Skip to main content

Surface and Interface Characterization

  • Reference work entry
Springer Handbook of Materials Measurement Methods

Part of the book series: Springer Handbooks ((SHB))

Abstract

While the bulk material properties treated in Part C of this Handbook are obviously important, the surface characteristics of materials are also of great significance. They are responsible for the appearances of materials and surface phenomena, and they have a crucial influence on the interactions of materials with gases or fluids (in corrosion for example, Chap. 12), contacting solids (as in friction and wear, Chap. 13) or biospecies (Chap. 14) and materials–environment interactions (Chap. 15). Surface and interface characterization have been important topics for very many years. Indeed, it was known in antiquity that impurities could be detrimental to the quality of metals, that keying and contamination were important to adhesion in architecture and also in the fine arts. In contemporary technologies, surface modification or functional coatings are frequently used to tailor the processing of advanced materials. Some components, such as quantum well devices and X-ray mirrors, are composed of multilayers with individual layer thicknesses in the low nanometer range. Quality assurance of industrial processes, as well as the development of advanced surface-modified or coated components, requires chemical information on material surfaces and (buried) interfaces with high sensitivity and high lateral and depth resolution. In this chapter we present the methods applicable to the chemical and physical characterization of surfaces and interfaces.

This chapter covers the three main techniques of surface chemical analysis: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) are all still rapidly developing in instrumentation, standards and applications. AES is excellent for elemental analysis at spatial resolutions down to 10 nm, and XPS can define chemical states down to 10 μm. Both analyze the outermost atom layers and, with sputter depth profiling, layers up to 1 μm thick.

Dynamic SIMS incorporates depth profiling and can detect atomic compositions significantly below 1 ppm. Static SIMS retains this high sensitivity for the surface atomic or molecular layer but provides chemistry-related details not available with AES or XPS. New reference data, measurement standards and documentary standards from ISO will continue to be developed for surface chemical analysis over the coming years.

The chapter also discusses surface physical analysis (topography characterization), which encompasses measurement, visualization and quantification. This is critical to both component form and to surface finish at macro-, micro- and nanoscales. The principal methods of surface topography measurement are stylus profilometry, optical scanning techniques, and scanning probe microscopy (SPM). These methods, based on acquiring topography data from point-by-point scans, give quantitative information on surface height with respect to position. The integral methods, which are based on a different approach, produce parameters that represent some average property of the surface under examination. Measurement methods, as well as their application and limitations, are briefly reviewed, including standardization and traceability issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

µTA:

microthermal analysis

AA:

arithmetic average

AES:

Auger electron spectroscopy

AFM:

atomic force microscopy

ASTM:

American Society for Testing and Materials

CCD:

digitized with charge-coupled device

CLA:

center line average

CRM:

certified reference material

DC:

direct-current

DFT:

density functional theory

DFT:

discrete Fourier transform

EPMA:

electron probe microanalysis

FDA:

frequency domain analysis

HPLC:

high-performance liquid chromatography

ISO:

International Organization for Standardization

NIST:

National Institute of Standards and Technology

PC:

photoconductive

PEELS:

parallel electron energy loss spectroscopy

PTFE:

polytetrafluoroethylene

PVC:

polyvinyl chloride

RMS:

root mean square

RSF:

relative sensitivity factor

SEM:

scanning electron microscope

SNOM:

scanning near-field optical microscopy

STM:

scanning tunneling microscopes

TEM:

transmission electron microscope

TOF:

time-of-flight

XPS:

X-ray photoelectron spectroscopy

References

  1. I. S. Gilmore, M. P. Seah, J. E. Johnstone: Quantification issues in ToF-SIMS and AFM co-analysis in two-phase systems, exampled by a polymer blend, Surf. Interface Anal. 35, 888 (2003)

    CAS  Google Scholar 

  2. ASTM: Volume 03.06 of the Annual Book of ASTM Standards, West Conshohocken (contains ASTM standards for surface analysis; current versions are in the 2003 volume from ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959)

    Google Scholar 

  3. List of Technical Committees, International Organization for Standardization, Geneva http://www.iso.ch/iso/en/stdsdevelopment/tc/tclist/TechnicalCommitteeDetailPage.TechnicalCommitteeDetail?COMMID=4519

  4. NPL: Surface and Nano-Analysis, National Physical Laboratory, Teddington, http://www.npl.co.uk/nanoanalysis

  5. NIST: Surface Data, NIST Scientific and Technical Data Base, http://www.nist.gov/data/surface.htm

  6. D. Briggs, M. P. Seah (eds.): Practical surface analysis. In: Auger and X-ray Photoelectron Spectroscopy, Vol. 1 (Wiley, Chichester 1990)

    Google Scholar 

  7. D. Briggs, M. P. Seah (eds.): Practical surface analysis. In: Ion and Neutral Spectroscopy, Vol. 2 (Wiley, Chichester 1992)

    Google Scholar 

  8. D. Briggs, J. T. Grant (eds.): Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (IM Publications and Surface Spectra, Manchester 2003)

    Google Scholar 

  9. S. Morton: UK Surface Analysis Forum, http://www.uksaf.org/home.html

  10. Y. Homma: Summary of ISO/TC 201 Standard, II ISO14237: 2000 – SCA – Secondary-ion mass spectrometry – Determination of boron atomic concentration in silicon using uniformly doped materials, Surf. Interface Anal. 33, 361 (2002)

    CAS  Google Scholar 

  11. K. Kajiwara: Summary of ISO/TC 201 Standard, IV ISO14606:2000 – SCA – Sputter depth profiling - Optimization using layered systems as reference materials, Surf. Interface Anal. 33, 365 (2002)

    CAS  Google Scholar 

  12. K. Yoshihara: Summary of ISO/TC 201 Standard, V ISO14975:2000 – SCA – Information formats, Surf. Interface Anal. 33, 367 (2002)

    CAS  Google Scholar 

  13. M. P. Seah: Summary of ISO/TC 201 Standard, I ISO14976:1998 – SCA – Data transfer format, Surf. Interface Anal. 27, 693 (1999)

    CAS  Google Scholar 

  14. M. P. Seah: Summary of ISO/TC 201 Standard, VII ISO15472:2001 – SCA – X-ray photoelectron spectrometers – Calibration of energy scales, Surf. Interface Anal. 31, 721 (2001)

    CAS  Google Scholar 

  15. S. Hofmann: Summary of ISO/TC 201 Standard, IX ISOTR15969:2000 – SCA – Depth profiling – Measurement of sputtered depth, Surf. Interface Anal. 33, 453 (2002)

    CAS  Google Scholar 

  16. Y. Homma: Summary of ISO/TC 201 Standard, X ISO17560:2002 – SCA – Secondary-ion mass spectrometry - Method for depth profiling of boron in silicon, Surf. Interface Anal. 37, 90 (2005)

    CAS  Google Scholar 

  17. M. P. Seah: Summary of ISO/TC 201 Standard, XII ISO17973:2002 – SCA – Medium-resolution Auger electron spectrometers - Calibration of energy scales for elemental analysis, Surf. Interface Anal. 35, 329 (2002)

    Google Scholar 

  18. M. P. Seah: Summary of ISO/TC 201 Standard, XI ISO17974:2002 – SCA – High-resolution Auger electron spectrometers - Calibration of energy scales for elemental and chemical-state analysis, Surf. Interface Anal. 35, 327 (2003)

    CAS  Google Scholar 

  19. M. P. Seah: Summary of ISO/TC 201 Standard, VIII ISO18115:2001 - SCA – Vocabulary, Surf. Interface Anal. 31, 1048 (2001)

    CAS  Google Scholar 

  20. C. J. Powell: Summary of ISO/TC 201 Standard, XIV ISOTR19319:2003 – SCA – Auger electron spectroscopy and X-ray photoelectron spectroscopy - Determination of lateral resolution, analysis area, and sample area viewed by the analyser, Surf. Interface Anal. 36, 666 (2004)

    CAS  Google Scholar 

  21. D. W. Moon: Summary of ISO/TC 201 Standard, XV ISO20341:2003 – SCA – Secondary-ion mass spectrometry – Method for estimating depth resolution parameters with multiple delta-layer reference materials, Surf. Interface Anal. 37, 646 (2005)

    CAS  Google Scholar 

  22. M. P. Seah: Summary of ISO/TC 201 Standard, XXI. ISO21270:2004 – SCA – X-ray photoelectron and Auger electron spectrometers – Linearity of intensity scale, Surf. Interface Anal. 36, 1645 (2004)

    CAS  Google Scholar 

  23. I. S. Gilmore, M. P. Seah, A. Henderson: Summary of ISO/TC 201 Standard, XXII ISO21270:2004 – SCA – Information format for static secondary ion mass spectrometry, Surf. Interface Anal. 36, 1642 (2004)

    CAS  Google Scholar 

  24. M. P. Seah, W. A. Dench: Quantitative electron spectroscopy of surfaces – A standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal. 1, 2 (1979)

    CAS  Google Scholar 

  25. A. Savitzky, M. J. E. Golay: Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem 36, 1627 (1964)

    CAS  Google Scholar 

  26. J. Steiner, Y. Termonia, J. Deltour: Comments on “Smoothing and differentiation of data by simplified least squares procedures”, Anal. Chem. 44, 1906 (1972)

    Google Scholar 

  27. L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, R. E. Weber: Handbook of Auger Electron Spectroscopy, 2 edn. (Physical Electronics Industries, Eden Prairie 1976)

    Google Scholar 

  28. G. E. McGuire: Auger Electron Spectroscopy Reference Manual (Plenum, New York 1979)

    Google Scholar 

  29. Y. Shiokawa, T. Isida, Y. Hayashi: Auger Electron Spectra Catalogue: A Data Collection of Elements (Anelva, Tokyo 1979)

    Google Scholar 

  30. T. Sekine, Y. Nagasawa, M. Kudoh, Y. Sakai, A. S. Parkes, J. D. Geller, A. Mogami, K. Hirata: Handbook of Auger Electron Spectroscopy (JEOL, Tokyo 1982)

    Google Scholar 

  31. K. D. Childs, B. A. Carlson, L. A. Lavanier, J. F. Moulder, D. F. Paul, W. F. Stickle, D. G. Watson: Handbook of Auger Electron Spectroscopy (Physical Electronics Industries, Eden Prairie 1995)

    Google Scholar 

  32. M. P. Seah, I. S. Gilmore, H. E. Bishop, G. Lorang: Quantitative AES V, Practical analysis of intensities with detailed examples of metals and their oxides, Surf. Interface Anal. 26, 701 (1998)

    CAS  Google Scholar 

  33. C. P. Hunt, M. P. Seah: A sub-monolayer adsorbate reference material based on a low alloy steel fracture sample for Auger electron spectroscopy, I: Characterisation, Mater. Sci. Tech. 8, 1023 (1992)

    CAS  Google Scholar 

  34. J. Pauwels: Institute of Reference Materials and Measurements (IRMM), Retieseweg, 2440 Geel, Belgium

    Google Scholar 

  35. C. P. Hunt, M. P. Seah: Characterisation of high depth resolution tantalum pentoxide sputter profiling reference material, Surf. Interface Anal. 5, 199 (1983)

    CAS  Google Scholar 

  36. M. P. Seah, C. P. Hunt: Atomic mixing and electron range effects in ultra high resolution profiles of the Ta/Ta2O5 interface by argon sputtering with AES, J. Appl. Phys. 56, 2106 (1984)

    CAS  Google Scholar 

  37. M. P. Seah, S. J. Spencer, I. S. Gilmore, J. E. Johnstone: Depth resolution in sputter depth profiling – Characterisation of a tantalum pentoxide on tantalum certified reference material, Surf. Interface Anal. 29, 73 (2000)

    CAS  Google Scholar 

  38. M. P. Seah, S. J. Spencer: Ultra-thin SiO2 on Si, I: quantifying and removing carbonaceous contamination, J. Vac. Sci. Technol. A 21, 345 (2003)

    CAS  Google Scholar 

  39. P. J. Cumpson, M. P. Seah, S. J. Spencer: Simple procedure for precise peak maximum estimation for energy calibration in AES and XPS, Surf. Interface Anal. 24, 687 (1996)

    CAS  Google Scholar 

  40. M. P. Seah, G. C. Smith, M. T. Anthony: AES – Energy calibration of electron spectrometers I – An absolute, traceable energy calibration and the provision of atomic reference line energies, Surf. Interface Anal. 15, 293 (1990)

    CAS  Google Scholar 

  41. M. P. Seah, I. S. Gilmore: AES – Energy calibration of electron spectrometers III – general calibration rules, J. Electron Spectrosc. 83, 197 (1997)

    CAS  Google Scholar 

  42. M. P. Seah: AES – energy calibration of electron spectrometers IV – A re-evaluation of the reference energies, J. Electron Spectrosc. 97, 235 (1998)

    CAS  Google Scholar 

  43. M. P. Seah, G. C. Smith: Spectrometer energy scale calibration. In: Practical Surface Analysis Vol. 1, Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, M. P. Seah (Wiley, Chichester 1990) p. 531 Appendix 1

    Google Scholar 

  44. M. P. Seah: Channel electron multipliers: quantitative intensity measurement – Efficiency, gain, linearity and bias effects, J. Electron Spectrosc. 50, 137 (1990)

    CAS  Google Scholar 

  45. M. P. Seah, C. S. Lim, K. L. Tong: Channel electron multiplier efficiencies – The effect of the pulse-height distribution on spectrum shape in Auger electron spectroscopy, J. Electron Spectrosc. 48, 209 (1989)

    CAS  Google Scholar 

  46. M. P. Seah, M. Tosa: Linearity in electron counting and detection systems, Surf. Interface Anal. 18, 240 (1992)

    CAS  Google Scholar 

  47. M. P. Seah: Effective dead time in pulse counting systems, Surf. Interface Anal. 23, 729 (1995)

    CAS  Google Scholar 

  48. M. P. Seah, I. S. Gilmore, S. J. Spencer: Signal linearity in XPS counting systems, J. Electron Spectrosc. 104, 73 (1999)

    CAS  Google Scholar 

  49. M. P. Seah, I. S. Gilmore, S. J. Spencer: Method for determining the signal linearity in single and multidetector counting systems in XPS, Appl. Surf. Sci. 144-145, 132 (1999)

    CAS  Google Scholar 

  50. M. P. Seah, G. C. Smith: AES – Accurate intensity calibration of spectrometers – Results of a BCR interlaboratory comparison co-sponsored by the VAMAS SCA TWP, Surf. Interface Anal. 17, 855 (1991)

    CAS  Google Scholar 

  51. M. P. Seah: A system for the intensity calibration of electron spectrometers, J. Electron Spectrosc. 71, 191 (1995)

    CAS  Google Scholar 

  52. M. P. Seah: XPS – reference procedures for the accurate intensity calibration of electron spectrometers – Results of a BCR intercomparison co-sponsored by the VAMAS SCA TWP, Surf. Interface Anal. 20, 243 (1993)

    CAS  Google Scholar 

  53. M. P. Seah, G. C. Smith: Quantitative AES and XPS determination of the electron spectrometer transmission function and the detector sensitivity energy dependencies for the production of true electron emission spectra in AES and XPS, Surf. Interface Anal. 15, 751 (1990)

    CAS  Google Scholar 

  54. NPL: Systems for the intensity calibration of Auger and X-ray Photoelectron Spectrometers, A1 and X1 (National Physical Laboratory, Teddington, 2005) see http://www.npl.co.uk/nanoanalysis/a1calib.html and follow links

  55. M. P. Seah: Scattering in electron spectrometers, diagnosis and avoidance I – Concentric hemispherical analysers, Surf. Interface Anal. 20, 865 (1993)

    CAS  Google Scholar 

  56. S. Tougaard: X-ray photoelectron spectroscopy peak shape analysis for the extraction of in-depth composition information, J. Vac. Sci. Technol. A 5, 1275 (1987)

    CAS  Google Scholar 

  57. S. Tougaard, C. Jannsson: Comparison of validity and consistency of methods for quantitative XPS peak analysis, Surf. Interface Anal. 20, 1013 (1993)

    CAS  Google Scholar 

  58. M. P. Seah: Data compilations – Their use to improve measurement certainty in surface analysis by AES and XPS, Surf. Interface Anal. 9, 85 (1986)

    CAS  Google Scholar 

  59. M. P. Seah: Quantitative AES and XPS. In: Practical Surface Analysis 1 – Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, M. P. Seah (Wiley, Chichester 1990) Chap. 5, p. 201

    Google Scholar 

  60. M. Gryzinski: Classical theory of atomic collisions I – Theory of inelastic collisions, Phys. Rev. A 138, 336 (1965)

    CAS  Google Scholar 

  61. M. P. Seah, I. S. Gilmore: Quantitative AES VII – The ionisation cross section in AES, Surf. Interface Anal. 26, 815 (1998)

    CAS  Google Scholar 

  62. E. Casnati, A. Tartari, C. Baraldi: An empirical approach to K-shell ionization cross section by electrons, J. Phys. B 15, 155 (1982)

    CAS  Google Scholar 

  63. E. H. S. Burhop: The Auger Effect and Other Radiationless Transitions (Univ. Press, Cambridge 1952)

    Google Scholar 

  64. J. I. Goldstein, H. Yakowitz (eds.): Practical Scanning Electron Microscopy (Plenum, New York 1975)

    Google Scholar 

  65. M. P. Seah, I. S. Gilmore: A high resolution digital Auger database of true spectra for AES intensities, J. Vac. Sci. Technol. A 14, 1401 (1996)

    CAS  Google Scholar 

  66. R. Shimizu: Quantitative analysis by Auger electron spectroscopy, Jpn. J. Appl. Phys. 22, 1631 (1983)

    CAS  Google Scholar 

  67. M. P. Seah, I. S. Gilmore: Quantitative AES VIII – Analysis of Auger electron intensities for elemental data in a digital auger database, Surf. Interface Anal. 26, 908 (1998)

    CAS  Google Scholar 

  68. G. W. C. Kaye, T. H. Laby: Tables of Physical and Chemical Constants, 15 edn. (Longmans, London 1986)

    Google Scholar 

  69. D. R. Lide (ed.): CRC Handbook of Chemistry and Physics, 74 edn. (CRC, Boca Raton 1993)

    Google Scholar 

  70. A. Jablonski: Database of correction parameters for elastic scattering effects in XPS, Surf. Interface Anal. 23, 29 (1995)

    CAS  Google Scholar 

  71. M. P. Seah, I. S. Gilmore: Simplified equations for correction parameters for elastic scattering effects for Q, β and attenuation lengths in AES and XPS, Surf. Interface Anal. 31, 835 (2001)

    CAS  Google Scholar 

  72. S. Tanuma, C. J. Powell, D. R. Penn: Calculations of electron inelastic mean free paths (IMFPs) V – Data for 14 organic compounds over the 50–2000 eV range, Surf. Interface Anal. 21, 165 (1994)

    CAS  Google Scholar 

  73. S. Tanuma, C. J. Powell, D. R. Penn: Calculations of electron inelastic mean free paths VII – Reliability of the TPP-2M IMFP predictive equation, Surf. Interface Anal. 35, 268 (2003)

    CAS  Google Scholar 

  74. NIST: SRD 71 Electron Inelastic Mean Free Path Database, Version 1.1 (NIST, Gaithersburg 2001)

    Google Scholar 

  75. M. P. Seah, I. S. Gilmore, S. J. Spencer: Quantitative XPS I – Analysis of X-ray photoelectron intensities from elemental data in a digital photoelectron database, J. Electron. Spectrosc. 120, 93 (2001)

    CAS  Google Scholar 

  76. P. J. Cumpson: Angle-resolved X-ray photoelectron spectroscopy. In: Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, J. T. Grant (IM Publications and Surface Spectra, Manchester 2003) Chap. 23, p. 651

    Google Scholar 

  77. S. Tougaard: Quantification of nanostructures by electron spectroscopy. In: Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, J. T. Grant (IM Publications and Surface Spectra, Manchester 2003) Chap. 12, p. 295

    Google Scholar 

  78. S. Hofmann, J. M. Sanz: Quantitative XPS analysis of the surface layer of anodic oxides obtained during depth profiling by sputtering with 3 keV Ar+ ions, J. Trace Microprobe T. 1, 213 (1982-1983)

    Google Scholar 

  79. S. Hofmann: Depth profiling in AES and XPS. In: Practical Surface Analysis 1 – Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, M. P. Seah (Wiley, Chichester 1990) Chap. 4, p. 143

    Google Scholar 

  80. J. M. Sanz, S. Hofmann: Quantitative evaluation of AES-depth profiles of thin anodic oxide films (Ta2O5/Ta, Nb2O5/Nb), Surf. Interface Anal. 5, 210 (1983)

    CAS  Google Scholar 

  81. J. F. Ziegler: The Stopping and Range of Ions in Matter SRIM-2003, SRIM-2003 v. 02, SRIM code (IBM, Yorktown Heights 2005) available for download from http://www.SRIM.org

  82. M. P. Seah, F. M. Green, C. A. Clifford, I. S. Gilmore: An accurate semi-empirical equation for sputtering yields I – For argon ions, Surf. Interface Anal. 37, 444 (2005)

    CAS  Google Scholar 

  83. O. Auciello, R. Kelly (eds.): Ion Bombardment Modifications of Surfaces (Elsevier, Amsterdam 1984)

    Google Scholar 

  84. R. Kelly: On the role of Gibbsian segregation in causing preferential sputtering, Surf. Interface Anal. 7, 1 (1985)

    CAS  Google Scholar 

  85. J. B. Malherbe, R. Q. Odendaal: Models for the sputter correction factor in quantitative AES for compound semiconductors, Surf. Interface Anal. 26, 841 (1998)

    CAS  Google Scholar 

  86. T. Wagner, J. Y. Wang, S. Hofmann: Sputter depth profiling in AES and XPS. In: Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, J. T. Grant (IM Publications and Surface Spectra, Manchester 2003) Chap. 22, p. 619

    Google Scholar 

  87. M. P. Seah, C. P. Hunt: The depth dependence of the depth resolution in composition-depth profiling with auger electron spectroscopy, Surf. Interface Anal. 5, 33 (1983)

    CAS  Google Scholar 

  88. M. P. Seah, J. M. Sanz, S. Hofmann: The statistical sputtering contribution to resolution in concentration-depth profiles, Thin Solid Films 81, 239 (1981)

    CAS  Google Scholar 

  89. A. Zalar: Improved depth resolution by sample rotation during Auger electron spectroscopy depth profiling, Thin Solid Films 124, 223 (1985)

    CAS  Google Scholar 

  90. S. Hofmann, A. Zalar, E.-H. Cirlin, J. J. Vajo, H. J. Mathieu, P. Panjan: Interlaboratory comparison of the depth resolution in sputter depth profiling of Ni/Cr multilayers with and without sample rotation using AES, XPS, and SIMS, Surf. Interface Anal. 20, 621 (1993)

    CAS  Google Scholar 

  91. C. P. Hunt, M. P. Seah: Method for the alignment of samples and the attainment of ultra-high resolution depth profiles in Auger electron spectroscopy, Surf. Interface Anal. 15, 254 (1990)

    CAS  Google Scholar 

  92. M. P. Seah: An accurate semi-empirical equation for sputtering yields II – For neon, argon and xenon ions, Nucl. Instrum. Methods B 229, 348 (2005)

    CAS  Google Scholar 

  93. NPL: Sputtering Yields for Neon, Argon and Xenon Ions (National Physical Laboratory, Teddington 2005) available for download from http://www.npl.co.uk/nanoanalysis/sputtering_yields.html

  94. I. S. Gilmore, M. P. Seah: Fluence, flux, current, and current density measurement in faraday cups for surface analysis, Surf. Interface Anal. 23, 248 (1995)

    CAS  Google Scholar 

  95. J. A. Bearden, A. F. Barr: X-ray wavelengths and X-ray atomic energy levels, Rev. Mod. Phys. 31, 49 (1967)

    Google Scholar 

  96. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg: Handbook of X-ray Photoelectron Spectroscopy (Physical Electrons Industries, Eden Prairie 1979)

    Google Scholar 

  97. N. Ikeo, Y. Iijima, N. Niimura, M. Sigematsu, T. Tazawa, S. Matsumoto, K. Kojima, Y. Nagasawa: Handbook of X-ray Photoelectron Spectroscopy (JEOL, Tokyo 1991)

    Google Scholar 

  98. J. F. Moulder, W. F. Stickle, S. E. Sobol, K. D. Bomben: Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer, Physical Electronics Division, Eden Prairie 1992)

    Google Scholar 

  99. C. D. Wagner: Photoelectron and Auger energies and the Auger parameter – A data set. In: Practical Surface Analysis 1: Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, M. P. Seah (Wiley, Chichester 1990) p. 595 Appendix 5

    Google Scholar 

  100. C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell, J. R. Rumble: NIST XPS Database (NIST, Gaithersburg 2005) http://srdata.nist.gov/xps/

    Google Scholar 

  101. G. Beamson, D. Briggs: High-Resolution XPS of Organic Polymers – The Scienta ESCA300 Database (Wiley, Chichester 1992)

    Google Scholar 

  102. M. P. Seah, S. J. Spencer: Degradation of poly(vinyl chloride) and nitrocellulose in XPS, Surf. Interface Anal. 35, 906 (2003)

    CAS  Google Scholar 

  103. M. P. Seah, I. S. Gilmore, S. J. Spencer: XPS – Energy calibration of electron spectrometers 4 – An assessment of effects for different conditions and of the overall uncertainties, Surf. Interface Anal. 26, 617 (1998)

    CAS  Google Scholar 

  104. M. P. Seah: Post-1989 calibration energies for X-ray photoelectron spectrometers and the 1990 Josephson constant, Surf. Interface Anal. 14, 488 (1989)

    CAS  Google Scholar 

  105. M. P. Seah, I. S. Gilmore, G. Beamson: XPS – Binding energy calibration of electron spectrometers 5 – A re-assessment of the reference energies, Surf. Interface Anal. 26, 642 (1998)

    CAS  Google Scholar 

  106. ISO 17025: ISO: General Requirements for the Competence of Testing and Calibration Laboratories (ISO, Geneva 2000)

    Google Scholar 

  107. D. A. Shirley: High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5, 4709 (1972)

    Google Scholar 

  108. C. D. Wagner: Empirically derived atomic sensitivity factors for XPS. In: Practical Surface Analysis 1: Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, M. P. Seah (Wiley, Chichester 1990) p. 635 Appendix 6

    Google Scholar 

  109. C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. M. Raymond, L. H. Gale: Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis, Surf. Interface Anal. 3, 211 (1981)

    CAS  Google Scholar 

  110. J. H. Scofield: Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectrosc. 8, 129 (1996)

    Google Scholar 

  111. M. P. Seah, I. S. Gilmore, S. J. Spencer: Quantitative AES IX and quantitative XPS II: Auger and X-ray photoelectron intensities from elemental spectra in digital databases reanalysed with a REELS database, Surf. Interface Anal. 31, 778 (2001)

    CAS  Google Scholar 

  112. J. J. Yeh, I. Lindau: Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103, At. Data Nucl. Data Tables 32, 1 (1985)

    CAS  Google Scholar 

  113. R. F. Reilman, A. Msezane, S. T. Manson: Relative intensities in photoelectron spectroscopy of atoms and molecules, J. Electron Spectrosc. 8, 389 (1970)

    Google Scholar 

  114. M. P. Seah: Quantification in AES and XPS. In: Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, J. T. Grant (IM Publications Surface Spectra, Manchester 2003) Chap. 13, p. 345

    Google Scholar 

  115. NIST : SRD 64 Electron Elastic Scattering Cross-Section Database (NIST, Gaithersburg 2002) Version 2.0

    Google Scholar 

  116. P. J. Cumpson, M. P. Seah: Elastic scattering corrections in AES and XPS II – Estimating attenuation lengths, and conditions required for their valid use in overlayer/substrate experiments, Surf. Interface Anal. 25, 430 (1997)

    CAS  Google Scholar 

  117. A. Jablonski, C. J. Powell: The electron attenuation length revisited, Surf. Sci. Rep. 47, 33 (2002)

    CAS  Google Scholar 

  118. P. J. Cumpson: The thickogram: A method for easy film thickness measurements in XPS, Surf. Interface Anal. 29, 403 (2000)

    CAS  Google Scholar 

  119. M. P. Seah, S. J. Spencer, F. Bensebaa, I. Vickridge, H. Danzebrink, M. Krumrey, T. Gross, W. Oesterle, E. Wendler, B. Rheinländer, Y. Azuma, I. Kojima, N. Suzuki, M. Suzuki, S. Tanuma, D. W. Moon, H. J. Lee, Hyun Mo Cho, H. Y. Chen, A. T. S. Wee, T. Osipowicz, J. S. Pan, W. A. Jordaan, R. Hauert, U. Klotz, C. van der Marel, M. Verheijen, Y. Tamminga, C. Jeynes, P. Bailey, S. Biswas, U. Falke, N. V. Nguyen, D. Chandler-Horowitz, J. R. Ehrstein, D. Muller, J. A. Dura: Critical review of the current status of thickness measurements for ultra-thin SiO2 on Si: Part V Results of a CCQM pilot study, Surf. Interface Anal. 36, 1269 (2004)

    CAS  Google Scholar 

  120. M. P. Seah: Intercomparison of silicon dioxide thickness measurements made by multiple techniques – The route to accuracy, J. Vac. Sci. Technol. A 22, 1564 (2004)

    CAS  Google Scholar 

  121. M. P. Seah, S. J. Spencer: Ultra-thin SiO2 on Si, II: Issues in quantification of the oxide thickness, Surf. Interface Anal. 33, 640 (2002)

    CAS  Google Scholar 

  122. M. P. Seah, S. J. Spencer: Ultra-thin SiO2 on Si, IV: Thickness linearity and intensity measurement in XPS, Surf. Interface Anal. 35, 515 (2003)

    CAS  Google Scholar 

  123. M. P. Seah, S. J. Spencer: Ultrathin SiO2 on Si, VII: Angular accuracy in XPS and an accurate attenuation length, Surf. Interface Anal. 37, 731 (2005)

    CAS  Google Scholar 

  124. K. Wittmaack: Physical and chemical parameters determining ion yields in SIMS analyses: A closer look at the oxygen-induced yield enhancement effect. In: Proc 11st Int. Conf. Secondary Ion Mass Spectrometry, SIMS XI, ed. by G. Gillen, R. Lareau, J. Bennett, F. Stevie (Wiley, Chichester 1998) p. 11

    Google Scholar 

  125. C. J. Hitzman, G. Mount: Enhanced depth profiling of ultra-shallow implants using improved low energy ion guns on a quadrupole SIMS instrument. In: Proc. 11st Int. Conf. Secondary Ion Mass Spectrometry, SIMS XI, ed. by G. Gillen, R. Lareau, J. Bennett, F. Stevie (Wiley, Chichester 1998) p. 273

    Google Scholar 

  126. M. G. Dowsett, G. Rowland, P. N. Allen, R. D. Barlow: An analytic form for the SIMS response function measured from ultra-thin impurity layers, Surf. Interface Anal. 21, 310 (1994)

    CAS  Google Scholar 

  127. D. W. Moon, J. Y. Won, K. J. Kim, H. J. Kang, M. Petrovic: GaAs delta-doped layers in Si for evaluation of SIMS depth resolution, Surf. Interface Anal. 29, 362 (2000)

    CAS  Google Scholar 

  128. M. G. Dowsett: Depth profiling using ultra-low-energy secondary ion mass spectrometry, Appl. Surf. Sci. 203–204, 5 (2003)

    Google Scholar 

  129. K. Wittmaack: The “Normal Component” of the primary ion energy: An inadequate parameter for assessing the depth resolution in SIMS. In: Proc 11st Int. Conf. Secondary Ion Mass Spectrometry, SIMS XII, ed. by A. Benninghoven, P. Bertrand, H.-N. Migeon, H. W. Werner (Wiley, Chichester 2000) p. 569

    Google Scholar 

  130. J. Bellingham, M. G. Dowsett, E. Collart, D. Kirkwood: Quantitative analysis of the top 5 nm of boron ultra-shallow implants, Appl. Surf. Sci. 203–204, 851 (2003)

    Google Scholar 

  131. K. Iltgen, A. Benninghoven, E. Niehius: TOF-SIMS depth profiling with optimized depth resolution. In: Proc 11st Int. Conf. Secondary Ion Mass Spectrometry, SIMS XI, ed. by G. Gillen, R. Lareau, J. Bennett, F. Stevie (Wiley, Chichester 1988) p. 367

    Google Scholar 

  132. C. Hongo, M. Tomita, M. Takenaka, M. Suzuki, A. Murakoshi: Depth profiling for ultrashallow implants using backside secondary ion mass spectrometry, J. Vac. Sci. Technol. B 21, 1422 (2003)

    CAS  Google Scholar 

  133. J. Sameshima, R. Maeda, K. Yamada, A. Karen, S. Yamada: Depth profiles of boron and nitrogen in SiON films by backside SIMS, Appl. Surf. Sci. 231–232, 614 (2004)

    Google Scholar 

  134. F. Laugier, J. M. Hartmann, H. Moriceau, P. Holliger, R. Truche, J. C. Dupuy: Backside and frontside depth profiling of B delta doping, at low energy, using new and previous magnetic SIMS instruments, Appl. Surf. Sci. 231–232, 668 (2004)

    Google Scholar 

  135. D. W. Moon, H. J. Lee: The dose dependence of Si sputtering with low energy ions in shallow depth profiling, Appl. Surf. Sci. 203–204, 27 (2003)

    Google Scholar 

  136. K. Wittmaack: Influence of the depth calibration procedure on the apparent shift of impurity depth profiles measured under conditions of long-term changes in erosion rate, J. Vac. Sci. Technol. B 18, 1 (2001)

    Google Scholar 

  137. Y. Homma, H. Takenaka, F. Toujou, A. Takano, S. Hayashi, R. Shimizu: Evaluation of the sputter rate variation in SIMS ultra-shallow depth profiling using multiple short-period delta-layers, Surf. Interface Anal. 35, 544 (2003)

    CAS  Google Scholar 

  138. F. Toujou, S. Yoshikawa, Y. Homma, A. Takano, H. Takenaka, M. Tomita, Z. Li, T. Hasgawa, K. Sasakawa, M. Schuhmacher, A. Merkulov, H. K. Kim, D. W. Moon, T. Hong, J.-Y. Won: Evaluation of BN-delta-doped multilayer reference materials for shallow depth profiling in SIMS: Round robin test, Appl. Surf. Sci. 231–232, 649 (2004)

    Google Scholar 

  139. F. A. Stevie, P. M. Kahora, D. S. Simons, P. Chi: Secondary ion yield changes in Si and GaAs due to topography changes during O2 + or Cs+ ion bombardment, J. Vac. Sci. Technol. A 6, 76 (1988)

    CAS  Google Scholar 

  140. Y. Homma, A. Takano, Y. Higashi: Oxygen-ion-induced ripple formation on silicon: Evidence for phase separation and tentative model, Appl. Surf. Sci. 203–204, 35 (2003)

    Google Scholar 

  141. K. Wittmaack: Artifacts in low-energy depth profiling using oxygen primary ion beams: Dependence on impact angle and oxygen flooding conditions, J. Vac. Sci. Technol. B 16, 2776 (1998)

    CAS  Google Scholar 

  142. Z. X. Jiang, P. F. K. Alkemade: Erosion rate change and surface roughening in Si during oblique O2 + bombardment with oxygen flooding. In: Proc 11st Int. Conf. Secondary Ion Mass Spectrometry, SIMS XI, ed. by G. Gillen, R. Lareau, J. Bennett, F. Stevie (Wiley, Chichester 1998) p. 431

    Google Scholar 

  143. K. Kataoka, K. Yamazaki, M. Shigeno, Y. Tada, K. Wittmaack: Surface roughening of silicon under ultra-low-energy cesium bombardment, Appl. Surf. Sci. 203–204, 43 (2003)

    Google Scholar 

  144. K. Wittmaack: Concentration-depth calibration and bombardment-induced impurity relocation in SIMS depth profiling of shallow through-oxide implantation distributions: A procedure for eliminating the matrix effect, Surf. Interface Anal. 26, 290 (1998)

    CAS  Google Scholar 

  145. M. G. Dowsett, J. H. Kelly, G. Rowlands, T. J. Ormsby, B. Guzman, P. Augustus, R. Beanland: On determining accurate positions, separations, and internal profiles for delta layers, Appl. Surf. Sci. 203–204, 273 (2003)

    Google Scholar 

  146. J. B. Clegg, A. E. Morgan, H. A. M. De Grefte, F. Simondet, A. Huebar, G. Blackmore, M. G. Dowsett, D. E. Sykes, C. W. Magee, V. R. Deline: A comparative study of SIMS depth profiling of boron in silicon, Surf. Interface Anal. 6, 162 (1984)

    CAS  Google Scholar 

  147. J. B. Clegg, I. G. Gale, G. Blackmore, M. G. Dowsett, D. S. McPhail, G. D. T. Spiller, D. E. Sykes: A SIMS calibration exercise using multi-element (Cr, Fe and Zn) implanted GaAs, Surf. Interface Anal. 10, 338 (1987)

    CAS  Google Scholar 

  148. K. Miethe, E. H. Cirlin: An international round robin exercise on SIMS depth profiling of silicon delta-doped layers in GaAs. In: Proc 9th Int. Conf. Secondary Ion Mass Spectrometry, SIMS IX, ed. by A. Benninghoven, Y. Nihei, R. Shimizu, H. W. Werner (Wiley, Chichester 1994) p. 699

    Google Scholar 

  149. Y. Okamoto, Y. Homma, S. Hayashi, F. Toujou, N. Isomura, A. Mikami, I. Nomachi, S. Seo, M. Tomita, A. Tamamoto, S. Ichikawa, Y. Kawashima, R. Mimori, Y. Mitsuoka, I. Tachikawa, T. Toyoda, Y. Ueki: SIMS round-robin study of depth profiling of boron implants in silicon. In: Proc 11st Int. Conf. Secondary Ion Mass Spectrometry, SIMS XI, ed. by G. Gillen, R. Lareau, J. Bennett, F. Stevie (Wiley, Chichester 1998) p. 1047

    Google Scholar 

  150. F. Toujou, M. Tomita, A. Takano, Y. Okamoto, S. Hayashi, A. Yamamoto, Y. Homma: SIMS round-robin study of depth profiling of boron implants in silicon, II Problems of quantification in high concentration B profiles. In: Proc 12nd Int. Conf. Secondary Ion Mass Spectrometry, SIMS XII, ed. by A. Benninghoven, P. Bertrand, H.-N. Migeon, H. W. Werner (Wiley, Chichester 2000) p. 101

    Google Scholar 

  151. M. Tomita, T. Hasegawa, S. Hashimoto, S. Hayashi, Y. Homma, S. Kakehashi, Y. Kazama, K. Koezuka, H. Kuroki, K. Kusama, Z. Li, S. Miwa, S. Miyaki, Y. Okamoto, K. Okuno, S. Saito, S. Sasaki, H. Shichi, H. Shinohara, F. Toujou, Y. Ueki, Y. Yamamoto: SIMS round-robin study of depth profiling of arsenic implants in silicon, Appl. Surf. Sci. 203–204, 465 (2003)

    Google Scholar 

  152. I. S. Gilmore, M. P. Seah: Static SIMS: A study of damage using polymers, Surf. Interface Anal. 24, 746 (1996)

    CAS  Google Scholar 

  153. I. S. Gilmore, M. P. Seah: Electron flood gun damage in the analysis of polymers and organics in time of flight SIMS, Appl. Surf. Sci. 187, 89 (2002)

    CAS  Google Scholar 

  154. D. Briggs, A. Brown, J. C. Vickerman: Handbook of Static Secondary Ion Mass Spectrometry (SIMS) (Wiley, Chichester 1989)

    Google Scholar 

  155. J. G. Newman, B. A. Carlson, R. S. Michael, J. F. Moulder, T. A. Honit: Static SIMS Handbook of Polymer Analysis (Perkin Elmer, Eden Prairie 1991)

    Google Scholar 

  156. J. C. Vickerman, D. Briggs, A. Henderson: The Static SIMS Library (Surface Spectra, Manchester 2003) version 2

    Google Scholar 

  157. B. C. Schwede, T. Heller, D. Rading, E. Niehius, L. Wiedmann, A. Benninghoven: The Münster High Mass Resolution Static SIMS Library (ION-TOF, Münster 2003)

    Google Scholar 

  158. R. Kersting, B. Hagenhoff, F. Kollmer, R. Möllers, E. Niehuis: Influence of primary ion bombardment conditions on the emission of molecular secondary ions, Appl. Surf. Sci. 231–232, 261 (2004)

    Google Scholar 

  159. I. S. Gilmore, M. P. Seah: Static TOF-SIMS – A VAMAS interlaboratory study, Part I: Repeatability and reproducibility of spectra, Surf. Interface Anal. 37, 651 (2005)

    CAS  Google Scholar 

  160. F. M. Green, I. S. Gilmore, M. P. Seah: Mass accuracy in TOF-SIMS, Appl. Surf. Sci. accepted for publication

    Google Scholar 

  161. I. S. Gilmore, M. P. Seah: A static SIMS interlaboratory study, Surf. Interface Anal. 29, 624 (2000)

    CAS  Google Scholar 

  162. A. Benninghoven, D. Stapel, O. Brox, B. Binkhardt, C. Crone, M. Thiemann, H. F. Arlinghaus: Static SIMS with molecular primary ions. In: Proc 12nd Int. Conf. Secondary Ion Mass Spectrometry, SIMS XII, ed. by A. Benninghoven, P. Bertrand, H.-N. Migeon, H. W. Werner (Wiley, Chichester 2000) p. 259

    Google Scholar 

  163. A. Schneiders, M. Schröder, D. Stapel, H. F. Arlinghaus, A. Benninghoven: Molecular secondary particle emission from molecular overlayers under SF5 + bombardment. In: Proc 12nd Int. Conf. Secondary Ion Mass Spectrometry, SIMS XII, ed. by A. Benninghoven, P. Bertrand, H.-N. Migeon, H. W. Werner (Wiley, Chichester 2000) p. 263

    Google Scholar 

  164. R. Kersting, B. Hagenhoff, P. Pijpers, R. Verlack: The influence of primary ion bombardment conditions on the secondary ion emission behaviour of polymer additives, Appl. Surf. Sci. 203–204, 561 (2003)

    Google Scholar 

  165. I. S. Gilmore, M. P. Seah: G-SIMS of crystallisable organics, Appl. Surf. Sci. 203–204, 551 (2003)

    Google Scholar 

  166. S. C. C. Wong, R. Hill, P. Blenkinsopp, N. P. Lockyer, D. E. Weibel, J. C. Vickerman: Development of a C60 + ion gun for static SIMS and chemical imaging, Appl. Surf. Sci. 203–204, 219 (2003)

    Google Scholar 

  167. D. E. Weibel, N. Lockyer, J. C. Vickerman: C60 cluster ion bombardment of organic surfaces, Appl. Surf. Sci. 231–232, 146 (2003)

    Google Scholar 

  168. N. Davies, D. E. Weibel, P. Blenkinsopp, N. Lockyer, R. Hill, J. C. Vickerman: Development and experimental application of a gold liquid metal ion source, Appl. Surf. Sci. 203–204, 223 (2003)

    Google Scholar 

  169. I. S. Gilmore, M. P. Seah: Organic molecule characterisation – G-SIMS, Appl. Surf. Sci. 231–232, 224 (2004)

    Google Scholar 

  170. I. S. Gilmore, M. P. Seah: Static SIMS: Towards unfragmented mass spectra – The G-SIMS procedure, Appl. Surf. Sci. 161, 465 (2000)

    CAS  Google Scholar 

  171. L. De Chiffre, P. Lonardo, H. Trumpold, D. A. Lucca, G. Goch, C. A. Brown, J. Raja, H. N. Hansen: Quantitative characterisation of surface texture, CIRP Ann. 49(2), 635–652 (2000)

    Google Scholar 

  172. ISO 8785: 1998 Geometrical Product Specifications (GPS) – Surface imperfections – Terms, definitions and parameters (ISO, Geneva 1990)

    Google Scholar 

  173. ISO 1302: 2002 Geometrical Product Specifications (GPS) – Indication of surface texture in technical product documentation (ISO, Geneva 2002)

    Google Scholar 

  174. ISO 4287: 1997 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Terms, definitions and surface texture parameters (ISO, Geneva 1997)

    Google Scholar 

  175. ISO 12085: 1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Motif parameters (ISO, Geneva 1996)

    Google Scholar 

  176. ISO 13565-1: 1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method; Surface having stratified functional properties - Part 1: Filtering and general measurement conditions (ISO, Geneva 1996)

    Google Scholar 

  177. ISO 13565-2: 1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method; Surfaces having stratified functional properties – Part 2: Height characterization using the linear material ratio curve (ISO, Geneva 1996)

    Google Scholar 

  178. ISO 13565-3: 1998 Geometrical Product Specifications (GPS) – Surface texture: Profile method; Surfaces having stratified functional properties – Part 3: Height characterization using the material probability curve (ISO, Geneva 1998)

    Google Scholar 

  179. ISO 4288: 1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Rules and procedures for the assessment of surface texture (ISO, Geneva 1996)

    Google Scholar 

  180. ISO 11562: 1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Metrological characteristics of phase correct filters (ISO, Geneva 1996)

    Google Scholar 

  181. ISO 12179: 2000 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Calibration of contact (stylus) instruments (ISO, Geneva 2000)

    Google Scholar 

  182. ISO 3274: 1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Nominal characteristics of contact (stylus) instruments (ISO, Geneva 1996)

    Google Scholar 

  183. ISO 5436-1: 2000 Geometrical Product Specifications (GPS) – Surface texture: Profile method; Measurement standards – Part 1: Material measures (ISO, Geneva 2000)

    Google Scholar 

  184. ISO 5436-2: 2001 Geometrical Product Specifications (GPS) – Surface texture: Profile method; Measurement standards – Part 2: Software measurement standards (ISO, Geneva 2001)

    Google Scholar 

  185. M. Stedman: Basis for comparing the performance of surface measuring machines, Precis. Eng. 9, 149–152 (1987)

    Google Scholar 

  186. D. J. Whitehouse: Handbook of Surface and Nanometrology (Institute of Physics Publishing, Bristol 2003)

    Google Scholar 

  187. T. R. Thomas: Rough Surfaces, 2 edn. (Imperial College Press, London 1999)

    Google Scholar 

  188. K. J. Stout, L. Blunt: Three-Dimensional Surface Topography (Penton, London 2000)

    Google Scholar 

  189. M. C. Malburg, J. Raja: Characterization of surface texture generated by plateau honing process, CIRP Ann. 42(1), 637–639 (1993)

    Google Scholar 

  190. K. J. Stout, P. J. Sullivan, W. P. Dong, E. Mainsah, N. Luo, T. Mathia, H. Zahouani: The Development of Methods for the Characterisation of Roughness in Three Dimensions, Report EUR 15178 EN (European Commission, Brussels 1993)

    Google Scholar 

  191. K. J. Stout: Three Dimensional Surface Topography, Measurement, Interpretation and Applications (Penton, London 1994)

    Google Scholar 

  192. L. Blunt, X. Jiang: Advanced Techniques for Assessment Surface Topography (Penton, London 2003)

    Google Scholar 

  193. R. Hillmann: Surface profiles obtained by means of optical methods - Are they true representations of the real surface?, CIRP Ann. 39(1), 581–583 (1990)

    Google Scholar 

  194. P. M. Lonardo, L. De Chiffre, A. A. Bruzzone: Characterisation of functional surfaces. In: Proc. Int. Conf. on Tribology in Manufacturing Processes, ed. by N. Bay (IPL, Technical University of Denmark, Kgs. Lyngby, Denmark 2004)

    Google Scholar 

  195. P. Bariani: Dimensional Metrology for Microtechnology Ph.D. Thesis (Department of Manufacturing Engineering and Management, Technical University of Denmark, Lyngby 2004)

    Google Scholar 

  196. G. Binnig, C. F. Quate, Ch. Gerber: Atomic Force Microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Google Scholar 

  197. P. M. Lonardo, D. A. Lucca, L. De Chiffre: Emerging trends in surface metrology, CIRP Ann. 51(2), 701–723 (2002)

    Google Scholar 

  198. J. Garnaes, N. Kofod, A. Kühle, C. Nielsen, K. Dirscherl, L. Blunt: Calibration of step heights and roughness measurements with atomic force microscopes, Precis. Eng. 27, 91–98 (2003)

    Google Scholar 

  199. N. Kofod: Validation and Industrial Application of AFM Ph.D. Thesis (Technical University of Denmark and Danish Fundamental Metrology, Lyngby 2002)

    Google Scholar 

  200. L. De Chiffre, H. N. Hansen, N. Kofod: Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine, CIRP Ann. 48(1), 463–466 (1999)

    Google Scholar 

  201. H. N. Hansen, P. Bariani, L. De Chiffre: Modelling and measurement uncertainty estimation for integrated AFM-CMM instrument, Ann. CIRP 54(1), 531–534 (2005)

    Google Scholar 

  202. J. C. Wyant, J. Schmit: Large field of view, high spatial resolution, surface measurements, Int. J. Machine Tools Manuf. 38(5-6), 691–698 (1998)

    Google Scholar 

  203. K. Yanagi, M. Hasegawa, S. Hara: A computational method for stitching a series of 3D surface topography data measured by microscope-type surface profiling instruments. In: Proc. 3rd EUSPEN Int. Conf. 2, ed. by F. L. M. Delbressine, P. H. J. Schellekens, F. G. A. Homburg, H. Haitjema (TU Eindhoven, Eindhoven 2002) pp. 653–656

    Google Scholar 

  204. S. H. Huerth, H. D. Hallen: Quantitative method of image analysis when drift is present in a scanning probe microscope, J. Vac. Sci. Technol. 21(2), 714–718 (2003)

    CAS  Google Scholar 

  205. G. Dai, F. Pohlenz, H. U. Danzebrink, M. Xu, K. Hasche, G. Wilkening: A novel metrological large range scanning probe microscope applicable for versatile traceable topography measurements.. In: Proc 4th EUSPEN Int. Conf. (euspen, Glasgow 2004) pp. 228–229

    Google Scholar 

  206. A. Boyde: Quantitative photogrammetric analysis and qualitative stereoscopic analysis of SEM images, J. Microsc. 98, 452–471 (1973)

    Google Scholar 

  207. W. Hillmann: Rauheitsmessung mit dem Raster–Elektronenmikroskop (REM), Technisches Messen 47, V 9116–6 (1980)

    Google Scholar 

  208. G. Piazzesi: Photogrammetry with the scanning electron microscope, J. Phys. E 6(4), 392–396 (1973)

    Google Scholar 

  209. O. Kolednik: A contribution to stereo-photogrammetry with the scanning electron microscope., Pract. Metallogr. 18, 562–573 (1981)

    Google Scholar 

  210. S. Scherer: 3D surface analysis in scanning electron microscopy, G.I.T Imag. Microsc. 3, 45–46 (2002)

    Google Scholar 

  211. M. Schubert, A. Gleichmann, M. Hemmleb, J. Albertz, J. M. Köhler: Determination of the height of a microstructure sample by a SEM with a conventional and a digital photogrammetric method, Ultramicroscopy 63, 57–64 (1996)

    CAS  Google Scholar 

  212. Alicona Imaging: MeX software. Alicona Imaging GmbH, Graz, Austria

    Google Scholar 

  213. P. Bariani: Investigation on Traceability of 3D SEM based on the Stereo-Pair Technique, IPL Internal Report (Technical University of Denmark, Lungby 2003)

    Google Scholar 

  214. P. Bariani, L. De Chiffre, H. N. Hansen, A. Horsewell: Investigation on the traceability of three dimensional scanning electron microscope measurements based on the stereo-pair technique, Precis. Eng. 29, 219–228 (2005)

    Google Scholar 

  215. V. T. Vorburger, E. C. Teague: Optical techniques for on-line measurement of surface topography, Precis. Eng. 3, 61–83 (1981)

    Google Scholar 

  216. G. Staufert, E. Matthias: Kennwerte der Oberflächenrauhigkeit und ihre Aussagekraft hinsichtlich der Charakterisierung bestimmter Oberflächentypen, CIRP Ann. 25(1), 345–350 (1977)

    Google Scholar 

  217. S. Christiansen, L. De Chiffre: Topographic characterisation of progressive wear on deep drawing dies, Trib. Trans. 40, 346–352 (1997)

    CAS  Google Scholar 

  218. Image Metrology APS: Scanning Probe Image Processor (SPIP) (Image Metrology APS, Lyngby 2005) see www.imagemet.com

  219. L. De Chiffre, H. Kunzmann, G. N. Peggs, D. A. Lucca: Surfaces in precision engineering, microengineering and nanotechnology., CIRP Ann. 52(2), 561–577 (2003)

    Google Scholar 

  220. ISO: International Vocabulary of Basic and General Terms in Metrology (ISO, Geneva 1993)

    Google Scholar 

  221. H. Haitjema, M. Morel: Traceable roughness measurements of products. In: Proc 1st EUSPEN Topical Conf. Fabrication Metrology in Nanotechnology, Vol. 2, ed. by L. De Chiffre, K. Carneiro (IPL, Technical University of Denmark, Kgs. Lyngby, Denmark 2000) pp. 373–381

    Google Scholar 

  222. R. Leach: Calibration, traceability and uncertainty issues in surface texture metrology. NPL report CLM 7 (National Physical Laboratory, Teddington 1999)

    Google Scholar 

  223. L. Koenders, J. L. Andreasen, L. De Chiffre, L. Jung, R. Krüger-Sehm: Supplementary comparison euromet, L-S11 comparison on surface texture, Metrologia 41, 04001 (2004)

    Google Scholar 

  224. EAL G20: Calibration of Stylus Instruments for Measuring Surface Roughness, 1 edn. (European Cooperation for Accreditation, Paris 1996) pp. 1–9

    Google Scholar 

  225. N. Kofod, J. Garnaes, J. F. Jørgensen: Calibrated line measurements with an atomic force microscope, Proc. 1st EUSPEN Topical Conf. Fabrication and Metrology in Nanotechnology 2, 373–381 (2000)

    Google Scholar 

  226. N. Kofod, J. F. Jørgensen: Methods for lateral calibration of Scanning Probe Microscopes based on two-dimensional transfer standards, Proc 4th Seminar on Quantitative Microscopy (QM), Semmering, Austria 2000, ed. by K. Hasche, W. Mirandé, G. Wilkening (PTB, Braunschweig, Germany 2000) 36–43

    Google Scholar 

  227. J. Garnaes, L. Nielsen, K. Dirscherl, J. F. Jorgensen, J. B. Rasmussen, P. E. Lindelof, C. B. Sorensen: Two-dimensional nanometre-scale calibration based on one-dimensional gratings, Appl. Phys. A 66, S831–S835 (1998)

    CAS  Google Scholar 

  228. R. Leach, A. Hart: A comparison of stylus and optical methods for measuring 2D surface texture, NPL Report CBTLM 15 (National Physical Laboratory, Teddington 2002)

    Google Scholar 

  229. R. Krüger-Sehm, J. A. Luna Perez: Proposal for a guideline to calibrate interference microscopes for use in roughness measurement, Machine Tools Manufact. 41, 2123–2137 (2001)

    Google Scholar 

  230. P. M. Lonardo, H. Trumpold, L. De Chiffre: Progress in 3D surface microtopography characterization, CIRP Ann. 45(2), 589–598 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Seah Dr. or Leonardo Chiffre Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Seah, M., Chiffre, L. (2006). Surface and Interface Characterization. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_6

Download citation

Publish with us

Policies and ethics