Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 19k Accesses

Abstract

From the beginning of science, visual observation has played a major role. At that time, the only way to document the results of an experiment was by verbal description and manual drawings. The next major step was the invention of photography more than one and a half centuries ago, which enabled experimental results to be documented objectively. In experimental fluid mechanics, flow visualization techniques gave direct insight into complex flows, but it was very difficult and time consuming to extract quantitative measurements from photographs and films.

Nowadays, we are in the middle of a second revolution sparked by the rapid progress in both photonics and computer technology. Sensitive solid-state cameras are available that acquire digital image data, and standard personal computers and workstations have become powerful enough to process these data. These technologies are now available to any scientist or engineer. As a consequence, image processing has expanded and continues to expand rapidly from a few specialized applications into a standard scientific tool.

This chapter gives a brief presentation of some of the most important general image processing techniques that are required to process image data in experimental fluid mechanics. The second section (Sect. 25.2) deals with motion analysis. The most important methods are introduced and classified according to the fundamental principles, assumptions and approximations upon which they are based.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

AGW:

adaptive Gaussian windowing

BCCE:

brightness change constraint equation

CCD:

charge-coupled device

CMOS:

complementary metal oxide semiconductor

EBCCE:

extended brightness change constraint equation

FFT:

fast Fourier transform

GBCCE:

generalized brightness change constraint equation

MHT:

multiple hypothesis tracker

PIV:

particle image velocimetry

PSF:

point spread function

PTV:

particle tracking velocimetry

SSD:

sum-of-squared differences

References

  1. M. Unser, A. Aldroubi, M. Eden: Fast B-spline transforms for continuous image representation and interpolation, IEEE Trans. PAMI 13, 277–285 (1991)

    Google Scholar 

  2. W.T. Freeman, E.H. Adelson: The design and use of steerable filters, IEEE Trans. PAMI 13, 891–906 (1991)

    Google Scholar 

  3. J. Weickert: Anisotropic Diffusion in Image Processing (Teubner, Stuttgart 1998)

    MATH  Google Scholar 

  4. P. Perona, J. Malik: Scale-space and edge detection using anisotropic diffusion, IEEE Trans. PAMI 12, 629–639 (1990)

    Google Scholar 

  5. B. Jähne: Digital Image Processing, 6th edn. (Springer, Heidelberg 2005)

    Google Scholar 

  6. B. Jähne, H. Scharr, S. Körgel: Principles of filter design. In: Computer Vision and Applications, Signal Processing and Pattern Recognition, Vol. 2, ed. by B. Jähne, H. Haußecker, P. Geißler (Academic, San Diego 1999) pp. 125–151

    Google Scholar 

  7. J. Bigün, G.H. Granlund: Optimal orientation detection of linear symmetry, ICCVʼ87 (IEEE, Washington 1987) 433–438

    Google Scholar 

  8. G.H. Granlund: In search of a general picture processing operator, Comput. Graph. Imag. Process. 8, 155–173 (1978)

    Article  Google Scholar 

  9. M. Felsberg, G.H. Granlund: POI detection using channel clustering and the 2D energy tensor, Pattern Recognition: 26th DAGM Symposium, Tübingen, Germany, LNCS, Vol. 3175 (Springer, Berlin 2004) 103–110

    Google Scholar 

  10. V.K. Madisetti, D.B. Williams: The Digital Signal Processing Handbook (CRC, Boca Raton 1998)

    Google Scholar 

  11. B. Jähne: Handbook of Digital Image Processing for Scientific and Technical Applications, 2nd edn. (CRC, Boca Raton 2004)

    Book  Google Scholar 

  12. D.J. Fleet: Measurement of Image Velocity (Dissertation University of Toronto, Canada 1990)

    Google Scholar 

  13. M. Felsberg, G. Sommer: A new extension of linear signal processing for estimating local properties and detecting features. In: Mustererkennung 2000, 22. DAGM Symposium, Kiel, Informatik aktuell, ed. by G. Sommer, N. Krüger, C. Perwass (Springer, Berlin 2000) pp. 195–202

    Google Scholar 

  14. C.K. Chui (Ed.): Wavelets: A Tutorial in Theory and Applications (Academic, Boston 1992)

    MATH  Google Scholar 

  15. T. Acharya, P.-S. Tsai: JPEG2000 Standard for Image Compression (Wiley, New York 2005)

    Google Scholar 

  16. C.E. Willert, M. Gharib: Digital particle image velocimetry, Exp. Fluids 10, 181–193 (1991)

    Article  Google Scholar 

  17. J. Westerweel: Fundamentals of digital particle image velocimetry, Meas. Sci. Technol. 8, 1379–1392 (1997)

    Article  Google Scholar 

  18. A.M. Fincham, G.R. Spedding: Low cost, high resolution DPIV for measurement of turbulent fluid flow, Exp. Fluids 23, 449–462 (1997)

    Article  Google Scholar 

  19. P.T. Tokumaru, P.E. Dimotakis: Image correlation velocimetry, Exp. Fluids 19, 1–15 (1995)

    Article  Google Scholar 

  20. A.W. Gruen: Adaptive least squares correlation: a powerful image matching technique, S. Afr. J. Photogramm. Remote Sensing Cartogr. 14(3), 175–187 (1985)

    Google Scholar 

  21. F. Scarano, M.L. Riethmuller: Advances in iterative multigrid PIV image processing, Exp. Fluids 29, S51–S60 (2000)

    Article  Google Scholar 

  22. E. Cowen, S. Monismith: A hybrid digital particle tracking velocimetry technique, Exp. Fluids 22, 199–211 (1997)

    Article  Google Scholar 

  23. R.J.M. Bastiaans, G.A.J. van der Plas, R.N. Kieft: The performance of a new PTV algorithm applied in super-resolution PIV, Exp. Fluids 32, 346–356 (2002)

    Article  Google Scholar 

  24. S.J. Baek, S.J. Lee: A new two-frame particle tracking algorithm using match probability, Exp. Fluids 22, 23–32 (1996)

    Article  Google Scholar 

  25. K. Ohmi, H.-Y. Li: Particle tracking velocimetry with new algorithms, Meas. Sci. Technol. 11(6), 603–616 (2000)

    Article  Google Scholar 

  26. Y.A. Hassan, R.E. Canaan: Full-field bubbly flow velocity measurements using a multiframe particle tracking technique, Exp. Fluids 12, 49–60 (1991)

    Article  Google Scholar 

  27. N.A. Malik, T. Dracos, D. Papantoniou: Particle tracking velocimetry in three-dimensional flows, Exp. Fluids 15, 279–294 (1993), Part II: Particle tracking

    Article  Google Scholar 

  28. K. Takehara, R.J. Adrian, G.T. Etoh, K.T. Christensen: A Kalman tracker for super-resolution PIV, Exp. Fluids 29, S34–S41 (2000)

    Article  Google Scholar 

  29. B. Jähne, H. Haussecker, P. Geissler: Handbook of Computer Vision and Applications (Academic, San Diego 1999)

    MATH  Google Scholar 

  30. M. Raffel, C. Willert, J. Kompenhans: Particle Image Velocimetry: A Practicle Guide (Springer, Heidelberg 1998)

    MATH  Google Scholar 

  31. G.R. Spedding, E.J.M. Rignot: Performance analysis and application of grid interpolation techniques for fluid flows, Exp. Fluids 15, 417–430 (1993)

    Article  Google Scholar 

  32. A.K. Prasad: Stereoscopic particle images velocimetry, Exp. Fluids 29, 103–116 (2000)

    Article  Google Scholar 

  33. R. Hartley, A. Zisserman: Multiple View Geometry in Computer Vision (Cambridge University Press, Cambridge 2000)

    MATH  Google Scholar 

  34. C.S. Slama: Manual of Photogrammetry, 4th edn. (American Society of Photogrammetry, Falls Church 1980)

    Google Scholar 

  35. K.D. Hinsch: Holographic particle image velocimetry, Meas. Sci. Technol. 13, R61–R72 (2002)

    Article  Google Scholar 

  36. T. Dracos: Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques (Kluwer Academic, Dordrecht 1996)

    Google Scholar 

  37. S.P. McKenna, W.R. McGillis: Performance of digital image velocimetry processing techniques, Exp. Fluids 32, 2 (2002)

    Article  Google Scholar 

  38. D.P. Hart: Super-Resolution PIV by Recursive Local-Correlation, J. Visual. 3(2), 187–194 (2000)

    Article  Google Scholar 

  39. H.J. Lin, M. Perlin: Improved methods for thin, surface boundary layer investigations, Exp. Fluids 25, 431–444 (1998)

    Article  Google Scholar 

  40. H.T. Huang, H.F. Fielder, J.J. Wang: Limitation and improvement of PIV, Exp. Fluids 15, 168–174 (1993), Part I: Limitation of conventional techniques due to deformation of particle image patterns

    Google Scholar 

  41. H.T. Huang, H.F. Fielder, J.J. Wang: Limitation and improvement of PIV, Exp. Fluids 15, 263–273 (1993), Part II. Particle image distortion, a novel technique

    Google Scholar 

  42. D.P. Hart: PIV error correction, Exp. Fluids 29, 13–22 (2000)

    Article  Google Scholar 

  43. B. Wienecke: Stereo-PIV using self-calibration on particle images, 5th International Symposium on Particle Image Velocimetry (Busan, Korea 2003)

    Google Scholar 

  44. C.E. Willert, M. Gharib: Three-dimensional particle imaging with a single camera, Exp. Fluids 12, 353–358 (1992)

    Article  Google Scholar 

  45. F. Pereirra, M. Gharib, D. Dabiri, M. Modarress: Defocusing PIV: a three component 3-D DPIV measurement technique, Exp. Fluids 29, S78–S84 (2000), Application to bubbly flows

    Article  Google Scholar 

  46. C. Kähler, J. Kompenhans: Fundamentals of multiple plane stereo particle image velocimetry, Exp. Fluids 29, 70–77 (2000)

    Article  Google Scholar 

  47. A. Liberzon, R. Gurka, G. Hetsroni: XPIV-Multiplane stereoscopic particle image velocimetry, Exp. Fluids 36, 355–362 (2004)

    Article  Google Scholar 

  48. A. Schimpf, S. Kallweit, J.B. Richon: Photogrammatic particle image velocimetry, 5th Int. Symp. on Particle Image Velocimetry (2003)

    Google Scholar 

  49. R.J. Adrian: Particle-imaging techniques for experimental fluid mechanics, Annu. Rev. Fluid Mech. 23, 261–304 (1991)

    Article  Google Scholar 

  50. R.D. Keane, R.J. Adrian: Optimization of particle image velocimeters, Meas. Sci. Technol. 1, 1202–1215 (1990), Part I: Double pulsed systems

    Article  Google Scholar 

  51. R.D. Keane, R.J. Adrian: Optimization of particle image velocimeters, Meas. Sci. Technol. 2, 963–974 (1991), Part II: Multiple pulsed systems

    Article  Google Scholar 

  52. R.D. Keane, R.J. Adrian: Theory of crosscorrelation analysis of PIV images, Appl. Sci. Res. 49, 191–215 (1992)

    Article  Google Scholar 

  53. J. Westerweel: Digital Particle Image Velocimetry - Theory and Application (Delft Univ. Press, Delft 1993)

    Google Scholar 

  54. L.C. Gui, W. Merzkirch: A method for tracking ensembles of particle images, Exp. Fluids 21, 465–468 (1996)

    Article  Google Scholar 

  55. C.Q. Davis, Z.Z. Karu, D.M. Freeman: Equivalence of subpixel motion estimators based on optical flow and block matching, Int. Symposium on Computer Vision (Coral Gables, Florida 1995)

    Google Scholar 

  56. L.C. Gui, W. Merzkirch: A comparative study of the MQD method and several correlation-based PIV evaulation algorithms, Exp. Fluids 28, 36–44 (2000)

    Article  Google Scholar 

  57. J. Shi, C. Tomasi: Good features to track, Computer Vision Pattern Recognition (1994)

    Google Scholar 

  58. B.D. Lucas, T. Kanade: An iterative image registration technique with an application to stereo vision, Imaging Understanding Workshop (1981) 121–130

    Google Scholar 

  59. D. Papantoniou, T. Dracos: Analyzing 3-D turbulent motions in open channel flow by use of stereoscopy and particle tracking, Adv. Turb. 2, 278–285 (1989)

    Google Scholar 

  60. M.P. Wernet, A. Pline: Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery, Exp. Fluids 15, 295–307 (1993)

    Article  Google Scholar 

  61. C.J. Veenman, M.J.T. Reinders, E. Backer: Establishing motion correspondence using extended temporal scope, Artif. Intell. 145(1-2), 227–243 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  62. B. Jähne: Digital Image Processing, 5th edn. (Springer, Heidelberg 2002)

    MATH  Google Scholar 

  63. Y.G. Geuzennec, N. Kiritsis: Statistical investigation of errors in particle image velocimetry, Exp. Fluids 10, 138–146 (1990)

    Google Scholar 

  64. H.G. Maas, A. Gruen, D. Papantoniou: Particle tracking velocimetry in three-dimensional flows, Exp. Fluids 15, 133–146 (1993), Part I: Photogrammetric determination of particle coordinates

    Article  Google Scholar 

  65. Y.G. Guezennec, R.S. Brodkey, N. Trigui, J.C. Kent: Algorithms for fully automated three-dimensional particle tracking velocimetry, Exp. Fluids 17, 209–219 (1994)

    Article  Google Scholar 

  66. N.A. Malik, T. Dracos: Interpolation schemes for three-dimensional velocity fields from scattered data using Taylor expansions, J. Comput. Phys. 119, 231–243 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  67. F. Hering, D. Wierzimok, C. Leue, B. Jähne: Particle tracking velocimetry beneath water waves, Exp. Fluids 23(6), 472–482 (1997), Part I: Visualization and tracking algorithms

    Article  Google Scholar 

  68. G. Nemhauser, L. Wolsey: Integer and Combinatorial Optimization (Wiley, New York 1999)

    MATH  Google Scholar 

  69. S.B. Dalziel: Decay of rotating turbulence: some particle tracking experiments,. In: Flow Visualization and Image Analysis, ed. by F.T.M. Nieuwstadt (Kluwer Academic, Dordrecht 1993)

    Google Scholar 

  70. M. Stellmacher, K. Obermayer: A new particle tracking algorithm based on deterministic annealing and alternative distance measures, Exp. Fluids 28, 506–518 (2000)

    Article  Google Scholar 

  71. S. Gold, A. Rangarajan, C.-P. Lu, S. Pappu: New algorithms for 2D and 3D point matching: pose estimation and correspondence, Pattern Recog. 31, 1019–1031 (1998)

    Article  Google Scholar 

  72. E. Brookner: Tracking and Kalman Filtering made easy (Wiley, New York 1998)

    Book  Google Scholar 

  73. S. Blackman, R. Popoli: Design and Analysis of Modern Tracking Systems (Artech House, Boston 1999)

    MATH  Google Scholar 

  74. I.J. Cox: A review of statistical data association techniques for motion correspondence, Int. J. Comput. Vis. 10(1), 53–66 (1993)

    Article  Google Scholar 

  75. L.D. Stone, C.A. Barlow, T.L. Corwin: Bayesian Multiple Target Tracking (Artech House, Boston 1999)

    Google Scholar 

  76. G. Welch, G. Bishop: An Introduction to the Kalman Filter, Tech. Rep. TR 95-041 (Univ. North Carolina, Chapel Hill 2001)

    Google Scholar 

  77. I.J. Cox, S.L. Hingorani: An efficient implementation of Reidʼs multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking, IEEE Trans. Pattern Anal. 18(2), 138–150 (1996)

    Article  Google Scholar 

  78. R.D. Keane, R.J. Adrian, Y. Zhang: Superresolution particle imaging velocimetry, Meas. Sci. Technol. 6, 754–768 (1995)

    Article  Google Scholar 

  79. J. Willneff, B. Lüthi: Particle tracking velocimetry measurements for lagrangian analysis of turbulent flows, 6th Conference on Optical 3-D Measurement Techniques, Vol. 2 (Zurich 2003) 191–198

    Google Scholar 

  80. E.P. Simoncelli: Distributed representation and analysis of visual motion, Ph.D. Thesis (MIT, Cambridge 1993)

    MATH  Google Scholar 

  81. O. Faugeras: Three Dimensional Computer Vision: A Geometric Viewpoint (MIT Press, Cambridge 1993)

    Google Scholar 

  82. B.F. Murray, D.W. Buxton: Experiments in the Machine Interpretation of Visual Motion (MIT Press, Cambridge 1990)

    Google Scholar 

  83. Z. Zhang, O. Faugeras: 3D Dynamic Scene Analysis, 27 Springer Inform. Sci. (Springer, Heidelberg 1992)

    Google Scholar 

  84. W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver: Combinatorial Optimization (Wiley, New York 1998)

    MATH  Google Scholar 

  85. B.K.P. Horn, B.G. Schunk: Determining optical flow, Artif. Intell. 17, 185–204 (1981)

    Article  Google Scholar 

  86. J.L. Barron, D.J. Fleet, S.S. Beauchemin: Performance of optical flow techniques, Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  87. G.H. Granlund, H. Knutsson: Signal Processing for Computer Vision (Kluwer, Dordrecht 1995)

    Google Scholar 

  88. R. Wildes, M. Amabile, A.-M. Lanziletto, T.-S. Leu: Recovering estimates of fluid flows from image sequence data, Comput. Vis. Image Underst. 80, 246–266 (2000)

    Article  MATH  Google Scholar 

  89. T. Corpetti, E. Memin, P. Perez: Dense estimation of fluid flows, IEEE Trans. Pattern Anal. Machine Intell. 24(3), 365–380 (2002)

    Article  Google Scholar 

  90. R. Larsen: Estimation of dense image flow fields in fluids, IEEE T. Geosci. Remote Sens. 36(1), 256–264 (1998)

    Article  Google Scholar 

  91. S. van Huffel, J. Vandewalle: The Total Least Squares Problem: Computational Aspects and Analysis (SIAM, Philadelphia 1991)

    MATH  Google Scholar 

  92. H. Scharr: Optimal Operators in Digital Image Processing, Ph.D. Thesis (University of Heidelberg, Heidelberg 2000)

    Google Scholar 

  93. W.H. Press, S.A. Teukolsky, W. Vetterling, B. Flannery: Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press, New York 1992)

    Google Scholar 

  94. P. Ruhnau, T. Kohlberger, C. Schnörr, H. Nobach: Variational optical flow estimation for particle image velocimetry, Exp. Fluids 38, 21–32 (2005)

    Article  Google Scholar 

  95. I. Cohen, I. Herlin: Non uniform multiresolution method for optical flow and phase portrait models: environmental applications, Int. Comput. Vis. 33(1), 24–49 (1999)

    Google Scholar 

  96. S. Geman, D.E. McClure: Bayesian image analysis: An application to single photon emission tomography, Am. Statist. Assoc. Statist. Comput. Sect. (1984) 12–18

    Google Scholar 

  97. M.J. Black, P. Anandan: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields, Comput. Vis. Image Understand. 63, 75–104 (1996)

    Article  Google Scholar 

  98. H.W. Haussecker, D.J. Fleet: Computing optical flow with physical models of brightness variation, IEEE Trans. Pattern Anal. 23(6), 661–673 (2001)

    Article  Google Scholar 

  99. P. Ruhnau, C. Schnörr: Optical Stokes flow: an image based control approach, Exp. Fluids 42, 61–78 (2007)

    Article  Google Scholar 

  100. P. Ruhnau, A. Stahl, C. Schnörr: On-line variational estimation of dynamical fluid flows with physics-based spatio-temporal reqularization, 26th DAGM (2006) , Pattern Recognition

    Google Scholar 

  101. T. Corpetti, D. Heitz, G. Arroyo, E. Memin, A. Santa-Cruz: Fluid experimental flow estimation based on an optical-flow scheme, Exp. Fluids 40(1), 80–97 (2005)

    Article  Google Scholar 

  102. C. Garbe, H. Spies, B. Jähne: Estimation of surface flow and net heat flux from infrared image sequences, J. Math. Imag. Vis. 19, 159–174 (2003)

    Article  MATH  Google Scholar 

  103. M. Jehle, B. Jähne: Direct estimation of the wall shear rate using parametric motion models in 3D, Lect. Notes Comput. Sci. 174, 434–443 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernd Jähne Prof. , Michael Klar Ph.D or Markus Jehle Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Jähne, B., Klar, M., Jehle, M. (2007). Data Analysis. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics