Skip to main content

Continuum Constitutive Modeling

  • Reference work entry
Springer Handbook of Materials Measurement Methods

Part of the book series: Springer Handbooks ((SHB))

  • 13k Accesses

Abstract

Constitutive models play an important role when characterizing structural materials in order to evaluate their thermomechanical behavior. The experimental characterization of materials (using techniques discussed in Part C of this Handbook) involves measuring and controlling macroscopic variables such as force, displacement and temperature. Concise models are also of great use when characterizing the continuous media used to create structural materials, because phenomenological modeling can be carried out regardless of the internal material structure. This continuum modeling usually successfully describes the behavior of various classes of material under complex boundary conditions.

This chapter presents phenomenological constitutive models from both macroscopic and microscopic viewpoints:

  • Starting from viscoplasticity models, model performance is reviewed in order to predict the mechanical response under creep–plasticity interaction conditions, taking into account internal state variables.

  • Material anisotropy is discussed; mathematical modeling of initial anisotropy and induced anisotropy based on the representation theorem for higher order isotropic tensors is presented.

  • Thermomechanical coupling phenomena involving phase transformations predominate in engineering applications of heat treatment and material processing. A continuum model is presented that takes into account the way structural rearrangement evolves in materials.

  • Finally, microscopic analysis based on crystal plasticity, which relates the resolved shear stress to crystal slip, is applied to describe the inhomogeneous deformation process in polycrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

RD:

rolling direction

bcc:

body-centered cubic

fcc:

face-centered cubic

hcp:

hexagonal-close-packed

References

  1. L. E. Malvern: Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood 1969)

    Google Scholar 

  2. P. Perzyna: Thermodynamic theory of viscoplasticity, Adv. Appl. Mech. 11, 313–354 (1971)

    Article  Google Scholar 

  3. A. K. Miller: Unified Constitutive Equations for Creep and Plasticity (Elsevier, London 1987)

    Google Scholar 

  4. A. S. Krausz, K. Krausz: Unified Constitutive Laws of Plastic Deformation (Academic, San Diego 1996)

    Google Scholar 

  5. J. Lemaitre, J. L. Chaboche: Mechanics of Solid Materials (Cambridge Univ. Press, Cambridge 1994)

    Google Scholar 

  6. G. A. Maugin: Thermomechanics of Plasticity and Fracture (Cambridge Univ. Press, Cambridge 1995)

    Google Scholar 

  7. A. K. Miller: An inelastic constitutive model for monotonic, cyclic, and creep deformation, Trans ASME J. Eng. Mater. Technol. 98, 97–105 (1976)

    Article  CAS  Google Scholar 

  8. M. C. M. Liu, E. Krempl: A uniaxial viscoplastic model based on total strain and overstress, J. Mech. Phys. Solids 27, 377–391 (1979)

    Article  Google Scholar 

  9. S. R. Bodner, A. Merzer: Viscoplastic constitutive equations for copper with strain rate history and temperature effects, Trans. ASME J. Appl. Mech. 100, 388–394 (1978)

    CAS  Google Scholar 

  10. Y. Estrin, H. Mecking: An extension of the Bodner-Partom model of plastic deformation, Int. J. Plasticity 1, 73–85 (1985)

    Google Scholar 

  11. K. C. Valanis: A theory of viscoplasticity without a yield surface, Arch. Mech. 23, 517–551 (1971)

    Google Scholar 

  12. D. Kujawski, Z. Mroz: A viscoplastic material model and its application to cyclic loading, Acta Mech. 36, 213–230 (1980)

    Article  Google Scholar 

  13. Y. F. Dafalias, E. P. Popov: A model for nonlinear hardening materials for complex loading, Acta Mech. 21, 173–192 (1975)

    Article  Google Scholar 

  14. N. Ohno: A constitutive model for cyclic plasticity with a nonlinear strain region, Trans. ASME, J. Appl. Mech. 49, 721–727 (1982)

    Article  Google Scholar 

  15. O. Watanabe, S. N. Atluri: Constitutive modeling of cyclic plasticity and creep using internal time concept, Int. J. Plasticity 2, 107–134 (1986)

    Article  Google Scholar 

  16. T. Inoue, N. Ohno, A. Suzuki, T. Igari: Evaluation of inelastic constitutive models under plasticity-creep interaction for 2.1/4Cr-1Mo steel, Nucl. Eng. Des. 114, 295–309 (1989)

    Article  CAS  Google Scholar 

  17. T. Inoue, F. Yoshida, N. Ohno, M. Kawai, Y. Niitsu, S. Imatani: Evaluation of inelastic constitutive models under plasticity-creep interaction in multiaxial stress state, Nucl. Eng. Des. 126, 1–11 (1991)

    Article  CAS  Google Scholar 

  18. T. Inoue, S. Imatani, Y. Fukuda, K. Fujiyama, K. Aoto, K. Tamura: Inelastic stress-strain response for notched specimen of 2.1/4Cr-1Mo steel at 600°C, Nucl. Eng. Des. 150, 129–139 (1994)

    Article  CAS  Google Scholar 

  19. A. J. M. Spencer: Theory of invariants. In: Continuum Physics, Vol. 1, ed. by C. A. Eringen (Academic, New York 1971) pp. 239–353

    Google Scholar 

  20. A. J. M. Spencer: Isotropic invariants of tensor functions. In: Application of Tensor Functions in Solid Mechanics, CISM Courses and Lectures, Vol. 292, ed. by J. P. Boehler (Springer, Berlin, Heidelberg 1987) pp. 141–169

    Google Scholar 

  21. R. Hill: The Mathematical Theory of Plasticity (Oxford Univ. Press, Oxford 1950)

    Google Scholar 

  22. Y. Tomita, A. Shindo: Onset and growth of wrinkles in thin square plates subjected to diagonal tension, Int. J. Mech. Sci. 30, 921–931 (1988)

    Article  Google Scholar 

  23. S. Imatani, T. Saitoh, K. Yamaguchi: Finite element analysis of out-of-plane deformation in laminated sheet metals based on an anisotropic plasticity model, Mater. Sci. Res. Int. 1, 89–94 (1995)

    CAS  Google Scholar 

  24. A. Phillips, R. Kasper: On the foundation of thermoplasticity; an experimental investigation, Trans. ASME J. Appl. Mech. 40, 891–896 (1973)

    Article  Google Scholar 

  25. E. Shiratori, K. Ikegami: Studies of the anisotropic yield condition, J. Mech. Phys. Solids 17, 473–491 (1969)

    Article  Google Scholar 

  26. A. Baltov, A. Sawczuk: A rule of anisotropic hardening, Acta Mech. 1, 81–92 (1965)

    Article  Google Scholar 

  27. J. F. Williams, N. L. Svensson: A rationally based yield criterion for workhardening materials, Meccanica 6, 104–114 (1971)

    Article  Google Scholar 

  28. D. W. A. Rees: The theory of scalar plastic deformation function, Z. Angew. Math. Mech. 63, 217–228 (1983)

    Article  Google Scholar 

  29. D. C. Drucker: Relation of experiments to mathematical theories of plasticity, Trans. ASME, J. Appl. Mech. 16, 349–357 (1949)

    Google Scholar 

  30. P. Mazilu, A. Meyers: Yield surface description of isotropic materials after cold prestrain, Ing. Archiv. 55, 213–220 (1985)

    Article  Google Scholar 

  31. S. Imatani, M. Teraura, T. Inoue: An inelastic constitutive model accounting for deformation-induced anisotropy, Trans. JSME A 55, 2042–2048 (1989)

    Google Scholar 

  32. N. Ohno, J. D. Wang: Kinematic hardening rules with critical state of dynamic recovery, Int. J. Plasticity 9, 375–390 (1993)

    Article  CAS  Google Scholar 

  33. T. Inoue, Z. G. Wang: Coupling between stresses, temperature and metallic structures during processes involving phase transformation, Mater. Sci. Tech. 1, 845–850 (1985)

    Google Scholar 

  34. R. M. Bowen: Theory of mixture. In: Continuum Physics, Vol. 3, ed. by C. A. Eringen (Academic, New York 1976) pp. 1–127

    Google Scholar 

  35. T. Inoue, T. Yamaguchi, Z. G. Wang: Stresses and phase transformations occurring in quenching of carburized steel gear wheel, Mater. Sci. Tech. 1, 872–876 (1985)

    CAS  Google Scholar 

  36. P. Ding, T. Inoue, S. Imatani, D. Y. Ju, E. de Vries: Simulation of the forging process incorporating strain-induced phase transformation using the finite volume method (Part I: Basic theory and numerical methodology), Mater. Sci. Res. Int. 7, 19–26 (2001)

    CAS  Google Scholar 

  37. S. Bhattacharyya, G. Kehl: Isothermal transformation of austenite under externally applied tensile stress, Trans. ASM 47, 351–379 (1955)

    Google Scholar 

  38. M. Fujita, M. Suzuki: The effect of high pressure on the isothermal transformation in high purity Fe-C alloys and commercial steels, Trans. ISIJ 14, 44–53 (1974)

    Google Scholar 

  39. S. V. Radcliffe, M. Schatz: The effect of high pressure on the martensitic reaction in iron-carbon alloys, Acta. Metall. Mater. 10, 201–207 (1962)

    Article  CAS  Google Scholar 

  40. W. A. Johnson, F. R. Mehl: Reaction kinetics in processes of nucleation and growth, Trans. AIME 135, 416–458 (1939)

    Google Scholar 

  41. C. L. Magee: The nucleation of martensite. In: Phase Transformation, ed. by H. I. Aaronson (ASM Int., Metals Park, OH 1968)

    Google Scholar 

  42. K. Shinagawa, H. Nishikawa, T. Ishikawa, Y. Hosoi: Deformation-induced martensitic transformation in type 304 stainless steel during cold upsetting, Iron Steel 3, 156–162 (1990)

    Google Scholar 

  43. P. Ding, D. Y. Ju, T. Inoue, S. Imatani, E. de Vries: Simulation of the forging process incorporating strain-induced phase transformation using the finite volume method (Part II: Effects of strain rate on structural change and mechanical behavior), Mater. Sci. Res. Int. 7, 27–33 (2001)

    CAS  Google Scholar 

  44. G. I. Taylor: Plastic strain in metals, J. Inst. Metals 62, 307–324 (1938)

    Google Scholar 

  45. R. J. Asaro: Micromechanics of crystals and polycrystals, Adv. Appl. Mech. 23, 1–115 (1983)

    Article  Google Scholar 

  46. J. W. Hutchinson: Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. R. Soc. London A 348, 101–127 (1976)

    Article  CAS  Google Scholar 

  47. J. R. Rice: Inelastic constitutive relations for solids, J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  Google Scholar 

  48. T. Inoue, S. Torizuka, K. Nagai, K. Tsuzaki, T. Ohashi: Effect of plastic strain on grain size of ferrite transformed from deformed austenite in Si-Mn steel, Mater. Sci. Tech. 17, 1580–1588 (2001)

    CAS  Google Scholar 

  49. E. van der Giessen, V. Tvergaard: A creep rupture model accounting for cavitation at sliding grain boundaries, Int. J. Fracture 48, 153–178 (1991)

    Article  Google Scholar 

  50. G. Beer: An isoparametric joint/interface element for finite element analysis, Int. J. Num. Meth. Eng. 21, 585–600 (1985)

    Article  Google Scholar 

  51. R. Kawakami, S. Imatani, R. Maeda: Effects of crystal grain and grain boundary sliding on the deformation of polycrystal, J. Soc. Mater. Sci. Jpn. 52, 112–118 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Imatani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Imatani, S. (2006). Continuum Constitutive Modeling. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_18

Download citation

Publish with us

Policies and ethics