Matarić: Deriving action and behavior primitives from human motion data, Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (2002) pp. 2551–2556

    Google Scholar 

  40. O.C. Jenkins, M.J. Matarić: Automated derivation of behavior vocabularies for autonomous humanoid motion, Proceedings Second International Joint Conference on Autonomous Agents and Multiagent Systems (2003)

    Google Scholar 

  41. M.J. Matarić: Designing Emergent Behaviors: From Local Interactions to Collective Intelligence, From Animals to Animats 2. Proceedings Second International Conference on Simulation of Adaptive Behaviors, ed. by J.-A. Meyer, H. Roitblat, S. Wilson (MIT Press, Cambridge 1992) pp. 432–441

    Google Scholar 

  42. S. Saripalli, D.J. Naffin, G.S. Sukhatme: Autonomous Flying Vehicle Research at the University of Southern California, Multi-Robot Systems: From Swarms to Intelligent Automata, Proceedings of the First International Workshop on Multi-Robot Systems, ed. by A. Schultz, L.E. Parker (Kluwer, Dordrecht 2002) pp. 73–82

    Google Scholar 

  43. M.J. Matarić: Behavior-based control: Examples from navigation, learning, and group behavior, J. Exp. Theor. Artif. Intell. 9(2-3), 323–336 (1997)

    Article  Google Scholar 

  44. P. Maes, R.A. Brooks: Learning to coordinate behaviors, Proceedings Eigth National Conference on Artificial Intelligence AAAI (1990) pp. 796–802

    Google Scholar 

  45. H. Yanco, L.A. Stein: An Adaptive Communication Protocol for Cooperating Mobile Robots, From Animals to Animats 3. Proceedings of the Third International Conference on Simulation of Adaptive Behaviors (MIT Press, Cambridge 1993) pp. 478–485

    Google Scholar 

  46. J.R. del Millàn: Learning Efficient Reactive Behavioral Sequences from Basic Reflexes in a Goal-Directed Autonomous Robot, From Animals to Animats 3. Proceedings Third International Conference on Simulation of Adaptive Behaviors (MIT Press, Cambrdige 1994) pp. 266–274

    Google Scholar 

  47. L. Parker: Learning in cooperative robot teams, Proceedings International Joint Conference on Artificial Intelligence (1993) pp. 12–23

    Google Scholar 

  48. M.J. Matarić: Learning to Behave Socially, From Animals to Animats 3. Proceedings Third International Conference on Simulation of Adaptive Behaviors (The MIT Press, Cambridge 1994) pp. 453–462

    Google Scholar 

  49. M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida, K. Hosoda: Coordination of multiple behaviors acquired by a vision-based reinforcement learning, Proceedings IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, Munich, Germany (1994)

    Google Scholar 

  50. J. McCarthy: Making robots conscious of their mental states, AAAI Spring Symposium (1995)

    Google Scholar 

  51. T. Smithers: On why Better Robots Make it Harder, From Animals to Animats: Proceedings 3rd International Conference on Simulation of Adaptive Behavior (MIT Press, Cambridge 1994) pp. 64–72

    Google Scholar 

  52. D. McFarland, T. Bösser: Intelligent Behavior in Animals and Robots (MIT Press, Bradford Book 1993)

    Google Scholar 

  53. P. Maes: A Bottom-Up Mechanism for Behavior Selection in an Artificial Creature, From Animals to Animats. Proceedings First International Conference on Simulation of Adaptive Behavior (MIT Press, Cambridge 1991) pp. 238–246

    Google Scholar 

  54. B.M. Blumberg, P.M. Todd, P. Maes: No bad dogs: Ethological lessons for learning in Hamsterdam, From Animals to Animats: Proceedings International Conference on Simulation of Adaptive Behavior, ed. by P. Maes, M.J. Matarić, J.-A. Meyer, J. Pollack, S.W. Wilson (1996) pp. 295–304

    Google Scholar 

  55. C. Breazeal, B. Scassellati: Infant-like social interactions between a robot and a human caregiver, Adapt. Behav. 8(1), 49–74 (2000)

    Article  Google Scholar 

  56. F. Michaud, M.T. Vu: Managing robot autonomy and interactivity using motives and visual communication, Proceedings International Conference on Autonomous Agents (1999) pp. 160–167

