Skip to main content

Finite Element and Finite Difference Methods

  • Reference work entry
  • 14k Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

Finite element methods (FEM) and finite difference methods (FDM) are numerical procedures for obtaining approximated solutions to boundary-value or initial-value problems. They can be applied to various areas of materials measurement and testing, especially for the characterization of mechanically or thermally loaded specimens or components. (Experimental methods for these fields have been treated in Chapts. 7 and 8.)

The principle is to replace an entire continuous domain of a body of interest by a number of subdomains in which the unknown function is represented by simple interpolation functions with unknown coefficients. Thus, the original boundary-value problem with an infinite number of degrees of freedom is converted into a problem with a finite number of degrees of freedom approximately.

This is a preview of subscription content, log in via an institution.

Abbreviations

BB:

Ladyzhenskaya–Babuska–Brezzi condition

BEM:

Boundary Element Method

Bi-CGSTAB:

biconjugate gradient stabilized method

CFL:

Courant–Friedrichs–Lewy condition

CG:

conjugate gradient method

CIP:

constrained interpolated profile method

DEM:

discrete element method

FD:

finite differences

FDM:

finite difference methods

FE:

finite elements

FEA:

finite element analysis

FEM:

finite element method

FVM:

finite volume method

GLS:

Galerkin/least squares scheme

GMRES:

generalized minimal residual

QMR:

quasiminimal residual method

SOR:

successive overrelaxation

SPH:

smooth particle hydrodynamics method

SUPG:

streamline-upwind Petrov–Galerkin method

References

  1. J. W. Thomas: Numerical Partial Differential Equations: Finite Difference Methods (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  2. T. J. R. Hughes: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Dover, New York 2000)

    Google Scholar 

  3. A. N. Kolmogorov, S. V. Fomin: Elements of the Theory of Functions and Functional Analysis (Dover, New York 1999)

    Google Scholar 

  4. G. Strang: Introduction to Applied Mathematics (Wellesley-Cambridge, Cambridge, MA 1986)

    Google Scholar 

  5. N. Kikuchi: Finite Element Methods in Mechanics (Cambridge Univ. Press, New York 1986)

    Book  Google Scholar 

  6. T. Belytschko, W. K. Liu, B. Moran: Nonlinear Finite Elements for Continua and Structures (Wiley, New York 2000)

    Google Scholar 

  7. S. P. Timoshenko, J. N. Goodier: Theory of Elasticity (McGraw-Hill, New York 1970)

    Google Scholar 

  8. O. C. Zienkiewicz, D. V. Phillips: An automatic mesh generation scheme for plane and curved surfaces by isoparametric coordinate, Int. J. Numer. Methods Eng. 3, 519–528 (1971)

    Article  Google Scholar 

  9. J. F. Thompson, Z. U. A. Warsi, C. W. Mastin: Numerical Grid Generation (North-Holland, Amsterdam 1985)

    Google Scholar 

  10. A. Tezuka: 2D mesh generation scheme for adaptive remeshing process, Jpn. Soc. Mech. Eng. 38, 204–215 (1996)

    Google Scholar 

  11. A. M. Winslow: Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh, J. Comput. Phys. 2, 149–172 (1967)

    Google Scholar 

  12. M. Ainsworth, J. T. Oden: A Posterior Error Estimation in Finite Element Analysis (Wiley, New York 2000)

    Google Scholar 

  13. P. J. Roache: Verification and Validation in Computational Science and Engineering (Hermosa, Socorro 1998)

    Google Scholar 

  14. R. Peyret: Handbook of Computational Fluid Mechanics (Academic, New York 1996)

    Google Scholar 

  15. K. A. Woodbury: Inverse Engineering Handbook (CRC, Boca Raton 2002)

    Book  Google Scholar 

  16. J. H. Ferziger, M. Peric: Computational Methods for Fluid Dynamics (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  17. C. A. Brebbica: The Boundary Element Method for Engineers (Pentech, London 1978)

    Google Scholar 

  18. T. Nakamura, R. Tanaka, T. Yabe, K. Takizawa: Exactly conservative semi-Lagrangian scheme for multidimensional hyperbolic equations with directional splitting technique, J. Comput. Phys. 174, 171–207 (2001)

    Article  CAS  Google Scholar 

  19. CIPUS (CIP User's Society) www.mech.titech.ac.jp/∼ryuutai/cipuse.html

    Google Scholar 

  20. W. K. Liu, S. Li: Meshfree and particle methods and their applications, Appl. Mech. Rev. 55, 1–34 (2002)

    Article  Google Scholar 

  21. G. H. Golub, C. F. Van Loan: Matrix Computations (Johns Hopkins Univ. Press, Baltimore 1996)

    Google Scholar 

  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing (Cambridge Univ. Press, Cambridge 1996)

    Google Scholar 

  23. B. F. Smith, P. E. Bjrstad, W. D. Gropp: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (Cambridge Univ. Press, Cambridge 1996)

    Google Scholar 

  24. Parallel Computing Platform/PCP, www.aist.go.jp/infobase/pcp/platform-en/index.html

    Google Scholar 

  25. J. M. Guedes, N. Kikuchi: Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. Methods Appl. Mech. Eng. 83, 143–198 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Tezuka Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Tezuka, A. (2006). Finite Element and Finite Difference Methods. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_19

Download citation

Publish with us

Policies and ethics