Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

The methods dealt with in this section are based on changes of fluid density; hence its index of refraction. As a result of these changes, optical phase and, coupled with it, direction of propagation of a light wave transmitted through the flow are altered in comparison to the properties of the incident light. The available signal can be presented in planar form, i.e., as a flow picture, and the methods are often referred to as optical flow visualisation, because the changes in index of refraction are detected and measured by optical techniques. The obtainable information is integrated along the whole path of the light in the fluid field (line-of-sight methods) and, in a three-dimensional (3D) object field, special techniques for interpreting the signal pattern are necessary (tomography) in order to provide local data values of the quantity to be determined, e.g., density. Four major groups of experimental methods can be distinguished: shadowgraphy, schlieren technique, moiré techniques, and interferometry. The fluid mechanical problem areas to which these optical measuring techniques can be applied are compressible flow, convective heat transfer, mixing and mass transfer, combustion, and flows with density stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

FFW:

finite fringe width

IFW:

infinite fringe width

ISL:

Institute of Saint Louis

MZI:

Mach–Zehnder interferometer

References

  1. W. Merzkirch: Flow Visualization, 2nd edn. (Academic, Orlando 1987)

    MATH  Google Scholar 

  2. F. Peters: A compact presentation of gasdynamic fundamentals, Forsch. Ingenieurw. 68, 111–119 (2003)

    Article  Google Scholar 

  3. F.J. Weinberg: Optics of Flames (Butterworth, London 1963)

    Google Scholar 

  4. W. Lauterborn, A. Vogel: Modern optical techniques in fluid mechanics, Annu. Rev. Fluid Mech. 16, 223–244 (1984)

    Article  Google Scholar 

  5. F. Mayinger, O. Feldmann (Eds.): Optical Measurements, 2nd edn. (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  6. G.S. Settles: Schlieren and Shadowgraph Techniques (Springer, Berlin, Heidelberg 2001)

    MATH  Google Scholar 

  7. W. Schöpf: A new way of analyzing the shadowgraph method, J. Flow Vis. Image Proc. 4, 179–187 (1997)

    Google Scholar 

  8. G.B. Brassington, J.C. Patterson, M. Lee: A new algorithm for analyzing shadowgraph images, J. Flow Vis. Image Proc. 9, 25–51 (2002)

    Google Scholar 

  9. H. Schardin: Die Schlierenverfahren und ihre Anwendungen, Ergeb. Exakten Naturwiss. 20, 303–439 (1942), in German

    Article  Google Scholar 

  10. H. Wolter: Schlieren, Phasenkontrast und Lichtschnittverfahren. In: Handbuch der Physik, Vol. 24, ed. by S. Flügge (Springer, Berlin, Heidelberg 1956) pp. 555–645

    Google Scholar 

  11. C.A. Lopez: Numerical simulation of a schlieren system from the Fourier optics perspective, AIAA Paper 94-2618 (1994)

    Google Scholar 

  12. A. Hanenkamp, W. Merzkirch: Investigation of the properties of a sharp-focusing schlieren system by means of Fourier analysis, Opt. Lasers Eng. 44, 159–169 (2006)

    Article  Google Scholar 

  13. G.S. Settles: Colour-coding schlieren techniques for the optical study of heat and fluid flow, Int. J. Heat Fluid Flow 6, 3–15 (1985)

    Article  Google Scholar 

  14. L.M. Weinstein: Large-field high-brightness focusing schlieren system, AIAA J. 31, 1250–1255 (1993)

    Article  Google Scholar 

  15. S.H. Collicott, T.R. Salyer: Noise-reduction properties of a multiple-source schlieren system, AIAA J. 32, 1683–1688 (1994)

    Article  Google Scholar 

  16. S. Garg, G.S. Settles: Measurements of a supersonic turbulent boundary layer by focusing schlieren deflectometry, Exp. Fluids 25, 254–264 (1998)

    Article  Google Scholar 

  17. W. Merzkirch: Density-sensitive whole-field flow measurement by optical speckle photography, Exp. Thermal Fluid Sci. 10, 435–443 (1995)

    Article  Google Scholar 

  18. K.D. Kihm: Laser speckle photography technique applied for heat and mass transfer problems, Adv. Heat Transf. 30, 255–311 (1997)

    Article  Google Scholar 

  19. N.A. Fomin: Speckle Photography for Fluid Mechanics Measurements (Springer, Berlin, Heidelberg 1998)

    MATH  Google Scholar 

  20. M. Raffel, H. Richard, G.E.A. Meier: On the applicability of background oriented optical tomography for large scale aerodynamic investigations, Exp. Fluids 28, 477–481 (2000)

    Article  Google Scholar 

  21. S.B. Dalziel, G.O. Hughes, B.R. Sutherland: Whole-field density measurements by ``syntheticʼʼ schlieren, Exp. Fluids 28, 322–235 (2000)

    Article  Google Scholar 

  22. C.M. Vest: Holographic Interferometry (Wiley, New York 1979)

    Google Scholar 

  23. D.W. Watt, C.M. Vest: Digital interferometry for flow visualization, Exp. Fluids 5, 401–406 (1987)

    Article  Google Scholar 

  24. H.H. Bartels-Lehnhoff, P.H. Baumann, B. Bretthauer, G.E.A. Meier: Computer-aided evaluation of interferograms, Exp. Fluids 16, 46–53 (1993)

    Article  Google Scholar 

  25. T.A.W.M. Lanen, C. Nebbeling, J.L. van Ingen: Digital phase-stepping holographic interferometry in measuring 2-D density fields, Exp. Fluids 9, 231–235 (1990)

    Article  Google Scholar 

  26. G.T. Herman: Image Reconstruction from Projections (Academic, New York 1980)

    MATH  Google Scholar 

  27. H. Philipp, T. Neger, H. Jäger, J. Woisetschläger: Optical tomography of phase objects by holographic interferometry, Measurement 10, 170–181 (1992)

    Article  Google Scholar 

  28. K. Muralidhar: Temperature field measurement in buoyancy-driven flows using interferometric tomography, Annu. Rev. Heat Transf. 12, 265–375 (2002)

    Google Scholar 

  29. B. Timmerman, D.W. Watt: Tomographic high-speed digital holographic interferometry, Meas. Sci. Technol. 6, 1270–1277 (1995)

    Article  Google Scholar 

  30. T.C. Liu, W. Merzkirch, K. Oberste-Lehn: Optical tomography applied to speckle photographic measurement of asymmetric flows with variable density, Exp. Fluids 7, 157–163 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang Merzkirch Prof. or Yasuhiro Egami Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Merzkirch, W., Egami, Y. (2007). Density-Based Techniques. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics