Skip to main content

Abstract

Materials used in engineering applications as structural components are subject to loads, defined by the application purpose. The mechanical properties of materials characterize the response of a material to loading.

The mechanical loading action on materials in engineering applications may be static or dynamic and can basically be categorized as tension, compression, bending, shear, and torsion. In addition, thermomechanical loading effects can occur, (see Chap. 8 Thermal Properties). There may also be gas loads from the environment, leading to gas/materials interactions (see Chap. 6 Surface and Interface Characterization) and to transport phenomena such as permeation and diffusion.

The mechanical loading action and the corresponding response of materials can be illustrated by the well-known stress–strain curve (for definition see Sect. 7.1.2). Its different regimes and characteristic data points characterize the mechanical behavior of materials treated in this chapter in terms of elasticity (Sect. 7.1), plasticity (Sect. 7.2), hardness (Sect. 7.3), strength (Sect. 7.4), and fracture (Sect. 7.5). Methods for the determination of permeation and diffusion are compiled in Sect. 7.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

ASTM:

American Society for Testing and Materials

ATR:

attenuated total reflection

CG:

conjugate gradient method

CT:

compact tension

DIN:

Deutsches Institut für Normung

FEA:

finite element analysis

FEM:

finite element method

GC:

gas chromatography

HRR:

heat release rate

ISO:

International Organization for Standardization

JIS:

Japanese Standardization Organization

LVDT:

linear variable differential transformer

MEMS:

micro-electromechanical systems

NMI:

National Metrology Institute

NMR:

nuclear magnetic resonance

OA:

operational amplifier

SEM:

scanning electron microscope

TEM:

transmission electron microscope

References

  1. I. S. Sololnikoff: Mathematical Theory of Elasticity (McGraw–Hill, New York 1956)

    Google Scholar 

  2. S. P. Timoshenko: History of Strength of Materials (Dover, New York 1983)

    Google Scholar 

  3. A. E. H. Love: A Treatise on the Mathematical Theory of Elasticity (Dover, New York 1944)

    Google Scholar 

  4. S. P. Timoshenko, J. N. Goodier: Theory of Elasticity, 3rd edn. (McGraw–Hill, London 1982)

    Google Scholar 

  5. G. Galilei: Discorsi e Dimostrazioni Matematiche (Elsevier, Leiden 1636)

    Google Scholar 

  6. R. Hooke: De Potentia Restitutiva (Martyn, London 1678)

    Google Scholar 

  7. E. Mariotte: Traité du Mouvement des Eaux (Michallet, Paris 1686)

    Google Scholar 

  8. T. Young: A Course of Lectures on Natural Philosophy and the Mechanical Arts, Vol. 1 (Johnson, London 1807)

    Google Scholar 

  9. T. Young: A Course of Lectures on Natural Philosophy and the Mechanical Arts, Vol. 2 (Johnson, London 1807)

    Google Scholar 

  10. C. L. M. H. Navier: Résumé des Leçons sur l'Application de la Mécanique, App. 3 (Carilian–Goeury, Paris 1864)

    Google Scholar 

  11. J. S. Smith, M. D. Wyrick, J. M. Poole: An evaluation of three techniques for determining the Young's modulus of mechanically alloyed materials. In: Dynamic Elastic Modulus Measurements in Materials, ASTM STP, Vol. 1045, ed. by A. Wolfenden (American Society Testing and Materials, Philadelphia 1990) pp. 195–206

    Google Scholar 

  12. ASTM E8- 01: Standard Test Methods for Tension Testing of Metallic Materials. In: Annual Book of ASTM Standards (ASTM Int., West Conshohocken 2003)

    Google Scholar 

  13. ASTM E 74: Standard Practice of Calibration of Force-Measuring Instruments for Verifying the Force Indication of Testing Machines. In: Annual Book of ASTM Standards, Vol. 03.01 (ASTM, West Conshohocken 1995)

    Google Scholar 

  14. E4-03: Standard Practices for Force Verification of Testing Machines. In: Annual Book of ASTM Standards, Vol. 03.01 (ASTM, West Conshohocken 1995)

    Google Scholar 

  15. ASTM E 111-04: Standard Test Method for Young's Modulus, Tangent Modulus and Chord Modulus. In: Annual Book of ASTM Standards, Vol. 03.01 (ASTM, West Conshohocken 1995)

    Google Scholar 

  16. ASTM E 132-04: Standard Test Method for Poisson's Ratio at Room Temperature. In: Annual Book of ASTM Standards, Vol. 03.01 (ASTM, West Conshohocken 1995)

    Google Scholar 

  17. ASTM E 143-02: Standard Test Method for Shear Modulus at Room Temperature. In: Annual Book of ASTM Standards, Vol. 03.01 (ASTM, West Conshohocken 1995)

    Google Scholar 

  18. J. W. House, P. P. Gillis: Testing machines and strain sensors. In: ASM Handbook, Mechanical Testing and Evaluation, Vol. 8, ed. by H. Kuhn, D. Medlin (ASM Int., Materials Park 2000)

    Google Scholar 

  19. ASTM E 83: Practice for Verification and Classification of Extensometers. In: Annual Book of ASTM Standards, Vol. 03.01 (ASTM, West Conshohocken 1995)

    Google Scholar 

  20. ASTM D3379-75: Standard Test Method for Tensile Strength and Young's Modulus for High-Modulus Single-Filament Materials. In: Annual Book of ASTM Standards, Vol. 15.01 (ASTM, West Conshohocken 2005)

    Google Scholar 

  21. ASTM D 638-03: Standard Test Method for Tensile Properties of Plastics. In: Annual Book of ASTM Standards, Vol. 08.01 (ASTM, West Conshohocken 2005)

    Google Scholar 

  22. ASTM 882-02: Standard Test Method for Tensile Properties of Thin Plastic Sheeting. In: Annual Book of ASTM Standards, Vol. 08.01 (ASTM, West Conshohocken 2005)

    Google Scholar 

  23. ASTM C 1341-00: Standard Test Method for Flexural Properties of Continuous Fiber-Reinforced Advanced Ceramic Composites. In: Annual Book of ASTM Standards, Vol. 15.01 (ASTM, West Conshohocken 2005)

    Google Scholar 

  24. ASTM C674-88: Standard Test Methods for Flexural Properties of Ceramic Whiteware Material. In: Annual Book of ASTM Standards, Vol. 15.02 (ASTM, West Conshohocken 2006)

    Google Scholar 

  25. STM C 215-02: Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimen. In: Annual Book of ASTM Standards, Vol. 04.02 (ASTM, West Conshohocken 2005)

    Google Scholar 

  26. ASTM 623-92: Standard Test Method for Young's Modulus, Shear Modulus, and Poisson's Ratio for Glass and Glass-Ceramics by Resonance. In: Annual Book of ASTM Standards, Vol. 15.02 (ASTM, West Conshohocken 2006)

    Google Scholar 

  27. ASTM C 747-93: Test Method for Moduli of Elasticity and Fundamental Frequencies of Carbon and Graphite Materials by Sonic Resonance. In: Annual Book of ASTM Standards, Vol. 05.01 (ASTM, West Conshohocken 1998)

    Google Scholar 

  28. ASTM C 848-88: Test Method for Young's Modulus, Shear Modulus, and Poisson's Ratio for Glass and Glass-Ceramics by Resonance. In: Annual Book of ASTM Standards, Vol. 15.02 (ASTM, West Conshohocken 2006)

    Google Scholar 

  29. ASTM C 885-87: Standard Test Method for Young's Modulus of Refractory Shapes by Sonic Resonance. In: Annual Book of ASTM Standards, Vol. 15.01 (ASTM, West Conshohocken 2005)

    Google Scholar 

  30. ASTM C 1198-01: Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio for Advanced Ceramics by Sonic Resonance. In: Annual Book of ASTM Standards, Vol. 15.01 (ASTM, West Conshohocken 2005)

    Google Scholar 

  31. ASTM E 1875: Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Sonic Resonance. In: Annual Book of ASTM Standards, Vol. 03.01 (ASTM, West Conshohocken 1995)

    Google Scholar 

  32. ASTM E 1876-01: Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration. In: Annual Book of ASTM Standards, Vol. 03.01 (ASTM, West Conshohocken 1995)

    Google Scholar 

  33. J. M. Ide: Some dynamic methods of determination of Young's modulus, Rev. Sci. Instrum. 6, 296–98 (1935)

    Google Scholar 

  34. F. Forster: Ein neues Messverfahren zur Bestimmung des Elastizitatsmoduls und der Dampfung, Zeit. Metallk. 29, 109–115 (1937)

    Google Scholar 

  35. C1419-99a: Standard Test Method for Sonic Velocity in Refractory Materials at Room Temperature and Its Use in Obtaining an Approximate Young's Modulus. In: Annual Book of ASTM Standards, Vol. 15.01 (ASTM, West Conshohocken 2005)

    Google Scholar 

  36. W. E. Tefft: Numerical solution of the frequency equations for the flexural vibration of cylindrical rods, J. Res. Bur. Std. 64b, 237–242 (1960)

    Google Scholar 

  37. R. E. Smith, H. E. Hagy: A low temperature sonic resonance apparatus for determining elastic properties of solids. In: Int. Rep., Vol. 2195 (Corning Glass Works, Corning 1961)

    Google Scholar 

  38. J. B. Wachtman, Jr., W. W. Tefft, D. G. Lam, Jr., C. S. Apstein: Exponential temperature dependence of Young's modulus for several oxides, Phys. Rev. 122, 1754 (1961)

    CAS  Google Scholar 

  39. A. H. Cottrell: Mechanical Properties of Matter (Wiley, New York 1964)

    Google Scholar 

  40. J. L. Hay, G. M. Pharr: Instrumented indentation testing. In: ASM Handbook, Mechanical Testing and Evaluation, Vol. 8, ed. by H. Kuhn, D. Medlin (ASM Int., Materials Park 2000)

    Google Scholar 

  41. A. C. Fischer-Crips: Nanoindentation (Springer, Berlin/Heidelberg 2002)

    Google Scholar 

  42. A. E. H. Love: Boussenisq's problem for a rigid cone, J. Math. 10, 161–175 (1939)

    Google Scholar 

  43. I. N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3, 47–56 (1965)

    Google Scholar 

  44. S. I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov, A. P. Ternovskii, G. D. Shnyrev: Determining Young's modulus from the indenter penetration diagram, Zavod. Lab. 41, 1137–1140 (1975)

    CAS  Google Scholar 

  45. W. C. Oliver, G. M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564–1583 (1992)

    CAS  Google Scholar 

  46. R. Hill: The Mathematical Theory of Plasticity (Oxford Univ. Press, Oxford 1950)

    Google Scholar 

  47. W. F. Chen, D. J. Han: Plasticity for Structural Engineers (Gau Lih Book, Taipei 1995)

    Google Scholar 

  48. R. deWit: Theory of dislocations: An elementary introduction. In: Mechanical Behavior of Crystalline Solids, NBS Monogr., Vol. 59, ed. by R. deWit (US Printing Office, Washington 1962) pp. 13–34

    Google Scholar 

  49. E. R. Parker: Plastic flow and fracture of crystalline solids. In: Mechanical Behavior of Crystalline Solids, NBS Monogr., Vol. 59, ed. by R. deWit (US Printing Office, Washington, D.C 1962) pp. 1–12

    Google Scholar 

  50. H. J. Frost, M. F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon, New York 1982)

    Google Scholar 

  51. F. D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter: A new view on transformation induced plasticity (TRIP), Int. J. Plasticity 16(7), 723–748 (2000)

    CAS  Google Scholar 

  52. O. Grassel, L. Krüger, G. Frommeyer, L. W. Meyer: High strength Fe-Mn-(Al,Si) TRIP/TWIP steel development – properties – applications, Int. J. Plasticity 16(10), 1391–1409 (2000)

    CAS  Google Scholar 

  53. K. H. Roscoe, J. H. Burland: On the generalized stress strain behavior of wet clay. In: Engineering Plasticity, ed. by J. Heyman, F. A. Leckie (Cambridge Univ. Press, Cambridge 1968) pp. 585–609

    Google Scholar 

  54. A. H. Cottrell: Dislocations and Plastic Flow in Crystals (Oxford Univ. Press, London 1965)

    Google Scholar 

  55. E. Orowan, private communication (1972)

    Google Scholar 

  56. R. W. K. Honeycomb: The Plastic Deformation of Metals (Edward Arnold, London 1968)

    Google Scholar 

  57. L. E. Levine (ed): Dislocations 2000: An International Conference on the Fundamentals of Plastic Deformation, Mater. Sci. Eng. A 309, 1–284 (2001)

    Google Scholar 

  58. L. E. Levine (ed): Dislocations 2000: An International Conference on the Fundamentals of Plastic Deformation, Mater. Sci. Eng. A 310, 285–567 (2001)

    Google Scholar 

  59. A. S. Khan (ed.): Dislocations, Plasticity, and Metal Forming: Proc. 10th Int. Symp. Plasticity and Its Current Applications (Neat, Fulton 2003)

    Google Scholar 

  60. L. E. Levine, R. Thomson: The statistical origin of bulk mechanical properties and slip behavior of fcc metals, Mater. Sci. Eng. A 400, 202 (2005)

    Google Scholar 

  61. P. W. Bridgman: Studies in Large Plastic Flow and Fracture (McGraw–Hill, New York 1952)

    Google Scholar 

  62. ISO 14577: Metallic Materials – Instrumented Indentation Test for Hardness and Materials Parameters (International Organization for Standardization (ISO), Geneva 2002)

    Google Scholar 

  63. ASTM E8: Standard Test Methods of Tension Testing Metallic Materials (ASTM Int., West Conshohocken 2004)

    Google Scholar 

  64. ISO 6892: Metallic Materials – Tensile Testing at Ambient Temperatures (International Organization for Standardization (ISO), Geneva 1998)

    Google Scholar 

  65. DIN EN 10002-1: Metallic Materials – Tensile Testing – Part 1: Method of Testing at Ambient Temperature (Deutsches Institut für Normung (DIN), Berlin 2001)

    Google Scholar 

  66. JIS Z 2241: Method of Tensile Test for Metallic Materials (Japanese Standards Association, Tokyo 1998)

    Google Scholar 

  67. BS 18: Methods for Tensile Testing of Metallic Materials (British Standards Institute (BSI), London 1987)

    Google Scholar 

  68. ASTM E 8M: Standard Test Methods for Tension Testing of Metallic Materials (ASTM Int., West Conshohocken 2004)

    Google Scholar 

  69. SAE J416: Tensile Test Specimens (Society for Automotive Engineers (SAE International), Warrendale 1999)

    Google Scholar 

  70. ASTM A 370: Standard Test Methods and Definitions for Mechanical Testing of Steel Products (ASTM Int., West Conshohocken 2005)

    Google Scholar 

  71. ASTM B557: Standard Test Methods of Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (ASTM Int., West Conshohocken 2002)

    Google Scholar 

  72. ASTM E 345: Standard Test Methods of Tension Testing of Metallic Foil (ASTM Int., West Conshohocken 2002)

    Google Scholar 

  73. ASTM E 646: Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet (ASTM Int., West Conshohocken 2000)

    Google Scholar 

  74. ISO 10275: Metallic Materials – Sheet and Strip – Determination of Tensile Strain Hardening Exponent (International Organization for Standardization (ISO), Geneva 1993)

    Google Scholar 

  75. NF A03-659: Method of Determination of the Coefficient of Work Hardening N of Sheet Steels (Association Francaise de Normalisation (AFNOR), Saint-Denis La Plaine Cedex 2001)

    Google Scholar 

  76. ASTM E 517: Standard Test Method for Plastic Strain Ratio r for Sheet (ASTM Int., West Conshohocken 2000)

    Google Scholar 

  77. NF A03-658: Method of Determination of the Plastic Anisotropic Coefficient R of Sheet Steels (Association Francaise de Normalisation (AFNOR), Saint-Denis La Plaine Cedex 2001)

    Google Scholar 

  78. SAE J429: Mechanical and Material Requirements for Externally Threaded Fasteners (Society for Automotive Engineers (SAE International), Warrendale 1999)

    Google Scholar 

  79. ASTM F 606: Standard Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, and Rivets (ASTM Int., West Conshohocken 2002)

    Google Scholar 

  80. ISO 898: Mechanical Properties of Fasteners (International Organization for Standardization (ISO), Geneva 1999)

    Google Scholar 

  81. ASTM D638: Standard Test Method for Tensile Properties of Plastics (ASTM Int., West Conshohocken 2003)

    Google Scholar 

  82. ASTM D882: Standard Test Method for Tensile Properties of Thin Plastic Sheeting (ASTM Int., West Conshohocken 2002)

    Google Scholar 

  83. ASTM D1708: Standard Test Method for Tensile Properties of Plastics By Use of Microtensile Specimens (ASTM Int., West Conshohocken 2002)

    Google Scholar 

  84. ASTM E 4: Standard Practices for Force Verification of Testing Machines (ASTM Int., West Conshohocken 2003)

    Google Scholar 

  85. ASTM E 83: Standard Practice for Verification and Classification of Extensometers (ASTM Int., West Conshohocken 2002)

    Google Scholar 

  86. G. R. Johnson, W. H. Cook: A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures, Proc. 7th Int. Symp. Ballistics, 541 (1983)

    Google Scholar 

  87. S. R. Bodner, Y. Partom: Constitutive equations for elasto-viscoplastic strain-hardening materials, ASME J. Appl. Mech. 42, 385 (1975)

    Google Scholar 

  88. U. F. Kocks, A. S. Argon, M. F. Ashby: Thermodynamics and Kinetics of Slip (Pergamon, Oxford 1975)

    Google Scholar 

  89. ASTM E 1450: Standard Test Method for Tensile Testing of Structural Alloys in Liquid Helium (ASTM Int., West Conshohocken 2003)

    Google Scholar 

  90. ISO/DIN 19819: Metallic Materials – Tensile Testing in Liquid Helium (International Organization for Standardization (ISO), Geneva 2004)

    Google Scholar 

  91. ISO 15579: Metallic Materials – Tensile Testing at Low Temperatures (International Organization for Standardization (ISO), Geneva 2000)

    Google Scholar 

  92. ASTM E 21: Elevated Temperature Tension Testing of Metallic Materials (ASTM Int., West Conshohocken 2005)

    Google Scholar 

  93. DIN EN 10002-5: Tensile Testing of Metallic Materials, Method of Testing at Elevated Temperature (Deutsches Institut für Normung (DIN), Berlin 2001)

    Google Scholar 

  94. JIS G 0567: Method of Elevated Temperature Tensile Test for Steels and Heat-Resisting Alloys (Japanese Standards Association, Tokyo 1998)

    Google Scholar 

  95. ASTM E 633: Standard Guide for the Use of Thermocouples in Creep and Stress Rupture Testing to 1800 °F (1000 °C) (ASTM Int., West Conshohocken 2005)

    Google Scholar 

  96. ASTM E 139: Conducting Creep, Creep Rupture, and Stress Rupture Tests of Metallic Materials (ASTM Int., West Conshohocken 2000)

    Google Scholar 

  97. ASTM E 328: Stress Relaxation for Materials and Structures (ASTM Int., West Conshohocken 2002)

    Google Scholar 

  98. DIN EN 10291: Metallic Materials – Uniaxial Creep Testing in Tension – Method of Test (Deutsches Institut für Normung (DIN), Berlin 2005)

    Google Scholar 

  99. DIN EN 10319: Metallic Materials – Tensile Stress Relaxation Testing (Deutsches Institut für Normung (DIN), Berlin 2005)

    Google Scholar 

  100. ISO 204: Metallic Materials – Uninterrupted Uniaxial Creep Testing in Tension – Method of Test (International Organization for Standardization (ISO), Geneva 1997)

    Google Scholar 

  101. JIS Z 2271: Method of Creep and Creep Rupture Testing for Metallic Materials (Japanese Standards Association, Tokyo 1999)

    Google Scholar 

  102. ASTM C 1337: Standard Test Method for Creep and Creep Rupture of Continuous Fiber-Reinforced Ceramic Composites under Tensile Loading at Elevated Temperatures (ASTM Int., West Conshohocken 2005)

    Google Scholar 

  103. ASTM C 1291: Standard Test Method for Elevated Temperature Tensile Creep Strain, Creep Strain Rate, and Creep Time-to-Failure for Advanced Monolithic Ceramics (ASTM Int., West Conshohocken 2005)

    Google Scholar 

  104. ISO 899-1: Plastics – Determination of Creep Behavior – Part 1. Tensile Creep (International Organization for Standardization (ISO), Geneva 2003)

    Google Scholar 

  105. JIS K 7115: Plastics – Determination of Creep Behavior – Part 1. Tensile Creep (Japanese Standards Association, Tokyo 1999)

    Google Scholar 

  106. ISO 7500-2: Metallic Materials – Verification of Static Uniaxial Testing Machines – Part 2: Tension Creep Testing Machines – Verification of the Applied Load (International Organization for Standardization (ISO), Geneva 1996)

    Google Scholar 

  107. L. M. T. Hopkin: A simple constant stress apparatus for creep testing, Proc. R. Soc. B63, 346–349 (1950)

    Google Scholar 

  108. R. B. Grishaber, R. H. Lu, D. M. Farkas, A. K. Mukherjee: A novel computer controlled constant stress lever arm creep testing machine, Rev. Sci. Instrum. 68(7), 2812–2817 (1997)

    CAS  Google Scholar 

  109. A. K. Mukherjee: Deformation Mechanisms in Superplasticity, Ann. Rev. Mater. Sci. 9, 191–217 (1979)

    CAS  Google Scholar 

  110. JIS H 7501: Method for Evaluation of Tensile Properties of Metallic Superplastic Materials (Japanese Standards Association, Tokyo 2002)

    Google Scholar 

  111. ISO 10113: Metallic Materials - Sheet and Strip - Determination of Plastic Strain Ratio (International Organization for Standardization (ISO), Geneva 1991)

    Google Scholar 

  112. ASTM E 9: Standard Test Methods for Compression Testing of Metallic Materials at Room Temperature (ASTM Int., West Conshohocken 2000)

    Google Scholar 

  113. ASTM E 209: Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates (ASTM Int., West Conshohocken 2005)

    Google Scholar 

  114. DIN 50106: Testing of Metallic Materials – Compression Test (Deutsches Institut für Normung (DIN), Berlin 2005)

    Google Scholar 

  115. DIN EN 12290: Advanced Technology Ceramics – Mechanical Properties of Ceramic Composites at High Temperature in Air at Atmospheric Pressure – Determination of Compressive Properties (Deutsches Institut für Normung (DIN), Berlin 2005)

    Google Scholar 

  116. ISO 604: Plastics – Determination of Compressive Properties (International Organization for Standardization (ISO), Geneva 2002)

    Google Scholar 

  117. JIS K 7132: Cellular Plastics, Rigid – Determination of Compressive Creep under Specified Load and Temperature Conditions (Japanese Standards Association, Tokyo 1999)

    Google Scholar 

  118. JIS K 7135: Cellular Plastics, Rigid – Determination of Compressive Creep (Japanese Standards Association, Tokyo 1999)

    Google Scholar 

  119. ASTM B831: Standard Test Method for Shear Testing of Thin Aluminum Alloy Products (ASTM Int., West Conshohocken 2005)

    Google Scholar 

  120. ASTM B769: Standard Test Method for Shear Testing of Aluminum Alloys (ASTM Int., West Conshohocken 2000)

    Google Scholar 

  121. ASTM B565: Standard Test Method for Shear Testing of Aluminum and Aluminum-Alloy Rivets and Cold-Heading Wire and Rod (ASTM Int., West Conshohocken 2004)

    Google Scholar 

  122. DIN 50141: Testing of Metals: Shear Test (Deutsches Institut für Normung (DIN), Berlin 2005)

    Google Scholar 

  123. DIN EN 4525: Aerospace Series – Aluminium and Aluminium Alloys – Test Method; Shear Testing (Deutsches Institut für Normung (DIN), Berlin 2005)

    Google Scholar 

  124. DIN EN 28749: Determination of Shear Strength of Pins (Deutsches Institut für Normung (DIN), Berlin 1986)

    Google Scholar 

  125. ISO 7961: Aerospace – Bolts – Test Methods (International Organization for Standardization (ISO), Geneva 1994)

    Google Scholar 

  126. ISO 84749: Pins and Grooved Pins – Shear Test (International Organization for Standardization (ISO), Geneva 2005)

    Google Scholar 

  127. ASTM E 143: Std. Test Method for Shear Modulus at Room Temperature (ASTM Int., West Conshohocken 2002)

    Google Scholar 

  128. ASTM A 938: Std. Test Method for Torsion Testing of Wires (ASTM Int., West Conshohocken 2004)

    Google Scholar 

  129. ISO 7800: Metallic Materials – Wire – Simple Torsion Test (International Organization for Standardization (ISO), Geneva 2003)

    Google Scholar 

  130. ISO 9649: Metallic Materials – Wire – Reverse Torsion Test (International Organization for Standardization (ISO), Geneva 1990)

    Google Scholar 

  131. A. Nadai: Theory of Flow and Fracture of Solids, Vol. 1, 2nd edn. (McGraw–Hill, New York 1950) pp. 347–349

    Google Scholar 

  132. ASTM F1622: Standard Test Method for Measuring the Torsional Properties of Metallic Bone Screws (ASTM Int., West Conshohocken 2005)

    Google Scholar 

  133. ASTM E290: Standard Test Method for Bend Testing of Materials for Ductility (ASTM Int., West Conshohocken 2004)

    Google Scholar 

  134. ASTM E190: Standard Test Method for Guided Bend Test for Ductility of Welds (ASTM Int., West Conshohocken 2003)

    Google Scholar 

  135. ASTM E796: Standard Test Method for Ductility Testing of Metallic Foils (ASTM Int., West Conshohocken 2000)

    Google Scholar 

  136. ISO 7438: Metallic Materials – Bend Test (International Organization for Standardization (ISO), Geneva 2005)

    Google Scholar 

  137. ISO 7799: Metallic Materials – Sheet and Strip 3mm Thick or Less – Reverse Bend Test (International Organization for Standardization (ISO), Geneva 1985)

    Google Scholar 

  138. ISO 7801: Metallic Materials – Wire – Reverse Bend Test (International Organization for Standardization (ISO), Geneva 1984)

    Google Scholar 

  139. ISO 7802: Metallic Materials – Wire – Wrapping Test (International Organization for Standardization (ISO), Geneva 1983)

    Google Scholar 

  140. ISO 8491: Metallic Materials – Tube (in full section) – Bend Test (International Organization for Standardization (ISO), Geneva 1998)

    Google Scholar 

  141. DIN V ENV 820-4: Advanced Technical Ceramics – Monolithic Ceramics; Thermo-mechanical Properties – Part 4: Determination of Flexural Creep Deformation at Elevated Temperatures (Deutsches Institut für Normung (DIN), Berlin 2005)

    Google Scholar 

  142. ISO 899-2: Plastics – Determination of Creep Behaviour – Part 2: Flexural Creep by Three-Point Loading (International Organization for Standardization (ISO), Geneva 2003)

    Google Scholar 

  143. JIS K 7116: Plastics – Determination of Creep Behaviour – Part 2: Flexural Creep by Three-Point Loading (Japanese Standards Association, Tokyo 1999)

    Google Scholar 

  144. ASTM E 643: Standard Test Method for Ball Punch Deformation of Metallic Sheet Materials (ASTM Int., West Conshohocken 2003)

    Google Scholar 

  145. ASTM E 2218: Standard Test Method for Determination of Forming Limit Diagrams (ASTM Int., West Conshohocken 2002)

    Google Scholar 

  146. ISO 20482: Metallic Materials – Sheet and Strip – Erichsen Cupping Test (International Organization for Standardization (ISO), Geneva 2003)

    Google Scholar 

  147. ISO 12004: Metallic Materials – Guidelines for the Determination of Forming-Limit Diagrams (International Organization for Standardization (ISO), Geneva 1997)

    Google Scholar 

  148. ISO 8492: Metallic Materials – Tube – Flattening Test (International Organization for Standardization (ISO), Geneva 1998)

    Google Scholar 

  149. ISO 8493: Metallic Materials – Tube – Drift-expanding Test (International Organization for Standardization (ISO), Geneva 1998)

    Google Scholar 

  150. ISO 8494: Metallic Materials – Tube – Flanging Test (International Organization for Standardization (ISO), Geneva 1998)

    Google Scholar 

  151. ISO 8495: Metallic Materials – Tube – Ring-Expanding Test (International Organization for Standardization (ISO), Geneva 1998)

    Google Scholar 

  152. ISO 8496: Metallic Materials – Tube – Ring Tensile Test (International Organization for Standardization (ISO), Geneva 1998)

    Google Scholar 

  153. ISO 11531: Metallic Materials – Earing Test (International Organization for Standardization (ISO), Geneva 1994)

    Google Scholar 

  154. ISO 15363: Metallic Materials – Tube Ring Hydraulic Pressure Test (International Organization for Standardization (ISO), Geneva 2000)

    Google Scholar 

  155. ISO/TS 16630: Metallic Materials – Method of Hole Expanding Test (International Organization for Standardization (ISO), Geneva 2003)

    Google Scholar 

  156. JIS H 7702: Method for Springback Evaluation in Stretch Bending of Aluminium Alloy Sheets for Automotive Use (Japanese Standards Association, Tokyo 2003)

    Google Scholar 

  157. M. Y. Demeri, M. Lou, M. J. Saran: A Benchmark Test for Springback Simulation in Sheet Metal Forming, SAE Techn. Paper No. 2000-01-2657 (Society Automotive Engineers (SAE Int.), Warrendale 2000)

    Google Scholar 

  158. R. J. Fields, T. J. Foecke, R. deWit, G. E. Hicho, L. E. Levine: Standard Test Methods and Data for Modeling Crashworthiness, NIST Rep. No. NISTIR 6236 (U.S. National Institute of Standards and Technology, Gaithersburg 1998)

    Google Scholar 

  159. A. Uenishi, H. Yoshida, Y. Kuriyama, M. Takahashi: Material characterization at high strain rates for optimizing car body structures for crash events, Nippon Steel Tech. Rep. 88, 22–26 (July 2003)

    Google Scholar 

  160. Y. Sakumoto, T. Yamaguchi, M. Ohashi, H. Saito: High-temperature properties of fire-resistant steel for buildings, ASCE J. Struct. Eng. 118(2), 392–407 (1992)

    Google Scholar 

  161. U. F. Kocks: Laws for work-hardening and low-temperature creep, J. Eng. Mater. Technol. Trans. AIME 98, 76–85 (1976)

    CAS  Google Scholar 

  162. U. F. Kocks, M. G. Stout: Torsion testing for general constitutive relations, Model. Simul. Mater. Sci. Eng. 7, 675–682 (1999)

    CAS  Google Scholar 

  163. T. Foecke, M. A. Iadicola: Direct measurement of multiaxial yield loci as a function of plastic strain, Amer. Inst. Physics Conf. Proc. 118, 388 (2005)

    Google Scholar 

  164. V. E. Lysaght: Indentation Hardness Testing (Reinhold, New York 1949)

    Google Scholar 

  165. VDI/VDE 2616: Hardness Testing of Metallic Materials, Part 1 (VDI, Düsseldorf 2002)

    Google Scholar 

  166. A. Wehrstedt: Situation of standardization in the field of hardness testing of metals, ASTM J. Test. Eval. 23(6), 405–407 (1998)

    Google Scholar 

  167. A. Wehrstedt: Situation of standardization in the field of hardness testing of metals. In: Proc. Int. Symp. Advances in Hardness Measurement, ed. by Standards Press of China (IMEKO, Beijing 1998)

    Google Scholar 

  168. ASTM E 10 – 01: Standard Test Method for Brinell Hardness of Metallic Materials (ASTM, West Conshohocken 2003)

    Google Scholar 

  169. ISO 6506-1: Metallic Materials – Brinell Hardness Test – Part 1, Test Method (ASTM International Organization for Standardization, Geneva 2005)

    Google Scholar 

  170. ASTM E 18 – 03: Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials (ASTM Int., West Conshohocken 2003)

    Google Scholar 

  171. ISO 6508-1: Metallic Materials – Rockwell Hardness Test – Part 1, Test Method (scales A, B, C, D, E, F, G, H, K, N, T) (International Organization for Standardization, Geneva 2005)

    Google Scholar 

  172. ASTM E92 - 82: e2 Standard Test Method for Vickers Hardness of Metallic Materials (ASTM Int., West Conshohocken 2003)

    Google Scholar 

  173. ASTM E 384 – 99: e1 Standard Test Method for Microindentation Hardness of Materials (ASTM Int., West Conshohocken 2003)

    Google Scholar 

  174. ISO 6507-1: Metallic Materials – Vickers Hardness Test – Part 1, Test Method (International Organization for Standardization, Geneva 2005)

    Google Scholar 

  175. S. Low: Rockwell Hardness Measurement of Metallic Materials, NIST Recommended Practice Guide, Spec. Pub. (NIST, Gaithersbourg 2001) pp. 960–5

    Google Scholar 

  176. H. Bückle: Mikrohärteprüfung und ihre Anwendung (Berliner Union, Stuttgart 1965) (Note: very extensive)

    Google Scholar 

  177. H. Bückle: Echte und scheinbare Fehlerquellen bei der Mikrohärteprüfung: Ihre Klassifizierung und Auswirkung auf die Messwerte, VDI-Ber. 11, 29–43 (1957)(Note: extensive)

    Google Scholar 

  178. D. Dengel: Wichtige Gesichtspunkte für die Härtemessung nach Vickers und nach Knoop im Bereich der Kleinlast- und Mikrohärte, Z. Werkstofftech. 4, 292–298 (1973)(Note: short extract)

    Google Scholar 

  179. E. Matthaei: Härteprüfung mit kleinen Prüfkräften und ihre Anwendung bei Randschichten (DGM-Informationsgesellschaft, Oberursel 1987) (Note: overall view of sources)

    Google Scholar 

  180. ISO 4545-1: Metallic Materials – Knoop Hardness Test (International Organization for Standardization, Geneva 2005)

    Google Scholar 

  181. ISO: Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva 1993)

    Google Scholar 

  182. EA 10-16: Guidelines on the Estimation of Uncertainty in Hardness Measurements (European Cooperation for Accreditation of Laboratories, Paris 2001)

    Google Scholar 

  183. ISO 14577-1: Metallic Materials – Instrumented Indentation Test for Hardness and Materials Parameters – Part 1: Test Method (International Organization for Standardization, Geneva 2002)

    Google Scholar 

  184. H.-R. Wilde, A. Wehrstedt: Martens hardness HM – An international accepted designation for "Hardness under test force", Z. Materialp. 42, 468–470 (2000)

    Google Scholar 

  185. E. Meyer: Untersuchungen über Härteprüfung und Härte, Z. Ver. Dtsch. Ing. 52, 645–654 (1908)

    CAS  Google Scholar 

  186. I. N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitary profile, Int. J. Eng. Sci. 3, 47–57 (1965)

    Google Scholar 

  187. J. E. Field, R. H. Telling: The Young Modulus and Poisson Ratio of Diamond, Res. Note (PCS Cavendish Lab., Cambridge 1999)

    Google Scholar 

  188. C. Heermant, D. Dengel: Zur Abschätzung 'klassischer' Werkstoffkennwerte mittels Universalhärteprüfung, Z. Materialp. 38, 374–378 (1996)

    CAS  Google Scholar 

  189. H.-H. Behncke: Bestimmung der Universalhärte und anderer Kennwerte an dünnen Schichten, insbesondere Hartstoffschichten, Härt.-Tech. Mitteil. HTM 48, 3–10 (1993)

    Google Scholar 

  190. P. Grau, Ch. Ullner, H.-H. Behncke: Uncertainty of depth sensing hardness, Z. Materialp. 39, 362–367 (1997)

    CAS  Google Scholar 

  191. M. F. Doerner, W. D. Nix: A method for interpreting the data from depth sensing indentation instruments, J. Mater. Res. 1, 601–609 (1986)

    Google Scholar 

  192. M. Petzold, C. Hagendorf, M. Füting, J. M. Olaf: Scanning force microscopy of indenter tips and hardness indentations, VDI Ber. 1194, 79 (1995)

    Google Scholar 

  193. C. Trindade, A. Cavaleiro, J. V. Fernandes: Estimation of Young's modulus and of hardness by ultra-low load hardness tests with a Vickers indenter, ASTM J. Test. Eval. 22, 365–369 (1994)

    CAS  Google Scholar 

  194. K. Hermann, N. M. Jennett, W. Wegener, J. Meneve, K. Hasche, R. Seemann: Progress in determination of the area function of indenters used for nanoindentation, Thin Solid Films 377-378, 394–400 (2000)

    Google Scholar 

  195. R. B. King: Elastic analysis of some punch problems for a layered medium, Int. J. Solids Struct. 23, 1657–1664 (1987)

    Google Scholar 

  196. A. Wehrstedt, Ch. Ullner: Standardization of the instrumented indentation test – Historical development and comments, Z. Materialp. 46, 106–112 (2004)

    Google Scholar 

  197. A. Bolshakov, G. M. Pharr: Influences of pile-up and the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res. 13, 1049–1058 (1998)

    CAS  Google Scholar 

  198. N. J. McCormick, M. G. Gee, D. J. Hall: The calibration of the nanoindenter, Mater. Res. Soc. Symp. Proc. 308, 195–200 (1993)

    CAS  Google Scholar 

  199. T. Chudoba, F. Richter: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results, Surf. Coat. Technol. 148(2/3), 191–198 (2001)

    CAS  Google Scholar 

  200. N. Schwarzer, F. Richter, G. Hecht: Elastic field in a coated half space under Hertzian pressure distribution, Surf. Coat. Technol. 114, 292 (1999)

    CAS  Google Scholar 

  201. ISO 4516: Metallic and Other Inorganic Coatings – Vickers and Knoop Microhardness Tests (International Standardization Organisation, Geneva 2002)

    Google Scholar 

  202. ASTM D-1474: Indentation Hardness of Organic Coatings (ASTM Int., West Conshohocken 2003)

    Google Scholar 

  203. W. C. Oliver, G. M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7(6), 1564–1583 (1992)

    CAS  Google Scholar 

  204. ISO 14577-2: Metallic Materials – Instrumented Indentation Test for Hardness and Materials Parameters – Part 2: Vericfication and Calibration of Testing Machines (International Organisation for Standardization, Geneva 2002)

    Google Scholar 

  205. ISO 14577-3: Metallic Materials – Instrumented Indentation Test for Hardness and Materials Parameters – Part 3: Calibration of Reference Blocks (International Organisation for Standardization, Geneva 2002)

    Google Scholar 

  206. Y. Tomota: Ferrum 4, 536–542 (1999) (in Japanese)

    CAS  Google Scholar 

  207. P. W. Bridgeman: Studies in Large Plastic Flow and Fracture (Harvard Univ. Press, London 1964)

    Google Scholar 

  208. D. Tabor: The Hardness of Metals (Clarendon, Oxford 1951)

    Google Scholar 

  209. T. Yoshizawa: Hardness Test and Application (Shokabo, Tokyo 1967) (in Japanese)

    Google Scholar 

  210. K. Hirukawa, S. Matuoka, Y. Furuya, K. Miyahara: Nano-scaled strength analysis of a tempered martensite, Trans. Jpn. Soc. Mech. Eng. A 68, 1473–1478 (2002)

    CAS  Google Scholar 

  211. G. I. Taylor, H. Quinney: The plastic deformation of metals, Philos. Trans. R. Soc. A 230, 323–362 (1931)

    Google Scholar 

  212. Y. Murakami: Strength of Materials (Morikita Syuppan, Tokyo 1994)

    Google Scholar 

  213. C.-H. Park: Effect of solution hardening on high speed deformation for ferritic steels, Z. Metallk. 94, 53–59 (2003)

    CAS  Google Scholar 

  214. Y. Tomota: Deformation and Fracture at High Strain Rates for Aluminum Alloys, Seminar Textbook (Inst. Light Metals, Toyohashi 2003) (in Japanese)

    Google Scholar 

  215. T. Abe, Y. Furuya, S. Matuoka: 1010 cycles fatigue properties for a series of SUP 7 spring steels, Trans. Jpn. Soc. Mech. Eng. A 696, 1050–1959 (2004)

    Google Scholar 

  216. F. Erdogan: Materials for Mechanical Engineering (Soc. Mater. Sci. Jpn., Kyoto 1993)

    Google Scholar 

  217. P. C. Paris, F. Erdogan: A critical analysis of crack propagation laws, Trans. Am. Soc. Mech. Eng. D 85, 528–534 (1963)

    CAS  Google Scholar 

  218. H. J. Frost, M. F. Ashby: Deformation Mechanism Map (Pergamon, New York 1982)

    Google Scholar 

  219. Y. Tomota: Strength of steels at room temperature, Bull. Iron Steel Inst. Jpn. (Ferrum) 4, 536–542 (1999)

    CAS  Google Scholar 

  220. J. E. Bailey, P. B. Hirsch: The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver, Philos. Mag. 4, 85 (1960)

    Google Scholar 

  221. W. C. Leslie: The Physical Metallurgy of Steels (McGraw–Hill, New York 1985)

    Google Scholar 

  222. E. O. Hall: The deformation and aging of mild steel, Proc. R. Soc. (London) B 64, 47–53 (1951)

    Google Scholar 

  223. N. J. Petch: The cleavage strength of polycrystals, J. Iron Steel Inst. 174, 25–28 (1953)

    CAS  Google Scholar 

  224. T. Fujita, Y. Yamada: SCC and HE of iron base alloys. In: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys NACE-5, ed. by R. W. Staehle, J. Hochmann, R. D. McCright, J. E. Slater (Nat. Assoc. Corrosion Engineers, Houston 1977) p. 736

    Google Scholar 

  225. JIS Standard: Testing Methods of Bonding Strength of Adhesive (Japanese Standards Association, Tokyo 1999)

    Google Scholar 

  226. J. Onuki: Semiconductor Materials (Uchidaroho, Tokyo 2004) (in Japanese)

    Google Scholar 

  227. Jpn. Soc. Composite Materials (ed): Handbook of Composite Materials (Kohichido, Tokyo 1989)

    Google Scholar 

  228. H. M. Westergaard: Bearing pressures and cracks, J. Appl. Mech. 6, 49–53 (1939)

    Google Scholar 

  229. G. R. Irwin: Analysis of stresses and strains near the end of a crack traversing a plane, J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  230. M. L. Williams: On the stress distribution at the base of a stationary crack, J. Appl. Mech. 24, 109–114 (1957)

    Google Scholar 

  231. ASTM E 399-90: Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials (American Society for Testing and Materials, Philadelphia 1990)

    Google Scholar 

  232. J. W. Hutchinson: Singular behavior at the end of a tensile crack tip in a hardening material, J. Mech. Phys. Solids 16, 13–31 (1968)

    Google Scholar 

  233. J. R. Rice, G. F. Rosengren: Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids 16, 1–12 (1968)

    Google Scholar 

  234. T. L. Anderson: Fracture Mechanics – Fundamentals and Applications, 2nd edn. (CRC, Boca Raton 1995)

    Google Scholar 

  235. A. A. Wells: Application of fracture mechanics at and beyond general yielding, Brit. Welding J. 10, 563–570 (1963)

    Google Scholar 

  236. ASTM E 1820-99: Standard Test Method for Measurement of Fracture Toughness (American Society for Testing and Materials, Philadelphia 1990)

    Google Scholar 

  237. BS 7448-1997: Fracture Mechanics Test, Part I: Method for Determination of K Ic , Critical CTOD and Critical J Values of Metallic Materials (British Standard Institution, London 1997)

    Google Scholar 

  238. ISO 12737: Metallic Materials – Determination of Plane-Strain Fracture Toughness (International Organization for Standardization, Geneva 1996)

    Google Scholar 

  239. ISO 12135: Metallic Materials – Unified Method of Test for the Determination of Quasistatic Fracture Toughness (International Organization for Standardization, Geneva 1996)

    Google Scholar 

  240. ASTM E 813-81: Standard Test Method for J Ic , A Measure of Fracture Toughness (American Society for Testing and Materials, Philadelphia 1981)

    Google Scholar 

  241. ASTM E 1152-87: Standard Test Method for Determining J –R Curves (American Society for Testing and Materials, Philadelphia 1987)

    Google Scholar 

  242. ASTM E 1290-02: Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement (American Society for Testing and Materials, Philadelphia 2002)

    Google Scholar 

  243. WES 1108-1995: Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement (Japan Welding Engineering Society, Tokyo 1995)

    Google Scholar 

  244. D. P. Fairchild: Fracture toughness testing of weld heat-affected zones in structural steel. In: ASTM STP, Vol. 1058 (American Society of Testing and Materials, Philadelphia 1990) pp. 117–141

    Google Scholar 

  245. API RP 2Z: Recommended Practice for Preproduction Qualification for Steel Plates for Offshore Structures (American Petroleum Institute, Washington 1998)

    Google Scholar 

  246. WES 1109-1995: Guidance for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Test Method of Weld Heat-Affected Zone (Japan Welding Engineering Society, Tokyo 1995)

    Google Scholar 

  247. M. G. Dawes, H. G. Pisarski, S. J. Squirrell: Fracture mechanics tests on welded joints. In: ASTM STP, Vol. 995 (American Society of Testing and Materials, Philadelphia 1989) pp. 191–213

    Google Scholar 

  248. P. C. Paris, M. P. Gomez, W. P. Anderson: A rational analytic theory of fatigue, The Trend Eng. 13, 9–14 (1961)

    Google Scholar 

  249. P. C. Paris, F. Erdogan: A critical analysis of crack propagation laws, J. Basic Eng. 85, 528–534 (1960)

    Google Scholar 

  250. ASTM E647-00: Standard Test Method for Measurement of Fatigue Crack Growth Rates (American Society of Testing and Materials, Philadelphia 2004)

    Google Scholar 

  251. C. Laird: The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: Fatigue Rack Propagation, ASTM STP, Vol. 415 (American Society of Testing and Materials, Philadelphia 1967) pp. 131–167

    Google Scholar 

  252. R. W. Baker: Membrane Technology and Application, 2nd edn. (Wiley, New York 2004)

    Google Scholar 

  253. S. P. Nunes, K.-V. Peinemann: Membrane Technology in the Chemical Industry (Wiley-VCH, New York 2001)

    Google Scholar 

  254. B. D. Freeman, I. Pinnau: Gas and liquid separations using membranes: An overview. In: Advanced Materials for Membrane Separations, ACS Symp. Ser., Vol. 876, ed. by B. D. Freeman, I. Pinnau (American Chemical Society, Washington 2004) pp. 1–23

    Google Scholar 

  255. K. Ghosal, R. T. Chern, B. D. Freeman, W. H. Daly, I. I. Negulescu: Effect of basic substituents on gas sorption and permeation in polysulfone, Macromolecules 29, 4360–4369 (1996)

    CAS  Google Scholar 

  256. S. N. Dhoot, B. D. Freeman, M. E. Stewart: Barrier polymers. In: Encyclopedia of Polymer Science and Technology, Vol. 5, 3rd edn., ed. by J. I. Kroschwitz (Wiley Interscience, New York 2003) pp. 198–262

    Google Scholar 

  257. M. Mulder: Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht 1996)

    Google Scholar 

  258. W. S. W. Ho, K. K. Sirkar: Membrane Handbook (Chapman Hall, New York 1992)

    Google Scholar 

  259. J. Crank, G. S. Park: Diffusion in Polymers (Academic, New York 1968)

    Google Scholar 

  260. J. Crank: The Mathematics of Diffusion, 2nd edn. (Oxford Univ. Press, New York 1995)

    Google Scholar 

  261. W. J. Koros, G. K. Fleming: Membrane-based gas separation, J. Membr. Sci. 83, 1–80 (1993)

    CAS  Google Scholar 

  262. S. A. Stern: Polymers for gas separations: The next decade, J. Membr. Sci. 94, 1–65 (1994)

    Google Scholar 

  263. K. Ghosal, B. D. Freeman: Gas separation using polymer membranes: An overview, Polym. Adv. Technol. 5, 673–697 (1994)

    CAS  Google Scholar 

  264. R. M. Felder, G. S. Huvard: Permeation, diffusion and sorption of gases and vapors. In: Methods of Experimental Physics, Vol. 16C, ed. by R. Fava (Academic, New York 1980) p. 315

    Google Scholar 

  265. W. J. Koros, C. M. Zimmerman: Transport and barrier properties. In: Comprehensive Desk Reference of Polymer Characterization and Analysis, ed. by R. F. Brady (Oxford Univ. Press, Washington 2003)

    Google Scholar 

  266. B. Flaconneche, J. Martin, M. H. Klopffer: Transport properties of gases in polymers: Experimental methods, Oil Gas Sci. Technol.-Rev. IFP 56, 245–259 (2001)

    CAS  Google Scholar 

  267. J. Crank, G. S. Park: Methods of measurement. In: Diffusion in Polymers, ed. by J. Crank, G. S. Park (Academic, New York 1968) pp. 1–39

    Google Scholar 

  268. T. Graham: On the absorption and dialytic separation of gases by colloid septa part I: Action of a septum of caoutchouc, Philos. Mag. 32, 401–420 (1866)

    Google Scholar 

  269. R. B. Bird, W. E. Stewart, E. N. Lightfoot: Transport Phenomena, 2nd edn. (Wiley, New York 2002)

    Google Scholar 

  270. R. R. Zolandz, G. K. Fleming: Gas permeation. In: Membrane Handbook, ed. by W. S. W. Ho, K. K. Sirkar (Chapman Hall, New York 1992) pp. 17–102

    Google Scholar 

  271. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, I. Pinnau: Gas sorption, diffusion, and permeation in poly(dimethylsiloxane), J. Polym. Sci., Part B: Polym. Phys. 38, 415–434 (2000)

    CAS  Google Scholar 

  272. J. H. Petropoulos: Mechanisms and Theories for Sorption and Diffusion of Gases in Polymers. In: Polymeric Gas Separation Membranes, ed. by D. R. Paul, Y. P. Yampolskii (CRC Press, Boca Raton 1994)

    Google Scholar 

  273. B. D. Freeman: Mutual diffusion in polymeric systems. In: Comprehensive Polymer Science: First Supplements, ed. by S. L. Aggarwal, S. Russo (Pergamon, New York 1992)

    Google Scholar 

  274. H. Lin, B. D. Freeman: Gas solubility, diffusivity and permeability in poly(ethylene oxide), J. Membr. Sci. 239, 105–117 (2004)

    CAS  Google Scholar 

  275. W. J. Koros, D. R. Paul: CO2 sorption in poly(ethylene terephthalate) above and below the glass transition, J. Polym. Sci., Part B: Polym. Phys. Ed. 16, 1947 (1978)

    CAS  Google Scholar 

  276. E. L. Cussler: Facilitated and active transport. In: Polymeric Gas Separation Membranes, ed. by D. R. Paul, Y. P. Yampol'skii (CRC, Boca Raton 1994) pp. 273–300

    Google Scholar 

  277. D. R. Paul, D. R. Kemp: The diffusion time lag in polymer membranes containing adsorptive fillers, J. Polym. Sci. Symp. 41, 79–93 (1973)

    Google Scholar 

  278. W. J. Koros, D. R. Paul, A. A. Rocha: Carbon dioxide sorption and transport in polycarbonate, J. Polym. Sci., Part B: Polym. Phys. Ed. 14, 687–702 (1976)

    CAS  Google Scholar 

  279. S. A. Stern, J. T. Mullhaupt, P. J. Gareis: The effect of pressure on the permeation of gases and vapors through polyethylene. Usefulness of the corresponding states principle, AIChE J. 15, 64–73 (1969)

    CAS  Google Scholar 

  280. H. A. Daynes: The process of diffusion through a rubber membrane, Proc. R. Soc., London, Ser. A 97, 286–307 (1920)

    CAS  Google Scholar 

  281. R. M. Barrer: Permeation, diffusion and solution of gases in organic polymers, Trans. Faraday Soc. 35, 628–643 (1939)

    CAS  Google Scholar 

  282. H. L. Frisch: The time lag in diffusion, J. Phys. Chem. 61, 93–95 (1957)

    CAS  Google Scholar 

  283. E. B. Mano, L. A. Durao: Review of laboratory methods for the preparation of polymer films, J. Chem. Educ. 50, 228–232 (1973)

    CAS  Google Scholar 

  284. J. M. Mohr, D. R. Paul: Effect of casting solvent on the permeability of poly(4-methyl-1-pentene), Polymer 32, 1236–1243 (1991)

    CAS  Google Scholar 

  285. S. J. Metz: Water Vapor and Gas Transport through Polymeric Membranes, Dissertation (University of Twentie, AE Enschede, The Netherlands 2003)

    Google Scholar 

  286. Z. Mogri, D. R. Paul: Membrane formation techniques for gas permeation measurements for side-chain crystalline polymers, J. Membr. Sci. 175, 253–265 (2000)

    CAS  Google Scholar 

  287. T. T. Moore, S. Damle, P. J. Williams, W. J. Koros: Characterization of low permeability gas separation membranes and barrier materials; Design and operation considerations, J. Membr. Sci. 245, 227–231 (2004)

    CAS  Google Scholar 

  288. T. C. Merkel, R. P. Gupta, B. S. Turk, B. D. Freeman: Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperatures, J. Membr. Sci. 191, 85–94 (2001)

    CAS  Google Scholar 

  289. D. G. Pye, H. H. Hoehn, M. Panar: Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus, J. Appl. Polym. Sci. 20, 1921–1931 (1976)

    CAS  Google Scholar 

  290. E. S. Burnett: Compressibility determinations without volume measurements, J. Appl. Mech. 3, 136–140 (1936)

    CAS  Google Scholar 

  291. H. Yasuda, K. J. Rosengren: Isobaric measurement of gas permeability of polymers, J. Appl. Polym. Sci. 14, 2839–2877 (1970)

    CAS  Google Scholar 

  292. D. G. Pye, H. H. Hoehn, M. Panar: Measurement of gas permeability of polymers. II. Apparatus for determination of permeabilities of mixed gases and vapors, J. Appl. Polym. Sci. 20, 287–301 (1976)

    CAS  Google Scholar 

  293. K. C. O'Brien, W. J. Koros, T. A. Barbari, E. S. Sanders: A new technique for the measurement of multicomponent gas transport through polymeric films, J. Membr. Sci. 29, 229–238 (1986)

    Google Scholar 

  294. ASTM Standards F1307: Standard Test Method for Oxygen Transmission Rate Through Dry Packages Using a Coulometric Sensor (ASTM, West Conshohocken 2002)

    Google Scholar 

  295. W. J. Koros, D. R. Paul: Design considerations for measurement of gas sorption in polymers by pressure decay, J. Polym. Sci., Part B: Polym. Phys. Ed. 14, 1903–1907 (1976)

    CAS  Google Scholar 

  296. V. I. Bondar, B. D. Freeman, I. Pinnau: Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers, J. Polym. Sci., Part B: Polym. Phys. 37, 2463–2475 (1999)

    CAS  Google Scholar 

  297. J. H. Dymond, E. B. Smith: The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation (Oxford Univ. Press, New York 1980)

    Google Scholar 

  298. C. M. Zimmerman, A. Singh, W. J. Koros: Diffusion in gas separation membrane materials: A comparison and analysis of experimental characterization techniques, J. Polym. Sci., Part B: Polym. Phys. 36, 1747–1755 (1998)

    CAS  Google Scholar 

  299. C. C. McDowell, D. T. Coker, B. D. Freeman: An automated spring balance for kinetic gravimetric sorption of gases and vapors in polymers, Rev. Sci. Instrum. 69, 2510–2513 (1998)

    CAS  Google Scholar 

  300. S. N. Dhoot, B. D. Freeman: Kinetic gravimetric sorption of low volatility gases and vapors in polymers, Rev. Sci. Instrum. 74, 5173–5178 (2003)

    CAS  Google Scholar 

  301. B. Wong, Z. Zhang, Y. P. Handa: High-presion gravimetric technique for determing the solubility and diffusivity of gases in polymers, J. Polym. Sci., Part B: Polym. Phys. 36, 2025–2032 (1998)

    CAS  Google Scholar 

  302. S. Areerat, E. Funami, Y. Hayata, D. Nakagawa, M. Ohshima: Measurement and prediction of diffusion coefficients of supercritical CO2 in molten polymers, Polym. Eng. Sci. 44, 1915–1924 (2004)

    CAS  Google Scholar 

  303. Y. Wu, P. Akoto-Ampaw, M. Elbaccouch, M. L. Hurrey, S. L. Wallen, C. S. Grant: Quartz crystal microbalance (QCM) in high-pressure carbon dioxide (CO2): Experimental aspects of QCM theory and CO2 adsorption, Langmuir 20, 3665–3673 (2004)

    CAS  Google Scholar 

  304. R. Zhou, D. Schmeisser, W. Gopel: Mass sensitive detection of carbon dioxide by amino group-functionalized polymers, Sens. Actuator. B 33, 188–193 (1996)

    Google Scholar 

  305. A. Y. Alentiev, V. P. Shantarovich, T. C. Merkel, V. I. Bondar, B. D. Freeman, Y. P. Yampolskii: Gas and vapor sorption, permeation, and diffusion in glassy amorphous teflon AF1600, Macromol. 35, 9513–9522 (2002)

    CAS  Google Scholar 

  306. ASTM Standards D1434: Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting (ASTM, West Conshohocken, Pennsylvania 2003) Originally Approved in 1982

    Google Scholar 

  307. ASTM Standards D3985: Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor (ASTM, West Conshohocken 2002)

    Google Scholar 

  308. ASTM Standards F1927: Standard Test Method for Determination of Oxygen Gas Transmission Rate, Permeability and Permeance at Controlled Relative Humidity Through Barrier Materials Using a Coulometric Detector (ASTM, West Conshohocken 2004) Approved in 1998

    Google Scholar 

  309. ASTM Standards E96: Standard Test Methods for Water Vapor Transmission of Materials (ASTM, West Conshohocken 2002)

    Google Scholar 

  310. ASTM Standards F1249: Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor (ASTM, West Conshohocken 2001)

    Google Scholar 

  311. ASTM Standards F372: Standard Test Method for Water Vapor Transmission Rate of Flexible Barrier Materials Using an Infrared Detection Technique (ASTM, West Conshohocken 2003) Approved in 1999

    Google Scholar 

  312. ASTM Standards E398: Standard Test Method for Water Vapor Transmission Rate of Sheet Materials Using Dynamic Relative Humidity Measurement (ASTM, West Conshohocken 2003)

    Google Scholar 

  313. ASTM Standards E1770: Standard Practice for Optimization of Electrothermal Atomic Absorption Spectrometric Equipment (ASTM, West Conshohocken 2001) Approved in 1995

    Google Scholar 

  314. ASTM Standards F1769: Standard Test Method for Measurement of Diffusivity, Solubility, and Permeability of Organic Vapor Barriers Using a Flame Ionization Detector (ASTM, West Conshohocken 2004) Approved in 1997

    Google Scholar 

  315. E. S. Sanders, W. J. Koros, H. B. Hopfenberg, V. Stannett: Mixed gas sorption in glassy polymers: Equipment design considerations and preliminary results, J. Membr. Sci. 13, 161–174 (1983)

    CAS  Google Scholar 

  316. G. T. Fieldson, T. A. Barbari: Analysis of diffusion in polymers using evanescent field spectroscopy, AIChE J. 41, 795–804 (1995)

    CAS  Google Scholar 

  317. R. A. Assink: Investigation of the dual mode sorption of ammonia in polystyrene by NMR, J. Polym. Sci., Part B: Polym. Phys. Ed. 13, 1665–1673 (1975)

    CAS  Google Scholar 

  318. W. J. Koros, A. H. Chan, D. R. Paul: Sorption and transport of various gases in polycarbonate, J. Membr. Sci. 2, 165–190 (1977)

    CAS  Google Scholar 

  319. S. Y. Lee, B. S. Minhas, M. D. Donohue: Effect of gas composition and pressure on permeation through cellulose acetate membranes, AIChE Symp. Ser. 84, 93–101 (1988)

    CAS  Google Scholar 

  320. D. R. Paul, D. R. Kemp: The diffusion time lag in polymer membranes containing adsorptive fillers, J. Polym. Sci. Symp. 41, 79–93 (1973)

    Google Scholar 

  321. H. W. Clever, R. Battino: The solubility of gases in liquids, Tech. Chem. 8, 379–441 (1975)

    CAS  Google Scholar 

  322. R. T. Yang: Gas Separation by Adsorption Processes (Butterworths, Boston 1987)

    Google Scholar 

  323. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi: Hydrogen storage in microporous metal-organic frameworks, Science 300, 1127–1129 (2003)

    CAS  Google Scholar 

  324. X. Wang, K. M. Lee, Y. Lu, M. T. Stone, I. C. Sanchez, B. D. Freeman: Modeling transport properties in high free volume glassy polymers, New Polymeric Materials, ACS Symp. Ser. 916 (2004)

    Google Scholar 

  325. E. Tocci, D. Hofmann, D. Paul, N. Russo, E. Drioli: A molecular simulation study on gas diffusion in a dense poly(ether-ether-ketone) membrane, Polymer 42, 521–533 (2001)

    CAS  Google Scholar 

  326. EN 10225:2001: Annex E, Weldability Testing for Steels of Groups 2 and 3 and Mechanical Testing of Butt Welds (CEN, Brussels 2001)

    Google Scholar 

  327. BS 7448-1997: Fracture Mechanics Toughness Tests, Part II: Method for Determination of K Ic , Critical CTOD and Critical J Values of Welds in Metallic Materials (British Standard Institution, London 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheldon Wiederhorn Ph.D. , Richard Fields Dr. , Samuel Low , Gun-Woong Bahng Ph.D. , Alois Wehrstedt , Junhee Hahn , Yo Tomota Prof. , Takashi Miyata Dr. , Haiqing Lin Dr. , Benny Freeman Dr. , Shuji Aihara Dr. , Yukito Hagihara Prof. or Tetsuya Tagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Wiederhorn, S. et al. (2006). Mechanical Properties. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_7

Download citation

Publish with us

Policies and ethics