    Google Scholar 

  57. F. Michaud: EMIB – Computational architecture based on emotion and motivation for intentional selection and configuration of behaviour-producing modules, Cogn. Sci. Q., Special Issue on Desires, Goals, Intentions and Values: Comput. Arch. 3-4, 340–361 (2002)

    Google Scholar 

  58. F. Michaud, P. Prijanian, J. Audet, D. Létourneau: Artificial Emotion and Social Robotics, Distributed Autonomous Robotic Systems, ed. by L.E. Parker, G. Bekey, J. Barhen (Springer, Berlin, Heidelberg 2000) pp. 121–130

    Google Scholar 

  59. A. Stoytchev, R. Arkin: Incorporating motivation in a hybrid robot architecture, J. Adv. Comput. Intell. Intell. Inf. 8(3), 269–274 (2004)

    Google Scholar 

  60. S. Mahadevan, J. Connell: Automatic programming of behavior-based robots using reinforcement learning, Artif. Intell. 55, 311–365 (1992)

    Article  Google Scholar 

  61. M.J. Matarić: Reward functions for accelerated learning, Proceedings 11th International Conference on Machine Learning, New Brunswick, NJ, ed. by William W. Cohen, Haym Hirsh (Morgan Kauffman Publishers 1994) pp. 181–189

    Google Scholar 

  62. H. Gleitman: Psychology (NORTON, New York 1981)

    Google Scholar 

  63. M. Dorigo, M. Colombetti: Robot Shaping: An Experiment in Behavior Engineering (MIT Press, Cambridge 1997)

    Google Scholar 

  64. M. Nicolescu, M.J. Matarić: Learning and interacting in human-robot domains, IEEE Transactions on Systems, Man, Cybernetics, special issue on Socially Intelligent Agents - The Human in the Loop (2001)

    Google Scholar 

  65. A.K. McCallum: Hidden state and reinforcement learning with instance-based state identification, IEEE Trans. Syst. Man Cybernet. – Part B: Cybernetics 26(3), 464–473 (1996)

    Article  Google Scholar 

  66. F. Michaud, M.J. Matarić: Learning from history for behavior-based mobile robots in non-stationary environments, Spec. Iss. Learn. Autonom. Robot. Mach. Learn./Autonom. Robot. 31/5, 141–167/335–354 (1998)

    Google Scholar 

  67. F. Michaud, M.J. Matarić: Representation of behavioral history for learning in nonstationary conditions, Robot. Autonom. Syst. 29(2), 1–14 (1999)

    Article  Google Scholar 

  68. A. Agha, G. Bekey: Phylogenetic and ontogenetic learning in a colony of interacting robots, Autonom. Robot. 4(1), 85–100 (1997)

    Article  Google Scholar 

  69. R.A. Brooks, L. Stein: Building brains for bodies, Autonom. Robot. 1(1), 7–25 (1994)

    Article  Google Scholar 

  70. B. Webb: Robotic Experiments in Cricket Phonotaxis, From Animals to Animats 3. Proceedings Third International Conference on Simulation of Adaptive Behaviors (MIT Press, Cambridge 1994) pp. 45–54

    Google Scholar 

  71. J.L. Jones: Robots at the tipping point, IEEE Robot. Autom. Mag. 13(1), 76–78 (2006)

    Article  Google Scholar 

  72. P. Rusu, E.M. Petriu, T.E. Whalen, A. Cornell, H.J.W. Spoelder: Behavior-based neuro-fuzzy controller for mobile robot navigation, IEEE 52(4), 1335–1340 (2003)

    Google Scholar 

  73. R. Huq, G.K.I. Mann, R.G. Gosine: Behaviour modulation technique in mobile robotics using fuzzy discrete event system, IEEE Trans. Robot. 22, 903–916 (2006)

    Article  Google Scholar 

  74. L.E. Parker: Current research in multirobot systems, Artif. Life Robot. 7(1–2), 1–5 (2003)

    Article  Google Scholar 

  75. L.E. Parker, M. Chandra, F. Tang: Enabling Autonomous Sensor-Sharing for Tightly-Coupled Cooperative Tasks, Multi-Robot Systems. From Swarms to Intelligent Automata, Vol. III, ed. by L.E. Parker, F.E. Schneider, A.C. Schultz (Springer, Berlin, Heidelberg 2005) pp. 119–230

    Google Scholar 

  76. B.B. Werger, M.J. Matarić: Broadcast of Local Eligibility for Multi-Target Observation, Proceedings of the 5th International Conference on Distributed Autonomous Robotic Systems (2000) pp. 347–356

    Google Scholar 

  77. B.P. Gerkey, M.J. Matarić: Principled communication for dynamic multi-robot task allocation. In: Experimental Robotics VII, LNCIS 271, ed. by D. Rus, S. Singh (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  78. B.P. Gerkey, M.J. Matarić: Sold!: Auction methods for multi-robot coordination, IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  79. B.P. Gerkey, M.J. Matarić: Pusher-watcher: An approach to fault-tolerant tightly-coupled robot coordination, Proceedings IEEE International Conference on Robotics and Automation (2002) pp. 464–469

    Google Scholar 

  80. L. Iocchi, D. Nardi, M. Piaggio, A. Sgorbissa: Distributed coordination in heterogeneous multi-robot systems, Autonom. Robot. 15(2), 155–168 (2004)

    Article  Google Scholar 

  81. M. Batalin, G. Sukhatme: Coverage, exploration and deployment by a mobile robot and communication network, Telecommun. Syst. 26(2–4), 181–196 (2004)

    Article  Google Scholar 

  82. A.W. Stroupe, T. Balch: Value-based action selection for observation with robot teams using probabilistic techniques, Robot. Autonom. Syst. 50(2–3), 85–97 (2005), special issue on Multi-Robots in Dynamic Environments

    Article  Google Scholar 

  83. R. Simmons, T. Smith, M.B. Dias, D. Goldberg, D. Hershberger, A. Stentz, R. Zlot: A Layered Architecture for Coordination of Mobile Robots, Proceedings from the NRL Workshop on Multi-Robot Systems Multi-Robot Systems: From Swarms to Intelligent Automata (2002)

    Google Scholar 

  84. J. Nembrini, A. Winfield, C. Melhuish: Minimalist Coherent Swarming of Wireless Networked Autonomous Mobile Robots, Proceedings of the 7th International Conference on Simulation of Adaptive Behavior (MIT Press, CAmbridge 2002) pp. 373–382

    Google Scholar 

  85. M. Egerstedt, X. Hu: Formation constrained multi-agent control, IEEE Trans. Robot. Autom. 17(6), 947–951 (2001)

    Article  Google Scholar 

  86. A. Olenderski, M. Nicolescu, S. Louis: A behavior-based architecture for realistic autonomous ship control, Proceesings, IEEE Symposium on Computational Intelligence and Games (2006)

    Google Scholar 

  87. M. Nicolescu, O.C. Jenkins, A. Olenderski: Learning behavior fusion estimation from demonstration, Proceedings, IEEE International Symposium on Robot and Human Interactive Communication (2006) pp. 340–345

    Google Scholar 

  88. K. Gold, B. Scassellati: Learning about the self and others through contingency, AAAI Spring Symposium on Developmental Robotics (2005)

    Google Scholar 

  89. M. Baker, H.A. Yanco: Automated street crossing for assistive robots, Proceedings of the International Conference on Rehabilitation Robotics (2005) pp. 187–192

    Google Scholar 

  90. M. Williamson: Postural Primitives: Interactive Behavior for a Humanoid Robot Arm, Proceedings of the International Conference on Simulation of Adaptive Behavior (MIT Press, Cambridge 1996)

    Google Scholar 

  91. M. Marjanovic, B. Scassellati, M. Williamson, R. Brooks, C. Breazeal: The Cog Project: Building a humanoid robot. In: Computation for Metaphors, Analogy and Agents, Vol. 1562 of Springer Lecture Notes in Artificial Intelligence, ed. by C. Nehaniv (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  92. A. Edsinger: Robot Manipulation in Human Environments. Ph.D. Thesis , Massachusettes Institute of Technology, Department of Electrical Engineering and Computer Science (2007)

    Google Scholar 

  93. C. Breazeal: Infant-like social interactions between a robot and a human caretaker, Adapt. Behav. 8(1), 49–74 (2000)

    Article  Google Scholar 

  94. H. Ishiguro, T. Kanda, K. Kimoto, T. Ishida: A robot architecture based on situated modules, Proceedings of the International Conference on Intelligent Robots and Systems (1999) pp. 1617–1623

    Google Scholar 

  95. T. Kanda, T. Hirano, D. Eaton, H. Ishiguro: Person identification and interaction of social robots by using wireless tags, Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (2003) pp. 1657–1664

    Google Scholar 

  96. F. Michaud, Y. Brosseau, C. Cote, D. Letourneau, P. Moisan, A. Ponchon, C. Raievsky, J.-M. Valin, E. Beaudry, F. Kabanza: Modularity and integration in the design of a socially interactive robot, Proceedings IEEE International Workshop on Robot and Human Interactive Communication (2005) pp. 172–177

    Google Scholar 

  97. F. Michaud, G. Lachiver, C.T. Le Dinh: Architectural methodology based on intentional configuration of behaviors, Comput. Intell. 17(1), 132–156 (2001)

    Article  Google Scholar 

  98. D. Letourneau, F. Michaud, J.-M. Valin: Autonomous robot that can read, EURASIP J. Appl. Signal Process. 17, 1–14 (2004), Special Issue on Advances in Intelligent Vision Systems: Methods and Applications

    Google Scholar 

  99. J.-M. Valin, F. Michaud, B. Hadjou, J. Rouat: Localization of simultaneous moving sound sources for mobile robot using a frequency-domaine steered beamformer approach, Proceedings IEEE International Conference on Robotics and Automation (2004) pp. 1033–1038

    Google Scholar 

  100. J.-M. Valin, F. Michaud, J. Rouat: Robust 3D localization and tracking of sound sources using beamforming and particle filtering, Proceedings International Conference on Audio, Speech and Signal Processing (2006) pp. 221–224

    Google Scholar 

  101. F. Michaud, C. Cote, D. Letourneau, Y. Brosseau, J.-M. Valin, E. Beaudry, C. Raievsky, A. Ponchon, P. Moisan, P. Lepage, Y. Morin, F. Gagnon, P. Giguere, M.-A. Roux, S. Caron, P. Frenette, F.Kabanza: Spartacus attending the 2005 AAAI Conference, Autonomous Robots, Special Issue on AAAI Mobile Robot Competition (2007)

    Google Scholar 

  102. F. Michaud, D. Letourneau, M. Frechette, E. Beaudry, F. Kabanza: Spartacus, scientific robot reporter, Proceedings of the Workshop on AAAI Mobile Robot Competition (2006)

    Google Scholar 

  103. E. Beaudry, Y. Brosseau, C. Cote, C. Raievsky, D. Letourneau, F. Kabanza, F. Michaud: Reactive planning in a motivated behavioral architecture, Proceedings American Association for Artificial Intelligence Conference (2005) pp. 1242–1247

    Google Scholar 

  104. K. Haigh, M. Veloso: Planning, execution and learning in a robotic agent, Proceedings Fourth International Conference on Artificial Intelligence Planning Systems (1998) pp. 120–127

    Google Scholar 

  105. S. Lemai, F. Ingrand: Interleaving temporeal planning and execution in robotics domains, Proceeedings National Conference on Artificial Intelligence (2004) pp. 617–622

    Google Scholar 

  106. F. Michaud, J.F. Laplante, H. Larouche, A. Duquette, S. Caron, D. Letourneau, P. Masson: Autonomous spherical mobile robotic to study child development, IEEE Trans. Syst. Man. Cybernet. 35(4), 1–10 (2005)

    Google Scholar 

  107. F. Michaud, S. Caron: Roball, the rolling robot, Autonom. Robot. 12(2), 211–222 (2002)

    Article  MATH  Google Scholar 

  108. R.A. Brooks: Cambrian Intelligence – The Early History of the New AI (MIT Press, Cambridge 1999)

    MATH  Google Scholar 

  109. R. Pfeifer, C. Scheier: Understanding Intelligence (MIT Press, Cambridge 2001)

    Google Scholar 

  110. R.R. Murphy: An Introduction to AI Robotics (MIT Press, Cambridge 2000)

    Google Scholar 

  111. M.J. Matarić: The Robotics Primer (MIT Press, Cambridge 2007)

    Google Scholar 

  112. F. Martin: Robotic Explorations: A Hands-On Introduction to Engineering (Prentice Hall, Upper Saddle River 2001)

    Google Scholar 

  113. J.L. Jones, A.M. Flynn: Mobile Robots - Inspiration to Implementation (Peters, Wellesley 1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maja J. Matarić Prof or François Michaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Matarić, M.J., Michaud, F. (2008). Behavior-Based Systems. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics