Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Phase diagrams offer various areas of materials science and technology indispensable information for the comprehension of the properties of materials. The microstructure of solid materials is generally classified according to the size of the constituents – for example, at the electron, atomic, or granular level (see Chap. 3). Accordingly, fundamental principles like quantum mechanics, statistical mechanics, or thermodynamics are applied individually to describe the physical properties. Phases are important features of material because they characterize homogeneous aggregations of matter with respect to chemical composition and uniform crystal structure. The various functions of a material are closely related to the phases and structures of the material's composition. Therefore, to develop a material with a maximum level of desired functions, it is essential to undertake design of the structure in advance.

Phase diagrams are composed by means of experimental measurements, as well as statistical thermodynamic analysis. The construction of phase diagram calculations based on experiments and thermodynamic analysis are generally referred to as the calculation of phase diagrams (CALPHAD) approach [20.1]. This method provides a very accurate understanding of the properties originating in the macroscopic character of the material under study.

This chapter is organized in three parts:

  • In the first part, a brief outline of the CALPHAD method is summarized.

  • In the second part, the method for deriving the Gibbs free energies incorporating the ab initio calculations is presented in order to clarify the uncertainty of thermodynamic properties for metastable solution phases, taking theFe–Be-based bcc phase as an example. Some results for metastable phase equilibria in the Fe–Be,

    and Co–Al binary systems are shown.

  • In the third part the application to predict thermodynamic properties of compound phases is discussed. The thermodynamic modeling for the Perovskite carbide with an E21-type structure in the Fe–Al–C, Co–Al–C and Ni–Al–C ternary systems is illustrated, and constructions of phase diagrams are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CALPHAD:

calculation of phase diagrams

CEM:

cluster expansion method

CVM:

cluster variation method

DFT:

density functional theory

DFT:

discrete Fourier transform

DOS:

density of states

EPMA:

electron probe microanalysis

FLAPW:

full potential linearized augmented plane wave

GGA:

generalized gradient approximation

LSDA:

local spin density approximation

bcc:

body-centered cubic

fcc:

face-centered cubic

hcp:

hexagonal-close-packed

References

  1. N. Saunders, A. P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Elsevier, Oxford 1998)

    Google Scholar 

  2. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, A. K. Niessen: Cohesion in Metals, Transition Metals Alloys (North-Holland, Amsterdam 1988)

    Google Scholar 

  3. G. Ghosh, C. Kantner, G.B. Olson: Thermodynamic modeling of the Pd–X (X = Ag, Co, Fe, Ni) systems, J. Phase Equil. 20, 295–308 (1999)

    Article  CAS  Google Scholar 

  4. M. Hillert, L.-I. Staffansson: The regular solution model for stoichiometric phases and ionic melts, Acta Chem. Scand. 24, 3618–3626 (1970)

    Article  CAS  Google Scholar 

  5. W. Oelsen, F. Johannsen, A. Podgornik: Erzmetall 9, 459–469 (1956)

    CAS  Google Scholar 

  6. W. Kohn, L. J. Sham: Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133–1138 (1965)

    Article  Google Scholar 

  7. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luiz: WIEN2k, An Augmented Plane Wave and Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Tech. Universität Wien, Vienna 2001)

    Google Scholar 

  8. J. P. Perdew, K. Burke, Y. Wang: Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54, 16533–16539 (1996)

    Article  CAS  Google Scholar 

  9. H. Ohtani, M. Hasebe: Thermodynamic analysis of phase diagrams by incorporating ab initio energetic calculations into CALPHAD approach, Bull. Iron Steel Inst. Japan 9, 223–229 (2004)

    CAS  Google Scholar 

  10. J. W. D. Connolly, A. R. Williams: Density-functional theory applied to phase transformations in transition-metal alloys, Phys. Rev. B 27, 5169–5172 (1983)

    Article  CAS  Google Scholar 

  11. H. Ohtani, Y. Takeshita, M. Hasebe: Effect of the order–disorder transition of the bcc structure on the solubility of Be in the Fe–Be binary system, Mater. Trans. 45, 1499–1506 (2004)

    Article  CAS  Google Scholar 

  12. F. D. Murnaghan: The compressibility of media under extreme pressures, Proc. Nat. Acad. Sci. USA 30, 244–247 (1944)

    Article  CAS  Google Scholar 

  13. M. H. F. Sluiter, Y. Watanabe, D. de Fontaine, Y. Kawazoe: First-principles calculation of the pressure dependence of phase equilibria in the Al–Li system, Phys. Rev. B 53, 6137–6151 (1996)

    Article  CAS  Google Scholar 

  14. T. Mohri, Y. Chen: First-principles investigation of L10-disorder phase equilibrium in the Fe–Pt system, Mater. Trans. 43, 2104–2109 (2002)

    Article  CAS  Google Scholar 

  15. H. Ino: A pairwise interaction model for decomposition and ordering processes in b.c.c binary alloys and its application to the Fe–Be system, Acta Metall. 26, 827–834 (1978)

    Article  CAS  Google Scholar 

  16. T. Takayama, M. Y. Wey, T. Nishizawa: Effect of magnetic transition on the solubility of alloying elements in bcc iron and fcc cobalt, Trans. Japan Inst. Met. 22, 315–325 (1981)

    Google Scholar 

  17. H. Ohtani, Y. Chen, M. Hasebe: Phase separation of the B2 structure accompanied by an ordering in Co–Al and Ni–Al binary systems, Mater. Trans. 45, 1489–1498 (2004)

    Article  CAS  Google Scholar 

  18. H. Ohtani, M. Yamano, M. Hasebe: Thermodynamic analysis of the Fe–Al–C ternary system by incorporating ab initio energetic calculations into the CALPHAD approach, ISIJ Intern. 44, 1738–1747 (2004)

    Article  CAS  Google Scholar 

  19. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley: Selected Values of the Thermodynamic Properties of Binary Alloys (ASM, Metals Park 1973)

    Google Scholar 

  20. Y. Kimura, M. Takahashi, S. Miura, T. Suzuki, Y. Mishima: Phase stability and relations of multi-phase alloys based on B2 CoAl and E21 Co3AlC, Intermet. 3, 413–425 (1995)

    Article  CAS  Google Scholar 

  21. M. Palm, G. Inden: Experimental determination of phase equilibria in the Fe–Al–C system, Intermet. 3, 443–454 (1995)

    Article  CAS  Google Scholar 

  22. H. Ohtani, M. Yamano, M. Hasebe: Thermodynamic analysis of the Co–Al–C and Ni–Al–C systems by incorporating ab initio energetic calculations into the CALPHAD approach, Comp. Coupling Phase Diag. Thermochem. 28, 177–190 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ohtani Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Ohtani, H. (2006). The CALPHAD Method. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_20

Download citation

Publish with us

Policies and ethics