Skip to main content

Chemical Composition

  • Reference work entry
  • 13k Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

Measurements of the chemical compositions of materials and the levels of certain substances in them are vital when assessing and improving public health, safety and the environment, are necessary to ensure trade equity, and are required when monitoring and improving industrial products and services. Chemical measurements play a crucial role in most areas of the economy, including healthcare, food and nutrition, agriculture, environmental technologies, chemicals and materials, instrumentation, electronics, forensics, energy, and transportation.

This chapter presents a broad overview of the analytical techniques that can be used to perform the “higher order chemical characterization of materials”. Techniques covered include mass spectrometry, molecular spectrometry, atomic spectrometry, nuclear analytical methods, chromatographic methods and classical chemical methods.

For each technique, information is provided on the principle(s) of operation, the scope of the technique, the nature of the sample that can be used, qualitative analysis, traceable quantitative analysis, and key references. Examples of representative data are provided for each technique, where possible.

This is a preview of subscription content, log in via an institution.

Abbreviations

AED:

atomic emission detector

AES:

Auger electron spectroscopy

APCI:

atmospheric pressure chemical ionization

ASTM:

American Society for Testing and Materials

ATR:

attenuated total reflection

BLRF:

bispectral luminescence radiance factor

CCD:

digitized with charge-coupled device

CE:

capillary electrophoresis

CE:

counter electrode

CIEF:

capillary isoelectric focusing

CITP:

capillary isotachophoresis

CMA:

cylindrical mirror analyzer

CPAA:

charged particle activation analysis

CRM:

certified reference material

CTD:

charge transfer device

CW:

continuous wave

CZE:

capillary zone electrophoresis

DC:

direct-current

ECD:

electron capture detector

EDS:

energy-dispersive spectrometer

EELS:

electron energy-loss spectroscopy

ELSD:

evaporative light scattering detector

EPMA:

electron probe microanalysis

ESEM:

environmental scanning electron microscope

FIB:

focused ion beam

FID:

flame ionization detector

FID:

free-induction decay

FNAA:

neutron activation analysis

FPD:

flame photometric detector

FT:

Fourier transform

GC-IR:

gas chromatography–infrared

GC:

gas chromatography

GSED:

gaseous secondary electron detector

HSA:

hemispherical analyzer

ICP-OES:

ICP optical emission spectrometry

ICP:

inductively coupled plasma

ICR:

ion cyclotron resonance

IR:

infrared region

ISO:

International Organization for Standardization

LC:

liquid chromatography

LED:

light-emitting diode

MDM:

minimum detectable mass

MLLSQ:

multiple linear least squares

MMF:

minimum mass fraction

MS:

mass spectrometer

NAA:

neutron activation analysis

NDP:

neutron depth profiling

NIR:

near infrared

NIST:

National Institute of Standards and Technology

NMI:

National Metrology Institute

NMR:

nuclear magnetic resonance

ODS:

octadecylsilane

OES:

optical emission spectrometry

PAH:

polycyclic aromatic hydrocarbon

PID:

photoionization detector

PIXE:

particle-induced X-ray emission

PMT:

photomultiplier tube

PTFE:

polytetrafluoroethylene

RF:

radiofrequency

RPLC:

reversed-phase liquid chromatography

RSF:

relative sensitivity factor

S/N:

signal-to-noise ratio

SDD:

silicon drift detector

SEM:

scanning electron microscope

SRE:

stray radiant energy

STEM:

scanning transmission electron microscope

TCD:

thermal conductivity detector

TEM:

transmission electron microscope

TGA-IR:

thermal gravimetric analysis–infrared

TMS:

tetramethylsilane

TOF:

time-of-flight

UHV:

ultrahigh vacuum

UVSG:

UV Spectrometry Group

WDS:

wavelength dispersive spectrometer

XRF:

X-ray-fluorescence

References

  1. A. Montaser, D. W. Golightly (Eds.): Inductively Coupled Plasmas in Analytical Atomic Spectrometry, 2nd edn. (Wiley-VCH, Weinheim 1992)

    Google Scholar 

  2. R. K. Marcus (Ed.): Glow Discharge Spectroscopies (Plenum, New York 1993) p. 514

    Google Scholar 

  3. R. K. Marcus, J. A. C. Broekaert (Eds.): Glow Discharge Plasmas in Analytical Spectroscopy (Wiley, Chichester 2003) p. 482

    Google Scholar 

  4. R. S. Houk, V. A. Fassel, G. D. Flesch, H. J. Svec, A. L. Gray, C. E. Taylor: Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements, Anal. Chem. 52, 2283–2289 (1980)

    CAS  Google Scholar 

  5. P. Semeniuk, S. Berman: Analysis of high purity metals and semiconductor materials by glow discharge mass spectrometry, Spectrochim. Acta Rev. 13, 1–10 (1990)

    Google Scholar 

  6. W. W. Harrison, K. R. Hess, R. K. Marcus, F. L. King: Glow discharge mass spectrometry, Anal. Chem. 58, 341A–342A, 344A, 346A, 348A, 350A, 352A, 354A, 356A (1986)

    CAS  Google Scholar 

  7. W. W. Harrison, B. L. Bentz: Glow discharge mass spectrometry, Prog. Anal. Spectrosc. 11, 53–110 (1988)

    CAS  Google Scholar 

  8. M. R. Winchester, R. Payling: Radio-frequency glow discharge spectrometry: A critical review, Spectrochim. Acta B 59, 607–666 (2004)

    Google Scholar 

  9. C. Burgess, T. Frost (Eds.): Standards and Best Practice in Absorption Spectrometry (Blackwell Science, Oxford 1999)

    Google Scholar 

  10. G. Wyszecki, W. S. Stiles: Color Science, 2nd edn. (Wiley-Interscience, New York 1982)

    Google Scholar 

  11. ISO: International Vocabulary of Basic and General Terms in Metrology (VIM), 2nd ed., (BIPM/IEC/IFCC/ISO/IUPAC/IUPAP/OIML, International Organization for Standardization, Geneva, 1993)

    Google Scholar 

  12. ISO: Guide 34, General Requirements for the Competence of Reference Material Producers, 2nd ed., (International Organization for Standardization, Geneva, 2000)

    Google Scholar 

  13. ISO: International Standard ISO/IEC 17025, General Requirements for the Competence of Testing and Calibration Laboratories, 1st ed., (International Organization for Standardization, Geneva, 1999)

    Google Scholar 

  14. J. R. Lakowicz: Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York 1999)

    Google Scholar 

  15. ASTM: ASTM Standard E388, Standard test method for wavelength accuracy and spectral bandwidth of fluorescence spectrometers, in Annual Book of ASTM Standards, Vol. 03.06, (ASTM, West Conshohocken 2004)

    Google Scholar 

  16. K. D. Mielenz (Ed.): Optical radiation measurements. In: Measurement of Photoluminescence, Vol. 3 (Academic, New York 1982) pp. 15–154

    Google Scholar 

  17. J. N. Miller: Techniques in visible and ultraviolet spectrometry. In: Standards in Fluorescence Spectrometry, Vol. 2, ed. by J. N. Miller (Chapman and Hall, New York 1981)

    Google Scholar 

  18. R. L. McCreery: Raman Spectroscopy for Chemical Analysis, Chemical Analysis, Vol. 157 (Wiley, New York 2000)

    Google Scholar 

  19. P. R. Griffiths, J. A. de Haseth: Fourier Transform Infrared Spectrometry (Wiley, New York 1986)

    Google Scholar 

  20. P. B. Coleman (Ed.): Practical Sampling Techniques for Infrared Analysis (CRC, Boca Raton 1993)

    Google Scholar 

  21. R. M. Silverstein, F. X. Webster: Spectrometric Identification of Organic Compounds, 6th edn. (Wiley, New York 1998)

    Google Scholar 

  22. D. L. Rabenstein, D. A. Keire: Quantitative analysis by NMR. In: Modern NMR Techniques and Their Application in Chemistry, Vol. 11, ed. by A. I. Popov, Hallenga (Dekker, New York 1991) Chap. 5, pp. 323–369

    Google Scholar 

  23. F. Kasler: Quantitative Analysis by NMR Spectroscopy (Academic, New York 1973)

    Google Scholar 

  24. H. Jancke: NMR spectroscopy as a primary analytical method, CCQM Report 98(2), 1–12 (1998)

    Google Scholar 

  25. J. P. Heeschen: Nuclear magnetic resonance spectroscopy. In: The Characterization of Chemical Purity Organic Compounds, ed. by K. Staveley L. A. (International Union of Pure and Applied Chemistry, Butterworth and Co, London 1977) pp. 137–147

    Google Scholar 

  26. D. Filmore: Seeing with spectroscopy. In: Chronicles of Chemistry II: Enterprise of the Chemical Sciences, Supplemental publication of the American Chemical Society, ed. by J. F. Ryan (ACS, Washington 2004) p. 87

    Google Scholar 

  27. J. C. Travis, J. C. Acosta, G. Andor, J. Bastie, P. Blattner, C. J. Chunnilall, S. C. Crosson, D. L. Duewer, E. A. Early, F. Hengstberger, C. Kim, L. Liedquist, F. Manoocheri, F. Mercader, A. Mito, L. A. G. Monard, S. Nevas, M. Nilsson, M. Noël, A. C. Rodriguez, A. Ruíz, A. Schirmacher, M. V. Smith, G. Valencia, N. van Tonder, J. Zwinkels: Intrinsic wavelength standard absorption bands in holmium oxide solutions for UV/visible molecular absorption spectrophotometry, J. Phys. Chem. Ref. Data 34, 41–56 (2005)

    CAS  Google Scholar 

  28. R. A. Velapoldi, K. D. Mielenz: A fluorescence standard reference material: Quinine sulfate dihydrate, NBS special publication NIST SP 260-64, 122 (1980)

    Google Scholar 

  29. S. J. Choquette, E. E. Etz, W. Hurst, D. Blackburn: Relative intensity correction standards for Raman spectroscopy for excitation with several common laser wavelengths, Am. Pharm. Rev. 6(2), 74–80 (2003)

    CAS  Google Scholar 

  30. S. J. Choquette, S. N. Chesler, D. L. Duewer, S. Wang, T. C. O'Haver: Identification and quantitation of oxygenates in gasoline ampules using FT-NIR and FT-Raman spectroscopy, Anal. Chem. 68(20), 3525 (1996)

    CAS  Google Scholar 

  31. L. Griffiths, A. M. Irving: Assay by nuclear magnetic resonance spectroscopy: Quantification limits, Analyst 123, 1061–1068 (1998)

    CAS  Google Scholar 

  32. National Institute of Standards and Technology: http://ts.nist.gov/traceability/ (2001)

  33. National Institute of Standards and Technology: NIST Physics Laboratory, Optical Technology Division: Facilities website http://physics.nist.gov/Divisions/Div844/facilities/specphoto/facilities.html#trans (2004)

  34. National Institute of Standards and Technology: NIST calibration services website http://ts.nist.gov/ts/htdocs/230/233/calibrations/ (2005)

  35. J. D. Ingle Jr., S. R. Crouch: Spectrochemical Analysis (Prentice-Hall, Englewood Cliffs 1988)

    Google Scholar 

  36. J. R. Dean, D. J. Ando (Eds.): Atomic Absorption and Plasma Spectroscopy (Wiley, New York 1997)

    Google Scholar 

  37. A. Montaser, D. W. Golightly (Eds.): Inductively Coupled Plasmas in Analytical Atomic Spectrometry, 2nd edn. (Wiley-VCH, Weinheim 1992)

    Google Scholar 

  38. R. D. Sacks: Emission spectroscopy. In: Treatise on Analytical Chemistry, Vol. 7, 2nd edn., ed. by I. M. Kolthoff, P. J. Elving (Wiley-Interscience, New York 1981) Chap. 6

    Google Scholar 

  39. R. K. Marcus (Ed.): Glow Discharge Spectroscopies (Plenum, New York 1993) p. 514

    Google Scholar 

  40. R. Payling, D. Jones, A. Bengtson (Eds.): Glow Discharge Optical Emission Spectrometry (Wiley, Chichester 1997) p. 846

    Google Scholar 

  41. R. K. Marcus, J. A. C. Broekaert (Eds.): Glow Discharge Plasmas in Analytical Spectroscopy (Wiley, Chichester 2003) p. 482

    Google Scholar 

  42. T. Nelis, R. Payling: Glow Discharge Optical Emission Spectroscopy: A Practical Guide, ed. by N. W. Barnett (The Royal Society of Chemistry, Cambridge 2003) p. 211

    Google Scholar 

  43. R. Jenkins: Practical X-Ray Spectrometry, 2nd edn. (Springer, Berlin, Heidelberg 1970) p. 190

    Google Scholar 

  44. R. E. Van Grieken, A. A. Markowicz (Eds.): Handbook of X-Ray Spectrometry, 2nd edn. (Dekker, New York 2002) p. 1016

    Google Scholar 

  45. E. P. Bertin: Principles and Practice of X-Ray Spectrometric Analysis, 2nd edn. (Plenum, New York 1975) p. 1079

    Google Scholar 

  46. B. Dziunikowski (Ed.): Energy Dispersive X-Ray Fluorescence Analysis (Elsevier, New York 1989) p. 431

    Google Scholar 

  47. A. Walsh: The application of atomic absorption spectra to chemical analysis, Spectrochim. Acta 27B, 108 (1955)

    Google Scholar 

  48. V. A. Fassel, R. N. Kniseley: Inductively coupled plasma-optical emission spectroscopy, Anal. Chem. 46A, 1110 (1974)

    Google Scholar 

  49. M. R. Winchester, R. Payling: Radio-frequency glow discharge spectrometry: A critical review, Spectrochim. Acta Part B 59, 607–666 (2004)

    Google Scholar 

  50. D. De Soete, R. Gijbels, J. Hoste: Neutron Activation Analysis (Wiley-Interscience, London 1972)

    Google Scholar 

  51. S. J. Parry: Handbook of Neutron Activation Analysis (Viridian, Surrey 2003)

    Google Scholar 

  52. A. Vertes, S. Nagy, Z. Klencsar: Handbook of Nuclear Chemistry, Chemical Applications of Nuclear Reactions and Radiations, Vol. 3, ed. by G. L. Molnar (Kluwer Academic, Dordrecht 2003)

    Google Scholar 

  53. G. L. Molnár, Zs. Révay (Eds.): Handbook of Prompt Gamma Activation Analysis with Neutron Beams (Kluwer Academic, Dordrecht 2004)

    Google Scholar 

  54. Z. B. Alfassi, C. Chung (Eds.): Prompt Gamma Neutron Activation Analysis (CRC, Boca Raton 1995)

    Google Scholar 

  55. IAEA: Use of Accelerator Based Neutron Sources, IAEA-TECDOC-1153 (International Atomic Energy Agency, Vienna 2000)

    Google Scholar 

  56. R. Paul: The use of element ratios to eliminate analytical bias in cold neutron prompt gamma-ray activation analysis, J. Radioanal. Nucl. Chem. 191(2), 245–256 (1995)

    CAS  Google Scholar 

  57. R. R. Greenberg, R. F. Fleming, R. Zeisler: High sensitivity neutron activation analysis of biological/environmental standard reference materials, Environ. Int. 10, 129 (1984)

    CAS  Google Scholar 

  58. R. L. Paul, R. M. Lindstrom: Prompt gamma-ray activation analysis: Fundamentals and applications, J. Radioanal. Nucl. Chem. 243, 181–189 (2000)

    CAS  Google Scholar 

  59. W. Goerner, A. Berger, K. H. Ecker, O. Haase, M. Hedrich, C. Segebade, G. Weidemann, G. J. Wermann: Broad band application of combined instrumental photon and neutron activation analysis, Radioanal. Nucl. Chem. 248(1), 45–52 (2001)

    Google Scholar 

  60. ASTM: ASTM E 385–90, Annual Book of ASTM Standards, Vol 12.02 (ASTM, West Conshohocken 1990)

    Google Scholar 

  61. C. Yonezawa: Prompt-ray analysis of elements using cold and thermal reactor guided neutron beams, Anal. Sci. 9, 185 (1993)

    CAS  Google Scholar 

  62. J. F. Ziegler, G. W. Cole, J. E. E. Baglin: Technique for determining concentration profiles of boron impurities in substrates, J. Appl. Phys. 43, 3809 (1972)

    CAS  Google Scholar 

  63. J. P. Biersack, D. Fink: Observation of the blocking effect after 6Li (n, t) 4He reactions with thermal neutrons, Nucl. Instrum. Methods 108, 397–399 (1973)

    CAS  Google Scholar 

  64. D. Fink: Neutron depth profiling, Rep. Hahn-Meitner Inst. (HMI)-B 539, 307 (1996)

    Google Scholar 

  65. J. F. Ziegler: The Stopping and Ranges of Ions in Matter (Pergamon, New York 1977)

    Google Scholar 

  66. J. F. Ziegler: Public Domain Computer Code, SRIM-2003 (IBM-Research, Yorktown 2003)

    Google Scholar 

  67. C. Segebade, H. P. Weise, G. J. Lutz: Photon Activation Analysis (Hawthorne, New York 1987)

    Google Scholar 

  68. K. Srijckmans: Chemical Analysis by Nuclear Methods, ed. by Z. B. Alfassi (Wiley, Chichester 1994) Chap. 10, pp. 215–252

    Google Scholar 

  69. S. A. E. Johansson, J. L. Campbell, K. G. Malmqvist: Particle-induced X-ray emission spectroscopy (PIXE). In: Chemical Analysis: A Series of Monographs on Analytical Chemistry and its Applications, Vol. 133, ed. by D. Winfordner (Wiley, Chichester 1995)

    Google Scholar 

  70. S. S. Nagolwalla, E. P. Przybylowicz: Activation Analysis with Neutron Generators (Wiley, New York 1973)

    Google Scholar 

  71. W. D. James, R. Zeisler: Uptake of oxygen in a coal standard reference material® determined by fast (14-MeV) neutron activation analysis, J. Radioanal. Nucl. Chem 248, 233–237 (2001)

    CAS  Google Scholar 

  72. W. D. James, M. S. Akanni: IEEE Trans. Nucl. Sci. NS-30, 1610–1613 (1983)

    CAS  Google Scholar 

  73. H. M. McNair, J. M. Miller: Basic Gas Chromatography (Wiley-Interscience, New York 1998)

    Google Scholar 

  74. M. C. McMaster: GC/MS: A Practical User's Guide (Wiley-Interscience, New York 1998)

    Google Scholar 

  75. K. J. Hyber (Ed.): High Resolution Gas Chromatography (Hewlett-Packard, Wilmington 1989)

    Google Scholar 

  76. L. R. Snyder, J. J. Kirkland: Introduction to Modern Liquid Chromatography (Wiley Interscience, New York 1979)

    Google Scholar 

  77. L. R. Snyder, J. J. Kirkland, J. L. Glajch: Practical HPLC Method Development (Wiley, New York 1997)

    Google Scholar 

  78. C. F. Poole: The Essence of Chromatography (Elsevier, San Diego 2003)

    Google Scholar 

  79. S. F. Y. Li: Capillary Electrophoresis (Elsevier, New York 1993)

    Google Scholar 

  80. J. W. Jorgenson, K. D. Lukacs: Zone electrophoresis in open-tubular glass capillaries, Anal. Chem. 53, 1298–1302 (1981)

    CAS  Google Scholar 

  81. K. D. Altria: Overview of the status and applications of capillary electrophoresis, J. Chromatogr. A 1023, 1–14 (2004)

    CAS  Google Scholar 

  82. J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse: Electrospray ionization for mass spectrometry of large biomolecules, Science 246, 64 (1989)

    CAS  Google Scholar 

  83. S. S-C. Tai, M. J. Welch: Development and evaluation of a candidate reference method for the determination of total cortisol in human serum using isotope-dilution liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, Anal. Chem. 76, 1008–1014 (2004)

    CAS  Google Scholar 

  84. T. R. Dulski: A Manual for the Chemical Analysis of Metals (ASTM, West Conshohocken 1996)

    Google Scholar 

  85. C. O. Ingamells: Applied Geochemical Analysis (Wiley-Interscience, New York 1986)

    Google Scholar 

  86. J. Berčik: Metrologie: coulometria (Olomouc, Czechoslovakia 1986)

    Google Scholar 

  87. T. W. Vetter, K. W. Pratt, G. C. Turk, C. M. Beck II., T. A. Butler: Using instrumental techniques to increase the accuracy of the gravimetric determination of sulfate, Analyst 120, 2025–2032 (1995)

    CAS  Google Scholar 

  88. J. R. Moody, T. W. Vetter: Development of the ion exchange-gravimetric method for sodium in serum as a definitive method, J. Res. Natl. Inst. Stan. 101(2), 155–164 (1996)

    CAS  Google Scholar 

  89. Analytical Chemists' Committee of Imperial Chemical Industries, Ltd.: The standartization of volumetric solutions, Analyst 75, 577–604 (1950)

    Google Scholar 

  90. M. Máriássy, L. Vyskočil, A. Mathiasová: Link to the SI via primary direct methods, Accred. Qual. Assur. 5(10-11), 437–440 (2000)

    Google Scholar 

  91. K. W. Pratt: High-precision couloumetry. 1. Engineering and instrumentation, Anal. Chim. Acta 294, 125–134 (1994)

    Google Scholar 

  92. G. Marinenko, J. K. Taylor: Precise coulometric titrations of potassium dichromate, J. Res. Natl. Inst. Stan. 67A(5), 453–459 (1963)

    CAS  Google Scholar 

  93. 5th CCQM Meeting, p.83, available at http://www.bipm.org/en/committees/cc/ccqm/publications_cc.html

    Google Scholar 

  94. I. M. Kolthoff, E. B. Sandell, E. J. Meehan, S. Bruckenstein: Quantitative Analysis, 4th edn. (Macmillan, New York 1969)

    Google Scholar 

  95. I. M. Kolthoff: Volumetric Analysis, Vol. 3, 2nd edn. (Interscience, New York 1942-1957)

    Google Scholar 

  96. IUPAC commission on atomic weights of the elements 2001, Pure Appl. Chem. 75(8), 1107–1122 (2003)

    Google Scholar 

  97. D. C. Joy, A. D. Romig, J. I. Goldstein (Eds.): Principles of Analytical Electron Microscopy (Plenum, New York 1986) pp. 0–306

    Google Scholar 

  98. D. B. Williams, B. C. Carter: Transmission Electron Microscopy: A Textbook for Materials Science (Kluwer Academic/Plenum, New York 1996) pp. 0–306

    Google Scholar 

  99. R. F. Egerton: Electron energy-loss spectroscopy. In: The Electron Microscope (Kluwer Academic/Plenum, New York 1996) pp. 0–306

    Google Scholar 

  100. L. Reimer: Transmission Electron Microscopy (Springer, Berlin, Heidelberg 1993) pp. 0–387

    Google Scholar 

  101. D. B. Williams, J. I. Goldstein, D. E. Newbury (Eds.): X-Ray Spectrometry in Electron Beam Instruments (Plenum, New York 1995)

    Google Scholar 

  102. L. Struder, C. Fiorini, E. Gatti, R. Hartmann, P. Holl, N. Krause, P. Lechner, A. Longoni, G. Lutz, J. Kemmer, N. Meidinger, M. Popp, H. Soltau, C. van Zanthier: High-resolution nondispersive X-ray spectroscopy with state of the art silicon detectors, Mikrochim. Acta (Suppl.) 15, 11 (1998)

    CAS  Google Scholar 

  103. J. I. Goldstein, H. Yakowitz, D. E. Newbury, E. Lifshin, J. W. Colby, J. R. Coleman: Practical Scanning Electron Microscopy (Plenum, New York 1974)

    Google Scholar 

  104. J. I. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. (Plenum, New York 2003)

    Google Scholar 

  105. D. E. Newbury, C. E. Fiori, R. B. Marinenko, R. L. Myklebust, C. R. Swyt, D. S. Bright: Compositional mapping with the electron probe microanalyzer: Part I, Anal. Chem. 62, 1159A–1166A (1990)

    CAS  Google Scholar 

  106. D. E. Newbury, C. E. Fiori, R. B. Marinenko, R. L. Myklebust, C. R. Swyt, D. S. Bright: Compositional mapping with the electron probe microanalyzer: Part II, Anal. Chem. 62, 1159A–1166A (1990)

    CAS  Google Scholar 

  107. D. Briggs, J. T. Grant (Eds.): Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (Cromwell, Trowbridge 2003)

    Google Scholar 

  108. D. Briggs, M. P. Seah (Eds.): Practical Surface Analysis, Vol. 1: Auger and X-Ray Photoelectron Spectroscopy, 2nd edn. (Wiley, West Sussex 1983)

    Google Scholar 

  109. J. F. Watts, J. Wolstenholme: An Introduction to Surface Analysis by XPS and AES (Wiley, West Sussex 2003)

    Google Scholar 

  110. G. D. Danilatos: Foundations of environmental scanning electron microscopy, Adv. Electron. El. Phys. 71, 109–250 (1988)

    CAS  Google Scholar 

  111. G. D. Danilatos: Introduction to the ESEM instrument, Microsc. Res. Techniq. 25, 354–361 (1993)

    CAS  Google Scholar 

  112. D. E. Newbury, S. A. Wight: Experimental data and model simulations of beam spread in the environmental scanning electron microscope, Scanning 23, 320–327 (2001)

    Google Scholar 

  113. S. A. Wight, C. J. Zeissler: Direct measurement of electron beam scattering in the environmental scanning electron microscope using phosphor imaging plates, Scanning 22, 167–172 (2000)

    Google Scholar 

  114. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joh, A. D. Romig Jr, C. E. Lyman, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis (Kluwer Academic/Plenum, New York 2003)

    Google Scholar 

  115. E. Griffith, D. E. Newbury (Eds.): Introduction to environmental scanning electron microscopy issue, Scanning 18(7), 465–527 (1996)

    Google Scholar 

  116. D. E. Newbury, E. Griffith (Eds.): Part II of the special issue on environmental scanning electron microscopy, Scanning 19(2), 70 (1997)

    Google Scholar 

  117. E. M. Griffith, G. D. Danilatos (Eds.): Environmental scanning electron-microscopy, microscopy research and technique, Microsc. Res. Techniq. 25(5-6), 353–361 (1993)

    Google Scholar 

  118. J. M. Chalmers, P. R. Griffiths (Eds.): Handbook of Vibrational Spectroscopy (Wiley, New York 2002)

    Google Scholar 

  119. I. R. Lewis, H. G. M. Edwards (Eds.): Handbook of Raman Spectroscopy (Dekker, New York 2001)

    Google Scholar 

  120. H. J. Humecki: Practical Guide to Infrared Microspectroscopy (Dekker, New York 1995)

    Google Scholar 

  121. R. L. McCreery: Raman Spectroscopy for Chemical Analysis (Wiley, New York 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Willie May Dr. , Richard Cavanagh Dr. , Gregory Turk Dr. , Michael Winchester Dr. , John Travis Ph.D. , Melody Smith , Paul DeRose Ph.D. , Steven Choquette Ph.D. , Gary Kramer Ph.D. , John Sieber Dr. , Robert Greenberg Dr. , Richard Lindstrom Ph.D. , George Lamaze Dr. , Rolf Zeisler Dr. , Michele Schantz Dr. , Lane Sander Ph.D. , Karen Phinney Ph.D. , Michael Welch Dr. , Thomas Vetter , Kenneth Pratt Dr. , John Scott , John Small , Scott Wight B.S. or Stephan Stranick Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

May, W. et al. (2006). Chemical Composition. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_4

Download citation

Publish with us

Policies and ethics