Skip to main content

Abstract

Thermochromic liquid crystals (TLCs) can be applied for thermographic measurements of heat transfer and temperature in fluid mechanics, delivering important quantitative full-field data for comparison with and validation of numerical simulations. Thin coatings of TLCs at surfaces are utilized to obtain detailed heat transfer data for steady or transient processes. Application of TLC tracers allows instantaneous measurement of the temperature and velocity fields for two-dimensional cross sections of flows. These methods are based on computerized true-color analysis of digital images for temperature measurements and modified particle image velocimetry, which is used to obtain the flow field velocity. In this Chapter, the advantages and limitations of liquid-crystal thermography are discussed, followed by several examples of thermal flow field measurements.

The use of infrared thermography for non-intrusive measurement of spatially resolved surface heat transfer characteristics is described for five different measurement environments, including situations where large gradients of surface temperature are present. In the first of these, measurements are made on the surface of a therapeutic biomedical patch, where the quantity of interest is the time-varying spatially resolved surface temperature. For the other situations, the measured temperature distributions are used to deduce quantities such as the surface Nusselt numbers on the surface of a swirl chamber, the effectiveness of surface adiabatic film cooling downstream of individual shaped film cooling holes, the surface heat flux reduction ratio downstream of two rows of film cooling holes placed on a model of the leading edge of an airfoil, and thermal boundary condition information for numerical predictions of the heat transfer characteristics on the surface of a passage with an array of rib turbulators. In all of these situations, in situ calibration procedures are employed in which the camera, imaging, and data-acquisition systems are all calibrated together in place within the experimental facility as the infrared measurements are obtained. This requires separate, simultaneous, and independent measurements of surface temperatures, and produces spatially resolved results from infrared images with high levels of accuracy and resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

BL:

boundary layer

CARS:

coherent anti-Stokes Raman scattering

CARS:

coherent anti-Stokes Raman spectroscopy

CCD:

charge-coupled device

CFK:

carbon-fiber-reinforced plastic

CRLAS:

cavity ring-down laser absorption spectroscopy

DFB:

distributed feedback

DLR:

German Aerospace Center

ETW:

European transonic wind tunnel

FIR:

far-infrared

HITRAN:

high-resolution transmission molecular absorption

ICCD:

intensified CCD

IRT:

infrared thermography

JAXA:

Japanese Aeronautics Exploration Agency

LAS:

laser absorption spectroscopy

LED:

light-emitting diodes

LIF:

laser-induced fluorescence

LWIR:

long-wavelength infrared

MWIR:

mid-wavelength infrared

NAL:

National Aeronautics Laboratory

NASA:

National Aeronautics and Space Administration

NETD:

noise equivalent temperature difference

NIR:

near-infrared

NO:

nitric oxide

PCI:

peripheral component interface

PETW:

pilot facility of ETW

PIT:

phase inversion temperature

PIV:

particle image velocimetry

PSP:

pressure-sensitive paint

RET:

rotational energy transfer

SWIR:

short-wavelength infrared

TDLAS:

tunable diode laser absorption

TLC:

thermochromic liquid crystals

TPT:

thermographic phosphor thermography

TS:

Tollmien–Schlichting

TSP:

temperature-sensitive paint

UV:

ultraviolet

VET:

vibrational energy transfer

WMS:

wavelength modulation spectroscopy

References

  1. G.M. Carlomagno: Heat transfer measurements by means of infrared thermography. In: Measurement Techniques VKI Lect Series 1993-05 Rhode-Saint-Genese (VKI, Rhode-Saint-Genese 1993) pp. 1–114

    Google Scholar 

  2. S.M.J. Straley: Physics of liquid crystals, Rev. Mod. Phys. 46(4), 617–704 (1974)

    Google Scholar 

  3. P. Bonnett, T.V. Jones, D.G. Donnell: Shear-stress measurement in aerodynamic testing using cholesteric liquid crystals, Liquid Cryst. 6, 271–280 (1989)

    Google Scholar 

  4. S.A. Hippensteele, L.M. Russell, F.S. Stepka: Evaluation of a method for heat transfer measurements and thermal visualisation of a heater elements and liquid crystals, Trans. ASME 105, 184–189 (1983)

    Google Scholar 

  5. D.K. Hollingsworth, A.L. Boehman, E.G. Smith, R.J. Moffat: Measurement of temperature and heat transfer coefficient distributions in a complex flow using liquid crystal thermography and true-color image processing, ASME J. Heat Transfer 123, 35–42 (1989)

    Google Scholar 

  6. J.K. Hay, D.K. Hollingsworth: A comparison of trichromic systems for use in the calibration of polymer-dispersed thermochromic liquid crystals, Exp. Thermal Fluid Sci. 12, 1–12 (1996)

    Google Scholar 

  7. H. Babinsky, J.A. Edwards: Automatic liquid crystal thermography for transient heat transfer measurements in hypersonic flow, Exp. Fluids 21, 227–236 (1996)

    Google Scholar 

  8. J. Stasiek: Thermochromic liquid crystals and true color image processing in heat transfer and fluid-flow research, J. Heat Mass Transfer 33, 27–29 (1997)

    Google Scholar 

  9. R.T. Kukreja, S.C. Lau: Distribution of local heat transfer coefficient on surfaces with solid and perforated ribs, Enhanced Heat Transfer 5, 9–21 (1998)

    Google Scholar 

  10. D.R. Sabatino, T.J. Praisner, C.R. Smith: A high-accuracy calibration technique for thermochromic liquid crystal temperature measurements, Exp. Fluids 28, 497–505 (2000)

    Google Scholar 

  11. T.J. Praisner, D.R. Sabatino, C.R. Smith: Simultaneously combined liquid crystal surface heat transfer and PIV flow-field measurements, Exp. Fluids 300, 1–10 (2001)

    Google Scholar 

  12. W. Hiller, T.A. Kowalewski: Simultaneous measurement of the temperature and velocity fields in thermal convective flows. In: Flow Visualization IV, ed. by C. Veret (Hemisphere, Paris 1987) pp. 617–622

    Google Scholar 

  13. W.J. Hiller, S. Koch, T.A. Kowalewski: Three-dimensional structures in laminar natural convection in a cube enclosure, Exp. Therm. Fluid Sci. 2, 34–44 (1989)

    Google Scholar 

  14. W.J. Hiller, S. Koch, T.A. Kowalewski, D.G. de Vahl, M. Behnia: Experimental and numerical investigation of natural convection in a cube with two heated side walls. In: Proc. of IUTAM Symp., ed. by H.K. Moffat, A. Tsinober (Cambridge Univ. Press, Cambridge 1990) pp. 717–726

    Google Scholar 

  15. D. Dabiri, M. Gharib: Digital particle image thermometry: The method and implementation, Exp. Fluids 97, 77–86 (1991)

    Google Scholar 

  16. H.G. Park, D. Dabiri, M. Gharib: Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder, Exp. Fluids 30, 327–338 (2001)

    Google Scholar 

  17. W.J. Hiller, S. Koch, T.A. Kowalewski, P. Mitgau, K. Range: Visualization of 3-D natural convection. In: Proc. 6th Int. Symp. Flow Visualization, ed. by Y. Tanida, H. Miyashiro (Springer, Berlin, Heidelberg 1992) pp. 674–678

    Google Scholar 

  18. W.J. Hiller, S. Koch, T.A. Kowalewski, F. Stella: Onset of natural convection in a cube, Int. J. Heat Mass Transfer 36, 3251–3263 (1993)

    Google Scholar 

  19. S. Koch: Berührungslose Messung von Temperatur und Geschwindigkeit in freier Konvektion, Dissertation, Mitteilungen aus dem MPI, Vol. 108 (Univ. Göttingen, Göttingen 1993)

    Google Scholar 

  20. T.A. Kowalewski, A. Cybulski, M. Rebow: Particle image velocimetry and thermometry in freezing water. In: 8th Int. Symp. Flow Visualization, ed. by G.M. Carlomagno, I. Grant (ODE, Edinburgh 1998) pp. 24.1–24.8, CD ROM

    Google Scholar 

  21. K. Range: Temperaturmessungen auf den Innenwänden eines Konvektionsbehälters mit Flüssigkristallen, Diplom, MPIFS Bericht, Vol. 101 (Univ. Göttingen, Göttingen 1992)

    Google Scholar 

  22. W.J. Hiller, S. Koch, T.A. Kowalewski: Simultane Erfassung von Temperatur- und Geschwindigkeitsfeldern in einer thermischen Konvektionsströmung mit ungekapselten Flüssigkristalltracern. In: 2D-Meßtechnik DGLR-Workshop DGLR-Bericht 88-04 (DGLR, Bonn 1988) pp. 31–39, in German

    Google Scholar 

  23. E. Fornalik, Y. Yamamoto, W. Chen, K. Nakabe, K. Suzuki: Visualization of heat transfer enhancement regions modified by the interaction of inclined impinging jets into crossflow. In: Image Processing Methods in Applied Mechanics Euromech 406 IPPT Reports 4/1999, ed. by T.A. Kowalewski, J. Kompenhans, W. Kosinski (IPPT PAN, Warsaw 1999) pp. 95–98

    Google Scholar 

  24. T.A. Kowalewski, M. Rebow: Freezing of water in the differentially heated cubic cavity, Int. J. Comp. Fluid Dyn. 11, 193–210 (1999)

    MATH  Google Scholar 

  25. T. Michalek, T.A. Kowalewski: Experimental model of mould filling flow. In: Eurotherm 69 Heat and Mass Transfer in Solid-Liquid Phase Change Processes, ed. by B. Šarler, D. Gobin (Polit. Nova Gorica, Lubljana 2003) pp. 61–68

    Google Scholar 

  26. T. Michalek, T.A. Kowalewski, B. Saler: Natural convection for anomalous density variation of water – numerical benchmark, Prog. Comput. Fluid Dyn. 5, 158–170 (2005)

    MATH  Google Scholar 

  27. M. Giangi, F. Stella, T.A. Kowalewski: Phase-change problems with free convection: fixed grid simulation, Comp. Vis. Sci. 2, 123–130 (1999)

    MATH  Google Scholar 

  28. M. Giangi, T.A. Kowalewski, F. Stella, E. Leonardi: Natural convection during ice formation: numerical simulation versus experimental results, Comp. Assisted Mech. Eng. Sci. 7, 321–342 (2000)

    MATH  Google Scholar 

  29. J. Banaszek, Y. Jaluria, T.A. Kowalewski, M. Rebow: Semi-implicit FEM analysis of natural convection in freezing water, Num. Heat Transfer A 36, 449–472 (1999)

    Google Scholar 

  30. T.A. Kowalewski, A. Cybulski: Experimental and numerical investigations of natural convection in freezing water, Proc. Int. Conf. Heat Transfer Change of Phase, Mechanics 61(2), 7–16 (1996)

    Google Scholar 

  31. T.A. Kowalewski, A. Cybulski: Natural convection with phase change, IPPT Rep. 8, 1–58 (1997), (in Polish)

    Google Scholar 

  32. A.Y. Gelfgat, P.Z. Bar-Yoseph, A. Solan, T.A. Kowalewski: An axisymmetry breaking instability of axially symmetric natural convection, Int. J. Trans. Phenomena 1, 173–190 (1999)

    Google Scholar 

  33. C. Abegg, D.G. de Vahl, W.J. Hiller, S. Koch, T.A. Kowalewski, E. Leonardi, G.H. Yeoh: Experimental and numerical study of three-dimensional natural convection and freezing in water. In: Proc. 10th Int. Heat Transfer Conf., Vol. 4, ed. by G.F. Hewitt (Taylor Francis, New York 1994) pp. 1–6

    Google Scholar 

  34. T.A. Kowalewski, A. Cybulski, T. Sobiecki: Experimental model for casting problems. In: Computational Methods and Experimental Measurements, ed. by Y.V. Esteve, G.M. Carlomagno, C.A. Brebia (WIT, Southampton 2001) pp. 179–188

    Google Scholar 

  35. K. Dekajlo, T.A. Kowalewski, H.J.S. Fernando: Experiments on up-slope to down-slope transition in an inclined box filled with water. In: ICTAM04 CD-ROM Proceedings IPPT PAN, ed. by W. Gutkowsky, T.A. Kowalewski (Springer, Dordrecht 2004)

    Google Scholar 

  36. T.A. Kowalewski: Experimental validation of numerical codes in thermally driven flows. In: Advances in Computational Heat Transfer, ed. by G.D. de Vahl, E. Leonardi (Begel House, New York 1998) pp. 1–15

    Google Scholar 

  37. A. Schulz: Infrared thermography as applied to film cooling of gas turbine components, Meas. Sci. Technol. 11, 948–956 (2000)

    Google Scholar 

  38. W.P. Dixon, P. Czysz: The use of thermographic phosphors for heat transfer measurement in hypersonic wind tunnel. In: Society of Photo-Optical Engineers 11th Annual Symposium (1966)

    Google Scholar 

  39. G. Meyers, J. Van der Geest, J. Sanborn, F. Davis: Comparison of advanced cooling concepts using color thermography. In: AIAA 3rd Applied Aerodynamics Conf. AIAA Paper AIAA-85-1289 (1985)

    Google Scholar 

  40. E. Gartenberg, A.S. Roberts: Twenty-five years of aerodynamic research with infrared imaging, J. Aircr. 29(2), 161–171 (1992)

    Google Scholar 

  41. J. Wendt: Infrared thermography. In: The Second Joint Europe/US Short Course in Hypersonics (1989)

    Google Scholar 

  42. M.F. Westby: Heat transfer measurements using infrared thermography in rarefied flows, Technical Memorandum W1 (Defense Research Agency, Farnborough 1992)

    Google Scholar 

  43. M. Martiny, R. Schiele, M. Gritsch, A. Schulz, S. Wittig: In situ calibration for quantitative infrared thermography, QIRT ʼ96, Stuttgart, Eurotherm Seminar 50, 3–8 (1996)

    Google Scholar 

  44. S.R. Sargent, C.R. Hedlund, P.M. Ligrani: An infrared thermography imaging system for convective heat transfer measurements in complex flows, Meas. Sci. Technol. 9(12), 1974–1981 (1998)

    Google Scholar 

  45. V. Scherer, A. Pfeiffer, S. Wittig: Bestimmung der Wärmeübergangszahlen in abgelösten Strömungen mit Hilfe einer Infrarotkamera, DGLR Workshop, 2D-Meßtechnik (DGLR, Bonn 1988) pp. 245–253

    Google Scholar 

  46. V. Scherer, S. Wittig: The influence of the recirculating region: a comparison of the convective heat transfer downstream of a backward-facing step and behind a jet in a cross-flow. In: ASME Winter Annual Meeting (ASME, Fairfield 1989), Paper 89-GT-59

    Google Scholar 

  47. M. Martiny, A. Schulz, S. Wittig: Full coverage film cooling investigations: adiabatic wall temperatures and flow visualization. In: Winter Annual Meeting (ASME, Fairfield 1995), Paper 95-WA/HT-4

    Google Scholar 

  48. M. Martiny, A. Schulz, S. Wittig: Mathematical model describing the coupled heat transfer in effusion cooled combustor walls. In: Int. Gas Turbine Aeroengine Congr. Exhibition (ASME, Fairfield 1997), Paper 97-GT-329

    Google Scholar 

  49. C.R. Hedlund, P.M. Ligrani, H.-K. Moon, B. Glezer: Heat transfer and flow phenomena in a swirl chamber simulating turbine blade internal cooling, ASME Trans. J. Turbomachin. 121(4), 804–813 (1999)

    Google Scholar 

  50. B. Sen, D.L. Schmidt, D.G. Bogard: Film cooling with compound angle holes: heat transfer, ASME Trans. J. Turbomachin. 118(4), 800–806 (1996)

    Google Scholar 

  51. U.M. Yuki, D.G. Bogard, J.M. Cutbirth: Effect of coolant injection on heat transfer for a simulated turbine airfoil leading edge. In: Int. Gas Turbine Aeroengine Congr. Exhibition (ASME, Fairfield 1998), Paper 98-GT-431

    Google Scholar 

  52. M. Gritsch, A. Schulz, S. Wittig: Adiabatic wall effectiveness measurements of film cooling holes with expanded exits, ASME Trans. J. Turbomachin. 120, 549–556 (1998)

    Google Scholar 

  53. M. Gritsch, A. Schulz, S. Wittig: Heat transfer coefficient measurements of film cooling holes with expanded exits. In: Int. Gas Turbine Aeroengine Congr. Exhibition (ASME, Fairfield 1998), Paper 98-GT-28

    Google Scholar 

  54. P.C. Sweeny, J.F. Rhodes: An infrared technique for evaluating turbine airfoil cooling designs. In: Int. Gas Turbine Aeroengine Congr. Exhibition (ASME, Fairfield 1999), Paper 99-GT-142

    Google Scholar 

  55. C.M. Bell, H. Hamakawa, P.M. Ligrani: Film cooling from shaped holes, ASME Trans. J. Heat Transfer 122(2), 224–232 (2000)

    Google Scholar 

  56. T. Fukukawa, P.M. Ligrani: Transonic film cooling effectiveness from shaped holes on a simulated turbine airfoil, AIAA J. Thermophys. Heat Transfer 16(2), 228–237 (2002)

    Google Scholar 

  57. S.Y. Won, N.K. Burgess, S. Peddicord, P.M. Ligrani: Spatially-resolved surface heat transfer for parallel rib turbulators with 45 degree orientations including test surface conduction analysis, ASME Trans. J. Heat Transfer 126(2), 193–201 (2004)

    Google Scholar 

  58. R.G. Driggers, C. Webb, S.J. Pruchnic, C.E. Halford, E.E. Burroughs: Laboratory measurement of sampled infrared imaging system performance, Opt. Eng. 38(5), 852–861 (1999)

    Google Scholar 

  59. T. Astarita, G. Cardone, G.M. Carlomagno: IR heat transfer measurements in a rotating channel, QIRT ʼ96, Stuttgart, Eurotherm Seminar 50, 147–152 (1996)

    Google Scholar 

  60. G. Cardone, T. Astarita, G.M. Carlomagno: Heat transfer measurements on a rotating disc. In: 5th Int. Symp. Transport Phenomena and Dynamics of Rotating Machinery A (1994) pp. 663–672

    Google Scholar 

  61. F.P. Hindle, S.J. Carey, K. Ozanyan, D.E. Winterbone, E.E. Clough, H. McCann: Measurement of gaseous hydrocarbon distribution by a near-infrared absorption tomography system, J. Electron. Imaging 10(3), 593–600 (2001)

    Google Scholar 

  62. I.S.I. Group Inc., SWI: Southwest Infrared, VideoTherm Camera Systems, 1521 Eastridge Dr. NE, Albuquerque, NM 87112-4508 USA (http://www.swinfrared.com)

  63. AGEMA Infrared Systems, ENEA Embedded Technology, 12760 High Bluff Drive, San Diego, CA 92130 USA (http://www.enea.com/907.epibrw)

  64. Flir Systems Inc., 25 Esquire Road, North Billerica, MA 01862 USA (http://www.flirthermography.com/contact/worldmap.asp)

  65. P.M. Ligrani, M.M. Oliveira, T. Blaskovich: Comparison of heat transfer augmentation techniques, AIAA J. 41(3), 337–362 (2003)

    Google Scholar 

  66. W.P. Stricker: Measurements of temperature in laboratory flames and practical devices. In: Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor Francis, New York 2002)

    Google Scholar 

  67. N.M. Laurendeau: Temperature measurements by light-scattering methods, Prog. Energy Combust. Sci. 14, 147–170 (1988)

    Google Scholar 

  68. R.W. Dibble, R.E. Hollenbach: Laser Rayleigh thermometry in turbulent flames, Proc. Combust. Inst. 18, 1489–1499 (1981)

    Google Scholar 

  69. J.N. Forkey, N.D. Finkelstein, W.R. Lempert, R.B. Miles: Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements, AIAA J. 34, 442–448 (1996)

    Google Scholar 

  70. D. Hoffman, K.-U. Münch, A. Leipertz: Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering, Opt. Lett. 21, 525–527 (1996)

    Google Scholar 

  71. R.B. Miles, J.N. Forkey, W.R. Lempert: Rayleigh scattering measurements in supersonic/hypersonic facilities, AIAA Paper 92-3894 (1992)

    Google Scholar 

  72. R.S. Barlow, C.D. Carter, R.W. Pitz: Multiscalar diagnostics in turbulent flames. In: Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor Francis, New York 2002) pp. 384–407

    Google Scholar 

  73. D.F. Marran, J.H. Frank, M.B. Long, S.H. Stårner: Intracavity technique for improved Raman/Rayleigh imaging in flames, Opt. Lett. 20, 791–793 (1995)

    Google Scholar 

  74. G.G. Stokes: Mathematical and Physical Papers (Cambridge Univ. Press, Cambridge 1880)

    Google Scholar 

  75. D.A. Long: The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, New York 2002)

    Google Scholar 

  76. D. Geyer: 1D Raman/Rayleigh experiments in a turbulent opposed-jet, Ph.D. Thesis (TU Darmstadt, Darmstadt 2004)

    Google Scholar 

  77. K. Kohse-Höinghaus, J.B. Jeffries (Eds.): Applied Combustion Diagnostics (Taylor Francis, New York 2002)

    Google Scholar 

  78. T. Landenfeld, A. Kremer, E.P. Hassel, J. Janicka, T. Schäfer, J. Kazenwadel, C. Schulz, J. Wolfrum: Laserdiagnostic and numerical studies of strongly swirling natural-gas flames, Proc. Combust. Inst. 27, 1023–1030 (1998)

    Google Scholar 

  79. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly: Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine, Proc. Combust. Inst. 26, 2597–2604 (1996)

    Google Scholar 

  80. J. Warnatz, U. Maas, R.W. Dibble: Combustion, 3rd edn. (Springer, Berlin, Heidelberg 2001)

    MATH  Google Scholar 

  81. V. Bergmann, W. Meier, D. Wolff, W. Stricker: Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame, Appl. Phys. B 66, 489–502 (1998)

    Google Scholar 

  82. D. Geyer, A. Kempf, A. Dreizler, J. Janicka: Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1D-Raman/Rayleigh experiments supported by LES, Proc. Combust. Inst. 30, 681–689 (2005)

    Google Scholar 

  83. H.W. Schrötter: Linear Raman spectroscopy: A state of the art report. In: Nonlinear Raman Spectroscopy and Its Chemical Applications, NATO Adv. Study Inst. Ser. C, Vol. 93, ed. by W.J. Kiefer, D.A. Long (Kluwer, Dordrecht 1982)

    Google Scholar 

  84. J. Zetterberg, Z.S. Li, M. Afzelius, M. Aldén: Two-dimensional temperature measurements in flames using filtered Rayleigh scattering at 254 nm. In: European Combustion Meeting (The Combustion Institute, Orléans 2003)

    Google Scholar 

  85. W. Meier, R.S. Barlow, Y.-L. Chen, J.-Y. Chen: Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence–chemistry interaction, Combust. Flame 123, 326–343 (2000)

    Google Scholar 

  86. A.C. Eckbreth: Laser Diagnostics for Combustion Temperature and Species, 2nd edn. (Gordon Breach, Amsterdam 1996)

    Google Scholar 

  87. S.B. Pope: Turbulent Flows (Cambridge Univ. Press, Cambridge 2000) p. 771

    MATH  Google Scholar 

  88. C. Schneider, A. Dreizler, J. Janicka: Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows, Flow Turbulence Combust. 74, 103–127 (2005)

    MATH  Google Scholar 

  89. W. Meier, S. Prucker, M.H. Cao, W. Stricker: Characterization of turbulent H2/N2/air jet diffusion flames by single-pulse spontaneous Raman scattering, Combust. Sci. Technol. 118, 293–312 (1996)

    Google Scholar 

  90. R.W. Pitz, J.A. Wehrmeyer, J.M. Bowling, T.S. Cheng: Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame, Appl. Opt. 29, 2325–2332 (1990)

    Google Scholar 

  91. A. Brockhinke, P. Andresen, K. Kohse-Höinghaus: Quantitative one-dimensional single-pulse multi-species concentration and temperature measurements in the lift-off region of a turbulent H2-air diffusion flame, Appl. Phys. B 61, 533–545 (1995)

    Google Scholar 

  92. W. Meier, O. Keck: Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths, Meas. Sci. Technol. 13, 741–749 (2002)

    Google Scholar 

  93. G. Herzberg: Molecular Spectra and Molecular Structure, Spectra of Diatomic Molecules, Vol. 1 (Krieger, Malabar 1989)

    Google Scholar 

  94. G. Herzberg: Molecular Spectra and Molecular Structure, Electronic Spectra and Electronic Structure of Polyatomic Molecules, Vol. 3, 2nd edn. (Krieger, Malabar 1991)

    Google Scholar 

  95. M.M. Tacke, D. Geyer, E.P. Hassel, J. Janicka: A detailed investigation of the stabilization point of lifted turbulent diffision flames, Proc. Combust. Inst. 27, 1157–1165 (1998)

    Google Scholar 

  96. R.S. Barlow, P.C. Miles: A shutter-based line-imaging sytem for single-shot Raman scattering measurements of gradients in mixture fraction, Proc. Combust. Inst. 28, 269–277 (2000)

    Google Scholar 

  97. H. Tennekes, J. Lumley: A First Course in Turbulence (MIT Press, Cambridge 1972)

    Google Scholar 

  98. V. Ebert, J. Wolfrum: Absorption spectroscopy. In: Optical Measurements-Techniques and Applications, ed. by F. Mayinger (Springer, Berlin, Heidelberg 1994) pp. 273–312

    Google Scholar 

  99. D.S. Baer, R.K. Hanson, M.E. Newfield, N.K.J.M. Gopaul: Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements, Opt. Lett. 19, 1900–1902 (1994)

    Google Scholar 

  100. M.G. Allen: Diode laser absorption sensors for gas dynamic and combustion flows, Meas. Sci. Technol. 9, 545–562 (1998)

    Google Scholar 

  101. A.P. Thorne: Spectrophysics (Chapman Hall, London 1988)

    Google Scholar 

  102. E.R. Furlong, D.S. Baer, R.K. Hanson: Combustion Control and Monitoring using a Multiplexed Diode-Laser Sensor System, Proc. Combust. Inst. 26, 2851–2858 (1996)

    Google Scholar 

  103. A. Thorne, U. Litzén, S. Johannson: Spectrophysics (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  104. I.I. Sobelʼman, L.A. Vainshtein, E.A. Yukov: Excitation of Atoms and Broadening of Spectral Lines (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  105. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz: Simultaneous diode-laser-based in-situ detection of multiple species and temperature in a gas-fired power plant, Proc. Combust. Inst. 28, 423–430 (2000)

    Google Scholar 

  106. S. Schäfer, M. Mashni, J. Sneider, A. Miklos, P. Hess, V. Ebert, K.-U. Pleban, H. Pitz: Sensitive detection of methane with a 1.65 Âμ m diode laser by photoacoustic and absorption spectroscopy, Appl. Phys. B 66, 511–516 (1998)

    Google Scholar 

  107. C.A. Taatjes, D.B. Oh: Time-resolved wavelength modulation spectroscopy measurements of HO2 kinetics, Appl. Opt. 36, 5817–5821 (1997)

    Google Scholar 

  108. K. Kohse-Höinghaus, D.F. Davidson, A.Y. Chang, R.K. Hanson: Quantitative NH2 concentration determination in shock-tube laser-absorption experiments, J. Quant. Spectrosc. Radiat. Transfer 42, 1–17 (1989)

    Google Scholar 

  109. J.J. Scherer, J.B. Paul, A. OʼKeefe, R.J. Saykally: Cavity ringdown laser absorption spectroscopy: History, development, and application to pulsed molecular beams, Chem. Rev. 97, 25 (1997)

    Google Scholar 

  110. S. Cheskis, I. Derzy, V.A. Lozovsky, A. Kachanov, D. Romanini: Cavity ring-down spectroscopy of OH radicals in low pressure flames, Appl. Phys. B 66, 377–381 (1998)

    Google Scholar 

  111. S. Cheskis, I. Derzy, V.A. Lozovsky, A. Kachanov, F. Stoeckel: Intracavity laser absorption spectroscopy detection of CH2 radicals in hydrocarbon flames, Chem. Phys. Lett. 277, 423 (1997)

    Google Scholar 

  112. P. Zalicki, Y. Ma, R.N. Zare, J.R. Dadamio, E.H. Wahl, T.G. Owano, C.H. Kruger: Methyl radical measurement by cavity ring-down spectroscopy, Chem. Phys. Lett. 234, 269–274 (1995)

    Google Scholar 

  113. J.J. Scherer, D.J. Rakestraw: Cavity ring-down laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame, J. Chem. Phys. 265, 169–176 (1997)

    Google Scholar 

  114. J.J. Scherer, K.W. Aniolek, N.P. Cernansky, D.J. Rakestraw: Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy, J. Chem. Phys. 107, 6196–6203 (1997)

    Google Scholar 

  115. Y. He, M. Hippler, M. Quack: High-resolution cavity rind-down absorption spectroscopy of nitrous oxide and chloroform using near-infrared cw diode laser, Chem. Phys. Lett. 289, 527–534 (1998)

    Google Scholar 

  116. T. Yu, M.C. Lin: Kinetics of the C6H5 + NO association reaction, J. Phys. Chem. 98, 2105–2109 (1994)

    Google Scholar 

  117. S.T. Sanders, J. Wang, J.B. Jeffries, R.K. Hanson: Diode-laser absorption sensor for line-of-sight gas temperature distributions, Appl. Opt. 40, 4404–4415 (2001)

    Google Scholar 

  118. D.W. Mattison, S.T. Sanders, L. Ma, K.M. Hinckley, J.B. Jeffries, R.K. Hanson, C.M. Brophy: Pulse detonation engine characterization and control using tunable diode-laser sensors, J. Propulsion Power 19, 568–572 (2003)

    Google Scholar 

  119. X. Zhou, J.B. Jeffries, R.K. Hanson: Development of a fast temperature sensor for combustion gases using a single tunable diode laser, Appl. Phys. B 81, 711–722 (2005)

    Google Scholar 

  120. J.T.C. Liu, G.B. Rieker, J.B. Jeffries, R.K. Hanson, M.R. Gruber, C.D. Carter, T. Mathur: Near infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor, Appl. Opt. 44, 6701–6711 (2005)

    Google Scholar 

  121. V. Nagali, R.K. Hanson: Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases, Appl. Opt. 36, 9518–9527 (1997)

    Google Scholar 

  122. S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson: Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines, Proc. Combust. Inst. 28, 587–594 (2000)

    Google Scholar 

  123. H. Teichert, T. Fernholz, V. Ebert: Simultaneous in-situ measurements of CO, H2O and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers, Appl. Opt. 42, 2043–2051 (2003)

    Google Scholar 

  124. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, K. Carleer, C. Chackerian Jr., Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaut, R.R. Gamache, A. Goldmann, J.-M. Hartmann, K.W. Jucks, A.G. Maki, S.T. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner: The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2004), (http://cfa-www.harvard.edu/HITRAN/)

    Google Scholar 

  125. G.B. Rieker, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, T. Mathur, M.R. Gruber, C.D. Carter: Diode laser sensor for gas temperature and H2O concentration in a scramjet combustor using wavelength modulation spectroscopy, AIAA Paper 2005-3710 (2005)

    Google Scholar 

  126. J.T.C. Liu, J.B. Jeffries, R.K. Hanson: Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows, Appl. Phys. B 78, 503–511 (2004)

    Google Scholar 

  127. K. Kohse-Höinghaus: Laser techniques for the quantitative detection of reactive intermediates in combustion systems, Prog. Energy Combust. Sci. 20, 203–279 (1994)

    Google Scholar 

  128. J.W. Daily: Laser induced fluorescence spectroscopy in flames, Prog. Energy Combust. Sci. 23, 133–199 (1997)

    Google Scholar 

  129. E.W. Rothe, Y. Gu, A. Chryssostomou, P. Andresen, F. Bormann: Effect of laser intensity and of lower-state rotational energy transfer upon temperature measurements made with laser-induced predissociative fluorescence, Appl. Phys. B 66, 251 (1998)

    Google Scholar 

  130. J. Luque, D.R. Crosley: LIFBASE: Database and spectral simulation for diatomic molecules (SRI International, Menlo Park 1999), MP-99-0099, (www.sri.com/cem/lifbase)

    Google Scholar 

  131. W.G. Bessler, C. Schulz, V. Sick, J.W. Daily: A versatile modeling tool for nitric oxide LIF spectra www.lifsim.com). In: 3rd Joint meeting of the US sections of The Combustion Institute (Combustion Institute, Chicago 2003) pp. 1–6, Paper PI05

    Google Scholar 

  132. R. Kienle, M.P. Lee, K. Kohse-Höinghaus: A scaling formalism for the representation of rotational energy transfer in OH A in combustion experiments, Appl. Phys. B 63, 403–418 (1996)

    Google Scholar 

  133. P.H. Paul, J.A. Gray, J.L.D. Jr., J.W.T. Jr.: A model for temperature-dependent collisional quenching of NO A2 Σ +, Appl. Phys. B 57, 249–259 (1993)

    Google Scholar 

  134. W.G. Bessler, M. Hofmann, F. Zimmermann, G. Suck, J. Jakobs, S. Nicklitzsch, T. Lee, J. Wolfrum, C. Schulz: Quantitative in-cylinder NO-LIF imaging in a realistic gasoline engine with spray-guided direct injection, Proc. Combust. Inst. 30, 2667–2674 (2005)

    Google Scholar 

  135. J.W. Daily, T.B. Settersten, W.G. Bessler, C. Schulz, V. Sick: A computer code to simulate laser excitation and collision dynamics in nitric oxide. In: 4th Joint Meeting of the U.S. Sections of the Combustion Institute (The Combustion Institute, Philadelphia 2005)

    Google Scholar 

  136. R. Cattolica: OH rotational temperature from two-line laser-excited fluorescence, Appl. Opt. 20, 1156–1166 (1981)

    Google Scholar 

  137. K.P. Gross, R.L. McKenzie: Singe-pulse gas thermometry at low temperatures using two-photon laser-induced fluorescence in NO-N2 mixtures, Opt. Lett. 8, 368–370 (1983)

    Google Scholar 

  138. M.P. Lee, B.K. McMillin, R.K. Hanson: Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO, Appl. Opt. 32, 5379–5396 (1993)

    Google Scholar 

  139. J.M. Seitzman, R.K. Hanson: Two-line planar fluorescence for temporally resolved temperature imaging in a reacting supersonic flow over a body, Appl. Phys. B 57, 385–391 (1993)

    Google Scholar 

  140. A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler: Non-intrusive temperature measurements during the compression phase of a DI Diesel engine, SAE Tech. Paper Ser. 952461 (1995)

    Google Scholar 

  141. M. Tamura, P.A. Berg, J.E. Harrington, J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley: Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames, Combust. Flame 114, 502–514 (1998)

    Google Scholar 

  142. M. Tamura, J. Luque, J.E. Harrington, P.A. Berg, G.P. Smith, J.B. Jeffries, D.R. Crosley: Laser-induced fluorescence of seeded nitric oxide as a flame thermometer, Appl. Phys. B 66, 503–510 (1998)

    Google Scholar 

  143. M. Tsujishita, A. Hirano, M. Yokoo, T. Sakuraya, Y. Takeshita: Accurate thermometry using NO and OH laser-induced fluorescence in an atmospheric pressure flame, JSME Int. J. Ser. B 42, 119 (1999)

    Google Scholar 

  144. W.G. Bessler, F. Hildenbrand, C. Schulz: Two-line laser-induced fluorescence imaging of vibrational temperatures of seeded NO, Appl. Opt. 40, 748–756 (2001)

    Google Scholar 

  145. J.B. Bell, M.S. Day, J.F. Grcar, W.G. Bessler, C. Schulz, P. Glarborg, A.D. Jensen: Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH3-seeded non-premixed methane/air flame, Proc. Combust. Inst. 29, 2195–2202 (2002)

    Google Scholar 

  146. J.W. Daily, E.W. Rothe: Effect of laser intensity and lower-state rotational energy transfer upon temperature measurements made with laser-induced fluorescence, Appl. Phys. B 68, 131–140 (1999)

    Google Scholar 

  147. W.G. Bessler, C. Schulz: Quantitative multi-line NO-LIF temperature imaging, Appl. Phys. B 78, 519–533 (2004)

    Google Scholar 

  148. J.E. Dec, J.O. Keller: High speed thermometry using two-line atomic fluorescence, Proc. Combust. Inst. 21, 1737–1745 (1986)

    Google Scholar 

  149. C.F. Kaminski, J. Engström, M. Aldén: Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence, Proc. Combust. Inst. 27, 85–93 (1998)

    Google Scholar 

  150. J. Engström, J. Nygren, M. Aldén, C.F. Kaminski: Two-line atomic fluorescence as a temperature probe for highly sooting flames, Opt. Lett. 25, 1469–1471 (2000)

    Google Scholar 

  151. P. Andresen, A. Bath, W. Groger, H.W. Lulf, G. Meijer, J.J. ter Meulen: Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame, Appl. Opt. 27, 365–378 (1988)

    Google Scholar 

  152. A. Arnold, B. Lange, T. Bouché, Z. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy, Ber. Bunsenges. Phys. Chem. 96, 1388–1392 (1992)

    Google Scholar 

  153. B.K. McMillin, J.M. Seitzman, R.K. Hanson: Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flowfields, AIAA J. 32, 1945–1952 (1994)

    Google Scholar 

  154. B. Atakan, J. Heinze, U.E. Meier: OH laser-induced fluorescence at high pressures: spectroscopic and two-dimensional measurements exciting the A-X (1,0) transition, Appl. Phys. B 64, 585–591 (1997)

    Google Scholar 

  155. A.T. Hartlieb, B. Atakan, K. Kohse-Höinghaus: Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames, Appl. Phys. B 70, 435–445 (2000)

    Google Scholar 

  156. R.L. McKenzie, K.P. Gross: Two-photon excitation of nitric oxide fluorescence as a temperature indicator in unsteady gasdynamic processes, Appl. Opt. 20, 2153–2165 (1981)

    Google Scholar 

  157. J.M. Seitzman, G. Kychakoff, R.K. Hanson: Instantaneous temperature field measurements using planar laser-induced fluorescence, Opt. Lett. 10, 439–441 (1985)

    Google Scholar 

  158. K.P. Gross, R.L. McKenzie: Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence, AIAA J. 23, 1932–1936 (1985)

    Google Scholar 

  159. K.P. Gross, R.L. McKenzie, P. Logan: Measurement of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence, Exp. Fluids 5, 372–380 (1987)

    Google Scholar 

  160. B.K. McMillin, J.L. Palmer, R.K. Hanson: Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow, Appl. Opt. 32, 7532–7545 (1993)

    Google Scholar 

  161. A.O. Vyrodov, J. Heinze, M. Dillmann, U.E. Meier, A.W. Stricker: Laser-induced fluorescence thermometry and concentration measurements on NO A-X (0,0) transitions in the exhaust gas of high pressure CH4/air flames, Appl. Phys. B 61, 409–414 (1995)

    Google Scholar 

  162. M. Yorozu, Y. Okada, A. Endo: Two dimensional rotational temperature measurement by multiline laser induced fluorescence of nitric oxide in combustion flame, Opt. Rev. 3, 293–298 (1996)

    Google Scholar 

  163. E.A. Brinkman, G.A. Raiche, M.S. Brown, J.B. Jeffries: Optical diagnostics for temperature measurement in a dc arcjet reactor used for diamond deposition, Appl. Phys. B. 64, 689 (1997)

    Google Scholar 

  164. P.C. Palma, T.J. McIntyre, A.F.P. Houwing: PLIF thermometry in shock tunnel flows using a Raman-shifted tunable excimer laser, Shock Waves 8, 275–284 (1998)

    Google Scholar 

  165. W.M. Ruyten, M.S. Smith, L.L. Price, W.D. Williams: Three-line fluorescence thermometry of optically thick shock-tunnel flow, Appl. Opt. 37, 2334–2339 (1998)

    Google Scholar 

  166. G. Dilecce, M. Simek, M. Vigliotti, S. De Benedictis: Fast LIF approach to NO rotational temperature and density measurement: Application to a gas-dynamic expansion, Appl. Spectrosc. 54, 824–831 (2000)

    Google Scholar 

  167. H. Kronemayer, W. Bessler, C. Schulz: Gas-phase temperature measurements in evaporating sprays and spray flames based on NO multiline LIF, Appl. Phys. B 81, 1071–1074 (2005)

    Google Scholar 

  168. W.G. Bessler, C. Schulz, T. Lee, D.I. Shin, M. Hofmann, J.B. Jeffries, J. Wolfrum, R.K. Hanson: Quantitative NO-LIF imaging in high-pressure flames. In: Optical and Laser Diagnostics, ed. by C. Arcoumanis, K.T.V. Grattan (Institute of Physics, Bristol, Philadelphia 2003) pp. 107–114

    Google Scholar 

  169. M.P. Lee, P.H. Paul, R.K. Hanson: Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2, Opt. Lett. 12, 75–77 (1987)

    Google Scholar 

  170. G. Laufer, R.L. McKenzie, D.G. Fletcher: Method for measuring temperatures and densities in hypersonic wind tunnel air flows using laser-induced O2 fluorescence, Appl. Opt. 29, 4873–4883 (1990)

    Google Scholar 

  171. M.S. Smith, L.L. Price, W.D. Williams: Laser-induced fluorescence diagnostics using a two-line excitation method, AIAA J. 31, 478–482 (1993)

    Google Scholar 

  172. T. Ni-Imi, T. Fujimoto, N. Shimizu: Method for planar measurement of temperature in compressible flow using two-line laser-induced iodine fluorescence, Opt. Lett. 15, 918–920 (1990)

    Google Scholar 

  173. A. Kido, S. Kubota, H. Ogawa, N. Miyamoto: Simultaneous measurements of concentration and temperature distributions in unsteady gas jets by an iodine LIF method, SAE Tech. Paper Ser. 980146 (1998)

    Google Scholar 

  174. F. Großmann, P.B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum: Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone, Appl. Phys. B 62, 249–253 (1996)

    Google Scholar 

  175. M.C. Thurber, F. Grisch, R.K. Hanson: Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence, Opt. Lett. 22, 251–253 (1997)

    Google Scholar 

  176. S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schießl, U. Maas: Two-dimensional temperature measurements in an SI engine using two-line tracer LIF, SAE Tech. Paper Ser. 982468 (1998)

    Google Scholar 

  177. M. Luong, W. Koban, C. Schulz: Novel strategies for imaging temperature distribution using Toluene LIF, J. Phys. 45, 133–139 (2005)

    Google Scholar 

  178. W. Koban, J.D. Koch, V. Sick, N. Wermuth, R.K. Hanson, C. Schulz: Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions, Proc. Combust. Inst. 30, 1545–1553 (2005)

    Google Scholar 

  179. W. Koban, C. Schulz: Toluene as a tracer for fuel, temperature and oxygen concentrations, SAE Tech. Paper Ser. 2005-01-2091 (2005)

    Google Scholar 

  180. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz: Toluene LIF at elevated temperatures: Implications for fuel/air ratio measurements, Appl. Phys. B 80, 147–150 (2005)

    Google Scholar 

  181. H. Zacharias, J.B. Halpern, K.H. Welge: Two-photon excitation of NO (A2 Σ +; v′ = 0, 1, 2) and radiation lifetime and quenching measurements, Chem. Phys. Lett. 43, 41–44 (1976)

    Google Scholar 

  182. G.F. Nutt, S.C. Haydon, A.J. McIntosh: Measurement of electronic quenching rates in nitric oxide using two-photon spectroscopy, Chem. Phys. Lett. 62, 402–404 (1979)

    Google Scholar 

  183. I.S. McDermid, J.B. Laudenslager: Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO (A2 Σ +, v′ = 0), J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982)

    Google Scholar 

  184. N. Sullivan, A. Jensen, P. Glarborg, M.S. Day, J.F. Grcar, J.B. Bell, C. Pope, R.J. Kee: Ammonia conversion and NO x formation in laminar coflowing nonpremixed methane/air flames, Combust. Flame 131, 285–298 (2002)

    Google Scholar 

  185. W.G. Bessler, C. Schulz, T. Lee, D.I. Shin, M. Hofmann, J.B. Jeffries, J. Wolfrum, R.K. Hanson: Quantitative NO-LIF imaging in high-pressure flames, Appl. Phys. B 75, 97–102 (2002)

    Google Scholar 

  186. C. Schulz, V. Sick: Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations, Prog. Energy Combust Sci. 31, 75–121 (2005)

    Google Scholar 

  187. F. Großmann, P.B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum: Temperature and pressure dependencies of the laser-induced fluorescence of gas-phase acetone and 3-pentanone, Appl. Phys. B 62, 249–253 (1996)

    Google Scholar 

  188. S. Einecke, C. Schulz, V. Sick: Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion, Appl. Phys. B 71, 717–723 (2000)

    Google Scholar 

  189. J.D. Koch, R.K. Hanson: Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications, Appl. Phys. B 76, 319–324 (2003)

    Google Scholar 

  190. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz: Absorption and fluorescence of toluene vapor at elevated temperatures, Phys. Chem. Chem. Phys. 6, 2940–2945 (2004)

    Google Scholar 

  191. M.C. Thurber, B.J. Kirby, R.K. Hanson: Instantaneous imaging of temperature and mixture fraction with dual-wavelength acetone PLIF, AIAA Paper 98-0397 (1998)

    Google Scholar 

  192. N.P. Tait, D.A. Greenhalgh: PLIF imaging of fuel fraction in practical devices and LII imaging of soot, Ber. Bunsenges. Phys. Chem. 97, 1619 (1993)

    Google Scholar 

  193. A.C. Eckbreth: CARS thermometry in practical combustors, Combust. Flame 39, 133–147 (1980)

    Google Scholar 

  194. R.J. Hall: Intensity convolutions of CARS spectra, Opt. Commun. 52, 360–366 (1985)

    Google Scholar 

  195. R.E. Teets: Accurate convolutions of coherent anti-Stokes Raman spectra, Opt. Lett. 9, 226–228 (1984)

    Google Scholar 

  196. M. Péalat, M. Lefebvre, J.-P.E. Taran, P.L. Kelley: Sensitivity of quantitative vibrational coherent anti-Stokes Raman spectroscopy to saturation and stark shifts, Phys. Rev. 38, 1948–1965 (1988)

    Google Scholar 

  197. M.L. Koszykowski, R.L. Farrow, R.E. Palmer: Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra, Opt. Lett. 10, 478–480 (1985)

    Google Scholar 

  198. S. Kröll, M. Aldén, T. Berglind, R.J. Hall: Noise characteristics of single shot broadband Raman-resonant CARS with single- and multimode lasers, Appl. Opt. 26, 1068–1073 (1987)

    Google Scholar 

  199. P.R. Regnier, J.P. Taran: On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering, Appl. Phys. Lett. 23, 240–242 (1973)

    Google Scholar 

  200. W.A. England, J.M. Milne, S.N. Jenny, D.A. Greenhalgh: Application of CARS to an operating chemical reactor, Appl. Spectrosc. 38, 867–876 (1984)

    Google Scholar 

  201. A.C. Eckbreth, R.J. Hall: CARS concentration sensitivity with and without nonresonant background suppression, Combust. Sci. Technol. 25, 175–192 (1981)

    Google Scholar 

  202. M. Schenk, T. Seeger, A. Leipertz: Time-resolved CO2 thermometry for pressures as great as 5 MPa by use of pure rotational coherent anti-Stokes Raman scattering, Appl. Opt. 44, 6526–6536 (2005)

    Google Scholar 

  203. P.-E. Bengtsson, L. Martinsson, M. Aldén: Dual-broadband rotational CARS measurements in an IC engine, Proc. Combust. Inst. 25, 1735–1742 (1994)

    Google Scholar 

  204. P.-E. Bengtsson, M. Aldén: Soot-visualization strategies using laser techniques, Appl. Phys. B 60, 51–59 (1995)

    Google Scholar 

  205. P.R.N. Childs, J.R. Greenwood, C.A. Long: Review of temperature measurement, Rev. Sci. Instrum. 71(8), 2959–2978 (2000)

    Google Scholar 

  206. P. Neubert: Device for indicating the temperature distribution of hot bodies, US Patent No. 2071471 (1937)

    Google Scholar 

  207. F. Urbach, N.R. Nail, D. Pearlman: The observation of temperature distributions and of thermal radiation by means of non-linear phosphors, J. Opt. Soc. Am. 39(12), 1011–1019 (1949)

    Google Scholar 

  208. L.C. Bradley: A temperature-sensitive phosphor used to measure surface temperatures in aerodynamics, Rev. Sci. Instrum. 24(3), 219–220 (1953)

    Google Scholar 

  209. G.M. Buck: Surface temperature/heat transfer measurement using a quantitative phosphor thermography system. In: 29th Aerospace Sciences Meeting AIAA Paper 91-0064 (1991)

    Google Scholar 

  210. J.H. Monaweck, W.J. McGonnagle: Thermal testing of reactor fuel elements. In: Proc. Symp. Nondestructive Test Field Nuclear Energy, ed. by D.R. Green (ASTM, West Conshohocken 1957), ASTM Special Tech. Publ. 352-357

    Google Scholar 

  211. S.W. Allison, M.R. Cates, D.L. Beshears: A survey of thermally sensitive phosphors for pressure sensitive paint applications, Proc. ISA 46th Annual, ISA 397, 29–37 (2000)

    Google Scholar 

  212. J.P. Feist, A.L. Heyes: The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications, Meas. Sci. Technol. 11, 942–947 (2000)

    Google Scholar 

  213. Y. Le Sant, J.L. Edy: Phosphor thermography technique in hypersonic wind tunnels: First results. In: 15th ICIASF (1993)

    Google Scholar 

  214. S.W. Allison, G.T. Gillies: Remote thermometry with thermographic phosphors: Instrumentation and application, Rev. Sci. Instrum. 68(7), 2615–2650 (1997)

    Google Scholar 

  215. T. Liu, B.T. Campbell, J.P. Sullivan: Thermal paints for shock/boundary layer interaction in inlet flows, AIAA Paper 92-3626 (1992)

    Google Scholar 

  216. B.T. Campbell, T. Liu, J.P. Sullivan: Temperature measurement using fluorescent molecules. In: 6th International Symposium on Application of Laser Technique (1992)

    Google Scholar 

  217. B.T. Campbell, T. Liu, J.P. Sullivan: Temperature sensitive fluorescent paint systems, AIAA Paper 94-2483 (1994)

    Google Scholar 

  218. B.G. Mc. Lachlan, J.H. Bell, J. Gallery, M. Gouterman, J. Callis: Boundary layer transition detection by luminescent imaging, AIAA Paper 93-0177 (1993)

    Google Scholar 

  219. K. Asai, H. Kanda, T. Kunimasu, T. Liu, J.P. Sullivan: Detection of boundary-layer transition in a cryogenic wind tunnel by using luminescent paint, AIAA Paper 96-2185 (1996)

    Google Scholar 

  220. T.G. Popernack, L.R. Owens, M.P. Hamner, M.J. Morris: Application of temperature sensitive paint for detection of boundary layer transition, ICIASF Proc. (1997)

    Google Scholar 

  221. U. Fey, K. De Groot, Y. Le Sant: Thermography as a tool in wind tunnel testing, DLR Rep. IB 224-2007A09 (2007)

    Google Scholar 

  222. J.P. Hubner, B.F. Carroll, K.S. Schanze: Heat transfer measurements in hypersonic flow using luminescent coating techniques, AIAA Paper 2002-0741 (2002)

    Google Scholar 

  223. I. Le Sant: Private communication, ONERA (2006)

    Google Scholar 

  224. T. Liu, J.P. Sullivan: Pressure and Temperature Sensitive Paint (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  225. U. Fey, R.H. Engler, Y. Egami, y. Iijima, K. Asai, U. Jansen, J. Quest: ETW). In: 20th Int. Congress on Instrumentation in Aerospace Simulation Facilities, ICIASF 2003 Record (2003) pp. 77–88

    Google Scholar 

  226. W. Banks, C.P. van Dam, H.J. Shiu, G.M. Miller: Visualization of in-flight flow phenomena using infrared thermography. In: 9th Int. Symposium on Flow Visualization (2000) pp. 1–11, 24 (NASA TM-2000-209027)

    Google Scholar 

  227. J. Sullivan, J.W. Gregory, C.Y. Huang, H. Sakaue: Flow visualization applications of luminescent paints. In: 10th Int. Symposium on Flow Visualization (2002)

    Google Scholar 

  228. Y. Egami, U. Fey, C. Klein, M. Sitzmann, J. Wild: Transition detection on high-lift devices in DNW-KKK by means of temperature-sensitive paint. In: 12th Int. Symp. on Flow Visual. (2006)

    Google Scholar 

  229. K. De Groot: Private communication, DLR (2006)

    Google Scholar 

  230. E. Reshotko: Laminar Flow Control, Special course on stability and transition of laminar flows, AGARD Rep., Vol. 709 (VKI, Brussels 1984)

    Google Scholar 

  231. W.S. Saric, H.L. Reed: Toward practical laminar flow control – Remaining challenges. In: 34th AIAA Fluid Dynamics Conference (2004)

    Google Scholar 

  232. U. Fey, Y. Egami, C. Klein: Using cryoTSP as a tool for transition detection and instability examination at high Reynolds numbers. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 96, ed. by C. Tropea, S. Jarkirlic, H.-J. Heinemann, R. Henke, H. Hönlinger (Springer, Berlin, Heidelberg 2007)

    Google Scholar 

  233. Y. Iijima, Y. Egami, A. Nishizawa, K. Asai, U. Fey, R.H. Engler: Optimization of temperature-sensitive paint formulation for large-scale cryogenic wind tunnels. In: 20th Int. Congress on Instrumentation in Aerospace Simulation Facilities (ICIASF), ICIASF 2003 Record (2003) pp. 70–77

    Google Scholar 

  234. U. Fey, Y. Egami, R.H. Engler: High Reynolds number transition detection by means of temperature sensitive paint. In: 44th AIAA Aerospace Sciences Meeting and Exhibit AIAA Paper 2006-514 (2006)

    Google Scholar 

  235. U. Fey, Y. Egami, R.H. Engler: Using cryoTSP as a tool for transition detection. In: Int. Council of the Aeronautical Sciences (2006)

    Google Scholar 

  236. Y. Egami, U. Fey, J. Quest: Development of new two-component TSP for cryogenic testing. In: 45th Aerospace Sciences Meeting and Exhibit (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomasz Kowalewski Ph.D , Phillip Ligrani Prof. , Andreas Dreizler Dr. , Christof Schulz Dr. or Uwe Fey Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Kowalewski, T., Ligrani, P., Dreizler, A., Schulz, C., Fey, U. (2007). Temperature and Heat Flux. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics