Skip to main content

Haptics

  • Reference work entry

Abstract

The word haptics, believed to be derived from the Greek word haptesthai, means related to the sense of touch. In the psychology and neuroscience literature, haptics is the study of human touch sensing, specifically via kinesthetic (force/position) and cutaneous (tactile) receptors, associated with perception and manipulation. In the robotics and virtual reality literature, haptics is broadly defined as real and simulated touch interactions between robots, humans, and real, remote, or simulated environments, in various combinations. This chapter focuses on the use of specialized robotic devices and their corresponding control, known as haptic interfaces, that allow human operators to experience the sense of touch in remote (teleoperated) or simulated (virtual) environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CAD:

computer-aided design

EP:

exploratory procedures

FE:

finite element

HD:

haptic device

HIP:

haptic interaction point

HO:

human operator

IEEE:

Institute of Electrical and Electronics Engineers

JND:

just noticeable difference

MEMS:

microelectromechanical systems

NURBS:

non-uniform rational B-spline

RC:

radio-controlled

ROC:

receiver operating curve

SDK:

standard development kit

SMA:

shape-memory alloy

References

  1. G.A. Gescheider: Psychophysics: The Fundamentals (Lawrence Erlbaum, New York 1985)

    Google Scholar 

  2. K.B. Shimoga: A survey of perceptual feedback issues in dexterous telemanipulation. I. Finger force feedback, Proc. Virtual Real. Annu. Int. Symp. (1993) pp. 263–270

    Google Scholar 

  3. M.A. Srinivasan, R.H. LaMotte: Tactile discrimination of shape: responses of slowly and rapidly adapting mechanoreceptive afferents to a step indented into the monkey fingerpad, J. Neurosci. 7(6), 1682–1697 (1987)

    Google Scholar 

  4. R.H. LaMotte, R.F. Friedman, C. Lu, P.S. Khalsa, M.A. Srinivasan: Raised object on a planar surface stroked across the fingerpad: Responses of cutaneous mechanoreceptors to shape and orientation, J. Neurophysiol. 80, 2446–2466 (1998)

    Google Scholar 

  5. R.H. LaMotte, J. Whitehouse: Tactile detection of a dot on a smooth surface: peripheral neural events, J. Neurophysiol. 56, 1109–1128 (1986)

    Google Scholar 

  6. R. Hayashi, A. Miyake, H. Jijiwa, S. Watanabe: Postureal readjustment to body sway induced by vibration in man, Exp. Brain Res. 43, 217–225 (1981)

    Article  Google Scholar 

  7. G.M. Goodwin, D.I. McCloskey, P.B.C. Matthews: The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement an the effects of paralysing joint afferents, Brain 95, 705–748 (1972)

    Article  Google Scholar 

  8. G.S. Dhillon, K.W. Horch: Direct neural sensory feedback and control of a prosthetic arm, IEEE Trans. Neural Syst. Rehabil. Eng. 13(4), 468–472 (2005)

    Article  Google Scholar 

  9. L.A. Jones: Perception and control of finger forces, DSC (1998) pp. 133–137

    Google Scholar 

  10. S. Lederman, R. Klatzky: Hand movements: a window into haptic object recognition, Cognit. Psychol. 19(3), 342–368 (1987)

    Article  Google Scholar 

  11. R. Klatzky, S. Lederman, V. Metzger: Identifying objects by touch, An `expert systemʼ, Percept. Psychophys. 37(4), 299–302 (1985)

    Article  Google Scholar 

  12. S. Lederman, R. Klatzky: Haptic classification of common objects: Knowledge-driven exploration, Cognit. Psychol. 22, 421–459 (1990)

    Article  Google Scholar 

  13. O.S. Bholat, R.S. Haluck, W.B. Murray, P.G. Gorman, T.M. Krummel: Tactile feedback is present during minimally invasive surgery, J. Am. Coll. Surg. 189(4), 349–355 (1999)

    Article  Google Scholar 

  14. C. Basdogan, S. De, J. Kim, M. Muniyandi, M.A. Srinivasan: Haptics in minimally invasive surgical simulation and training, IEEE Comput. Graphics Appl. 24(2), 56–64 (2004)

    Article  Google Scholar 

  15. P. Strom, L. Hedman, L. Sarna, A. Kjellin, T. Wredmark, L. Fellander-Tsai: Early exposure to haptic feedback enhances performance in surgical simulator training: a prospective randomized crossover study in surgical residents, Surg. Endosc. 20(9), 1383–1388 (2006)

    Article  Google Scholar 

  16. A. Liu, F. Tendick, K. Cleary, C. Kaufmann: A survey of surgical simulation: applications, technology, and education, Presence Teleop. Virt. Environ. 12(6), 599–614 (2003)

    Article  Google Scholar 

  17. R.M. Satava: Accomplishments and challenges of surgical simulation, Surg. Endosc. 15(3), 232–241 (2001)

    Article  Google Scholar 

  18. W.A. McNeely, K.D. Puterbaugh, J.J. Troy: Six degree-of-freedom haptic rendering using voxel sampling, Proc. SIGGRAPH 99 (1999) pp. 401–408

    Google Scholar 

  19. SensAble Technologies: www.sensable.com (Woburn 2007)

  20. Immersion Corporation: www.immersion.com (San Jose 2007)

  21. T.H. Massie, J.K. Salisbury: The phantom haptic interface: A device for probing virtual objects, Proc. ASME Dyn. Syst. Contr. Div., Vol. 55 (1994) pp. 295–299

    Google Scholar 

  22. Novint Technologies: www.novint.com (Albuquerque 2007)

  23. M.C. Cavusoglu, D. Feygin, F. Tendick: A critical study of the mechanical and electrical properties of the PHANToM haptic interface and improvements for high-performance control, Presence 11(6), 555–568 (2002)

    Article  Google Scholar 

  24. R.Q. van der Linde, P. Lammerste, E. Frederiksen, B. Ruiter: The HapticMaster, a new high-performance haptic interface, Proc. Eurohaptics Conf. (2002) pp. 1–5

    Google Scholar 

  25. T. Yoshikawa: Manipulability of robotic mechanisms, Int. J. Robot. Res. 4(2), 3–9 (1985)

    Article  MathSciNet  Google Scholar 

  26. J.K. Salibury, J.T. Craig: Articulated hands: Force control and kinematics issues, Int. J. Robot. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  27. P. Buttolo, B. Hannaford: Pen based force display for precision manipulation of virtual environments, Proc. VRAIS-95 (1995) pp. 217–225

    Google Scholar 

  28. P. Buttolo, B. Hannaford: Advantages of actuation redundancy for the design of haptic displays, Proc. ASME Fourth Annu. Symp. Haptic Interf. Virt. Environ. Teleop. Syst., Vol. DSC-57-2 (1995) pp. 623–630

    Google Scholar 

  29. T. Yoshikawa: Foundations of Robotics (MIT Press, Cambridge 1990)

    Google Scholar 

  30. S. Venema, B. Hannaford: A probabilistic representation of human workspace for use in the design of human interface mechanisms, IEEE Trans. Mechatron. 6(3), 286–294 (2001)

    Article  Google Scholar 

  31. H. Yano, M. Yoshie, H. Iwata: development of a non-grounded haptic interface using the gyro effect, Proc. 11th Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (2003) pp. 32–39

    Google Scholar 

  32. C. Swindells, A. Unden, T. Sang: TorqueBAR: an ungrounded haptic feedback device, Proc. 5th Int. Conf. Multimodal Interf. (2003) pp. 52–59

    Google Scholar 

  33. Immersion Corporation: CyberGrasp – Groundbreaking haptic interface for the entire hand (last accessed 2006) www.immersion.com/3d/products/cyber_grasp.php

  34. C. Richard, M.R. Cutkosky: Contact force perception with an ungrounded haptic interface, 1997 ASME IMECE 6th Annu. Symp. Haptic Interf. (1997)

    Google Scholar 

  35. J.J. Abbott, A.M. Okamura: Effects of position quantization and sampling rate on virtual-wall passivity, TRO 21(5), 952–964 (2005)

    Google Scholar 

  36. S. Usui, I. Amidror: Digital low-pass differentiation for biological signal processing, IEEE Trans. Biomedic. Eng. BME-29(10), 686–693 (1982)

    Article  Google Scholar 

  37. P. Bhatti, B. Hannaford: Single chip optical encoder based velocity measurement system, IEEE Trans. Contr. Syst. Technol. 5(6), 654–661 (1997)

    Article  Google Scholar 

  38. A.M. Okamura, C. Richard, M.R. Cutkosky: Feeling is believing: Using a force-feedback joystick to teach dynamic systems, ASEE J. Eng. Educ. 92(3), 345–349 (2002)

    Google Scholar 

  39. John Hopkins University: http://haptics.jhu.edu/paddle (Baltimore)

  40. C.H. Ho, C. Basdogan, M.A. Srinivasan: Efficient point-based rendering techniques for haptic display of virtual objects, Presence 8, 477–491 (1999)

    Article  Google Scholar 

  41. C.B. Zilles, J.K. Salisbury: A constraint-based god-object method for haptic display, IROS (1995) pp. 146–151

    Google Scholar 

  42. J.E. Colgate, M.C. Stanley, J.M. Brown: Issues in the haptic display of tool use, IROS (1995) pp. 140–145

    Google Scholar 

  43. D. Ruspini, O. Khatib: Haptic display for human interaction with virtual dynamic environments, J. Robot. Syst. 18(12), 769–783 (2001)

    Article  MATH  Google Scholar 

  44. A. Gregory, A. Mascarenhas, S. Ehmann, M. Lin, D. Manocha: Six degree-of-freedom haptic display of polygonal models, Proc. Vis. 2000 (2000) pp. 139–146

    Google Scholar 

  45. D.E. Johnson, P. Willemsen, E. Cohen: 6-DOF haptic rendering using spatialized normal cone search, Trans. Vis. Comput. Graphics 11(6), 661–670 (2005)

    Article  Google Scholar 

  46. M.A. Otaduy, M.C. Lin: A modular haptic rendering algorithm for stable and transparent 6-DOF manipulation, IEEE Trans. Vis. Comput. Graphics 22(4), 751–762 (2006)

    Google Scholar 

  47. M.C. Lin, M.A. Otaduy: Sensation-preserving haptic rendering, IEEE Comput. Graphics Appl. 25(4), 8–11 (2005)

    Article  Google Scholar 

  48. T. Thompson, E. Cohen: Direct haptic rendering of complex trimmed NURBS models, 8th Annu. Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (1999)

    Google Scholar 

  49. S.P. DiMaio, S.E. Salcudean: Needle insertion modeling and simulation, IEEE Trans. Robot. Autom. 19(5), 864–875 (2003)

    Article  Google Scholar 

  50. B. Hannaford: Stability and performance tradeoffs in bi-lateral telemanipulation, Proc. IEEE Int. Conf. Robot. Autom., Vol. 3 (1989) pp. 1764–1767

    Google Scholar 

  51. B. Gillespie, M. Cutkosky: Stable user-specific rendering of the virtual wall, Proc. ASME Int. Mech. Eng. Conf. Expo., Vol. DSC-58 (1996) pp. 397–406

    Google Scholar 

  52. R.J. Adams, B. Hannaford: Stable haptic interaction with virtual environments, IEEE Trans. Robot. Autom. 15(3), 465–474 (1999)

    Article  Google Scholar 

  53. B.E. Miller, J.E. Colgate, R.A. Freeman: Passive implementation for a class of static nonlinear environments in haptic display, Proc. IEEE Int. Conf. Robot. Automation (1999) pp. 2937–2942

    Google Scholar 

  54. B.E. Miller, J.E. Colgate, R.A. Freeman: Computational delay and free mode environment design for haptic display, Proc. ASME Dyn. Syst. Cont. Div. (1999)

    Google Scholar 

  55. B.E. Miller, J.E. Colgate, R.A. Freeman: Environment delay in haptic systems, Proc. IEEE Int. Conf. Robot. Autom. (2000) pp. 2434–2439

    Google Scholar 

  56. S.E. Salcudean, T.D. Vlaar: On the emulation of stiff walls and static friction with a magnetically levitated input/output device, ICRA, Vol. 119 (1997) pp. 127–132

    Google Scholar 

  57. P. Wellman, R.D. Howe: Towards realistic vibrotactile display in virtual environments, Proc. 4th Symp. Haptic Interf. Virt. Environ. Teleop. Syst. ASME Int. Mech. Eng. Congress Expo. (1995) pp. 713–718

    Google Scholar 

  58. K. MacLean: The haptic camera: A technique for characterizing and playing back haptic properties of real environments, Proc. 5th Annu. Symp. Haptic Interf. Virt. Environ. Teleop. Syst. ASME/IMECE (1996)

    Google Scholar 

  59. A.M. Okamura, J.T. Dennerlein, M.R. Cutkosky: Reality-based models for vibration feedback in virtual environments, ASME/IEEE Trans. Mechatron. 6(3), 245–252 (2001)

    Article  Google Scholar 

  60. K.J. Kuchenbecker, J. Fiene, G. Niemeyer: Improving contact realism through event-based haptic feedback, IEEE Trans. Vis. Comput. Graphics 12(2), 219–230 (2006)

    Article  Google Scholar 

  61. D.A. Kontarinis, R.D. Howe: Tactile display of vibratory information in teleoperation and virtual environments, Presence 4(4), 387–402 (1995)

    Google Scholar 

  62. J.T. Dennerlein, P.A. Millman, R.D. Howe: Vibrotactile feedback for industrial telemanipulators, Proc. ASME Dyn. Syst. Contr. Div., Vol. 61 (1997) pp. 189–195

    Google Scholar 

  63. A.M. Okamura, J.T. Dennerlein, R.D. Howe: Vibration feedback models for virtual environments, Proc. IEEE Int. Conf. Robot. Autom. (1998) pp. 674–679

    Google Scholar 

  64. R.W. Lindeman, Y. Yanagida, H. Noma, K. Hosaka: Wearable vibrotactile systems for virtual contact and information display, Virt. Real. 9(2-3), 203–213 (2006)

    Article  Google Scholar 

  65. C. Ho, H.Z. Tan, C. Spence: Using spatial vibrotactile cues to direct visual attention in driving scenes, Transp. Res. F Traffic Psychol. Behav. 8, 397–412 (2005)

    Article  Google Scholar 

  66. H.Z. Tan, R. Gray, J.J. Young, R. Traylor: A haptic back display for attentional and directional cueing, Haptics-e Electron. J. Haptics Res. 3(1), 20 (2003)

    Google Scholar 

  67. C2 Tactor: Engineering Acoustic Inc.: www.eaiinfo.com (Casselberry 2007)

  68. W.R. Provancher, M.R. Cutkosky, K.J. Kuchenbecker, G. Niemeyer: Contact location display for haptic perception of curvature and object motion, Int. J. Robot. Res. 24(9), 691–702 (2005)

    Article  Google Scholar 

  69. R.S. Johansson: Sensory input and control of grip, Novartis Foundat. Symp., Vol. 218 (1998) pp. 45–59

    Google Scholar 

  70. K.O. Johnson, J.R. Phillips: A rotating drum stimulator for scanned embossed patterns and textures across the skin, J. Neurosci. Methods 22, 221–231 (1998)

    Article  Google Scholar 

  71. M.A. Salada, J.E. Colgate, P.M. Vishton, E. Frankel: Two experiments on the perception of slip at the fingertip, 12th Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (2004) pp. 472–476

    Google Scholar 

  72. R.J. Webster III, T.E. Murphy, L.N. Verner, A.M. Okamura: A novel two-dimensional tactile slip display: Design, kinematics and perceptual experiment, ACM Trans. Appl. Percept. 2(2), 150–165 (2005)

    Article  Google Scholar 

  73. N.G. Tsagarakis, T. Horne, D.G. Caldwell: SLIP AESTHEASIS: a portable 2D slip/skin stretch display for the fingertip, First Joint Eurohaptics Conf. Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (World Haptics) (2005) pp. 214–219

    Google Scholar 

  74. L. Winfield, J. Glassmire, J. E. Colgate, M. Peshkin: T-PaD: Tactile Pattern Display through Variable Friction Reduction. Second Joint Eurohaptics Conf. Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (World Haptics) (2007) pp. 421-426

    Google Scholar 

  75. K.O. Johnson, J.R. Phillips: Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition, J. Neurophysiol. 46(6), 1177–1192 (1981)

    Google Scholar 

  76. N. Asamura, T. Shinohara, Y. Tojo, N. Koshida, H. Shinoda: Necessary spatial resolution for realistic tactile feeling display, IEEE Int. Conf. Robot. Autom. (2001) pp. 1851–1856

    Google Scholar 

  77. G. Moy, U. Singh, E. Tan, R.S. Fearing: Human psychophysics for teletaction system design, Haptics-e Electron. J. Haptics Res. 1(3) (2000)

    Google Scholar 

  78. W.J. Peine, R.D. Howe: Do humans sense finger deformation or distributed pressure to detect lumps in soft tissue, Proc. ASME Dyn. Syst. Contr. Div. ASME Int. Mech. Eng. Congress Expo., Vol. DSC-64 (1998) pp. 273–278

    Google Scholar 

  79. C.R. Wagner, S.J. Lederman, R.D. Howe: Design and performance of a tactile shape display using RC servomotors, Haptics-e Electron. J. Haptics Res. 3(4) (2004)

    Google Scholar 

  80. K.B. Shimoga: A survey of perceptual feedback issues in dexterous telemanipulation: Part II, Finger touch feedback, Proc. IEEE Virt. Real. Annu. Int. Symp. (1993) pp. 271–279

    Google Scholar 

  81. K.A. Kaczmarek, P. Bach-Y-Rita: Tactile displays. In: Virtual Environments and Advanced Interface Design, ed. by W. Barfield, T.A. Furness (Oxford Univ. Press, Oxford 1995) pp. 349–414

    Google Scholar 

  82. M. Shimojo: Tactile sensing and display, Trans. Inst. Electr. Eng. Jpn. E 122, 465–468 (2002)

    Google Scholar 

  83. S. Tachi: Roles of tactile display in virtual reality, Trans. Inst. Electr. Eng. Jpn. E 122, 461–464 (2002)

    Google Scholar 

  84. P. Kammermeier, G. Schmidt: Application-specific evaluation of tactile array displays for the human fingertip, IEEE/RSJ Int. Conf. Intell. Robot. Syst. Int. Conf. Intell. Robot. Syst. (2002)

    Google Scholar 

  85. S.A. Wall, S. Brewster: Sensory substitution using tactile pin arrays: human factors, technology and applications, Signal Process. 86(12), 3674–3695 (2006)

    Article  MATH  Google Scholar 

  86. J.H. Killebrew, S.J. Bensmaia, J.F. Dammann, P. Denchev, S.S. Hsiao, J.C. Craig, K.O. Johnson: A dense array stimulator to generate arbitrary spatio-temporal tactile stimuli, J. Neurosci. Methods 161(1), 62–74 (2007)

    Article  Google Scholar 

  87. R.D. Howe, W.J. Peine, D.A. Kontarinis, J.S. Son: Remote palpation technology, IEEE Eng. Med. Biol. 14(3), 318–323 (1995)

    Article  Google Scholar 

  88. P.S. Wellman, W.J. Peine, G. Favalora, R.D. Howe: Mechanical design and control of a high-bandwidth shape memory alloy tactile display, Exp. Robot. V 232, 56–66 (1998)

    Article  Google Scholar 

  89. V. Hayward, M. Cruz-Hernandez: Tactile display device using distributed lateral skin stretch, Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (ASME IMECE), Vol. DSC-69-2 (2000) pp. 1309–1314

    Google Scholar 

  90. Q. Wang, V. Hayward: Compact, portable, modular, high-performance, distributed tactile transducer device based on lateral skin deformation, 14th Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (2006) pp. 67–72

    Google Scholar 

  91. Q. Wang, V. Hayward: In vivo biomechanics of the fingerpad skin under local tangential traction, J. Biomech. 40(4), 851–860 (2007)

    Article  Google Scholar 

  92. V. Levesque, J. Pasquero, V. Hayward: Braille display by lateral skin deformation with the STReSS2 tactile transducer, Second Joint Eurohaptics Conf. Symp. Haptic Interf. Virt. Environ. Teleop. Syst. (World Haptics) (2007) pp. 115–120

    Google Scholar 

  93. K. Drewing, M. Fritschi, R. Zopf, M.O. Ernst, M. Buss: First evaluation of a novel tactile display exerting shear force via lateral displacement, ACM Trans. Appl. Percept. 2(2), 118–131 (2005)

    Article  Google Scholar 

  94. K.A. Kaczmarek, J.G. Webster, P. Bach-Y-Rita, W.J. Tompkins: Electrotactile and vibrotactile displays for sensory substitution systems, IEEE Trans. Biomed. Eng. 38, 1–16 (1991)

    Article  Google Scholar 

  95. N. Asamura, N. Yokoyama, H. Shinoda: Selectively stimulating skin receptors for tactile display, IEEE Comput. Graphics Appl. 18, 32–37 (1998)

    Article  Google Scholar 

  96. H.-N. Ho, L.A. Jones: Contribution of thermal cues to material discrimination and localization, Percept. Psychophys. 68, 118–128 (2006)

    Article  Google Scholar 

  97. H.-N. Ho, L.A. Jones: Development and evaluation of a thermal display for material identification and discrimination, ACM Trans. Appl. Percept. 4(2), 118–128 (2007)

    Article  Google Scholar 

  98. D.G. Caldwell, C. Gosney: Enhanced tactile feedback (tele-taction) using a multi-functional sensory system, IEEE Int. Conf. Robot. Autom. (1993) pp. 955–960

    Google Scholar 

  99. D.G. Caldwell, S. Lawther, A. Wardle: Tactile perception and its application to the design of multi-modal cutaneous feedback systems, IEEE Int. Conf. Robot. Autom. (1996) pp. 3215–3221

    Google Scholar 

  100. C.G. Burdea: Force and Touch Feedback for Virtual Reality (Wiley Interscience, New York 1996)

    Google Scholar 

  101. M.C. Lin, M.A. Otaduy (Eds.): Haptic Rendering: Foundations, Algorithms, and Applications (AK Peters, Ltd., London 2008)

    Google Scholar 

  102. V. Hayward, K.E. MacLean: Do it yourself haptics, Part-I, IEEE Robot. Autom. Mag. 14(4), 88–104 (2007)

    Article  Google Scholar 

  103. K.E. MacLean, V. Hayward: Do It Yourself Haptics, Part-II. IEEE Robot Autom Mag, to appear (2008 March issue)

    Google Scholar 

  104. V. Hayward, O.R. Astley, M. Cruz-Hernandez, D. Grant, G. Robles-De-La-Torre: Haptic interfaces and devices, Sensor Rev. 24(1), 16–29 (2004)

    Article  Google Scholar 

  105. K. Salisbury, F. Conti, F. Barbagli: Haptic rendering: introductory concepts, IEEE Comput. Graphics Applicat. 24(2), 24–32 (2004)

    Article  Google Scholar 

  106. V. Hayward, K.E. MacLean: A brief taxonomy of tactile illusions and demonstrations that can be done in a hardware store, Brain Res. Bull. (2007)

    Google Scholar 

  107. G. Robles-De-La-Torre: The importance of the sense of touch in virtual and real environments, IEEE Multimedia 13(3), 24–30 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Blake Hannaford Prof or Allison M. Okamura Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Hannaford, B., Okamura, A.M. (2008). Haptics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics