Skip to main content

Electrohydrodynamic Systems

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter we review briefly the fundamentals of electrohydrodynamics (EHD), the characteristic EHD dimensionless numbers and the techniques to measure conductivity and electric field, as well as the peculiarities imposed by charging of particles in the classical fluid-mechanical methods for measuring velocity and visualizing fluid flows.

We begin with a brief review of the basic equations, followed by an examination of the physical mechanisms that govern fluid flow through the relevant dimensionless numbers related to electric forces. However, the main emphasis is put on the description of the experimental methods, used to measure the fundamental EHD magnitudes. First, we discuss the basic mechanisms of conductivity, how to measure it, and how to obtain reproducible IV characteristics. This section also includes a discussion of the techniques to control ion injection. This is followed by a section dedicated to the measurement of mobility. Then we describe the Kerr effect, and how it can be used to measure the electric field in liquids. The last section is dedicated to a description of the difficulties we encounter in the classical techniques of laser Doppler anemometry, and visualization techniques in EHD flows, and how they may be overcome, at least partially. We hope that this chapter will be useful, not only to EHD researchers, but also to practising fluid dynamicists, and to chemical and electrical engineers who need to understand and apply the principles and experimental techniques of EHD in their work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PMMA:

polymethylmethacrylate

SI:

spark ignition

References

  1. A. Castellanos (Ed.): Electrohydrodyamics (Springer, Berlin, Heidelberg 1998), Chaps. 1–4

    Google Scholar 

  2. A. Castellanos, A. González: Nonlinear hydrodynamics of free surfaces, IEEE T. Dielect. El. In. 5, 334–343 (1998)

    Article  Google Scholar 

  3. A. Castellanos: Entropy production and the temperature equation in electrohydrodynamics, IEEE T. Dielect. El. In. 10, 22–26 (2003)

    Article  Google Scholar 

  4. F. Pontiga, A. Castellanos: Physical mechanisms of instability in a liquid layer subjected to an electric field and a thermal gradient, Phys. Fluids A 6, 1684–1701 (1994)

    Article  MATH  Google Scholar 

  5. J.R. Melcher: Continuum Electromechanics (MIT Press, Cambridge 1981)

    Google Scholar 

  6. J.M. Crowley: Dimensionless ratios in electrohydrodynamics. In: Handbook of Electrostatics, ed. by J.S. Chang, J.M. Crowley, A.J. Kelly (Marcel-Dekker, New York 1995) pp. 99–119

    Google Scholar 

  7. A. Khayari, A.T. Pérez: Nonlinear dynamics of a bouncing ball driven by electric forces, Int. J. Bifurcat. Chaos 13(10), 2959–2975 (2003)

    Article  MATH  Google Scholar 

  8. A. Ramos, H. González, A. Castellanos: Experiments on dielectric liquid bridges subjected to electric fields, Phys. Fluids A 6, 3206–3208 (1994)

    Article  Google Scholar 

  9. J.R. Melcher: Field-Coupled Surface Waves (MIT Press, Cambridge, MA 1963)

    Google Scholar 

  10. L. Lobry, E. Lemaire: Viscosity decrease induced by a DC electric field in a suspension, J. Electrostat. 47(1-2), 61–69 (1999)

    Article  Google Scholar 

  11. E. Lemaire, L. Lobry: Reverse electrorheological effect: A suspension of colloidal motors, Int. J. Mod. Phys. B 15(6-7), 780–787 (2001)

    Article  Google Scholar 

  12. E. Lemaire, L. Lobry: Chaotic behavior in electro-rotation, Physica A 314(1-4), 663–671 (2002)

    Article  Google Scholar 

  13. A. Castellanos, A. Ramos, A. González, N.G. Green, H. Morgan: Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws, J. Phys. D 36, 2584–2597 (2003)

    Article  Google Scholar 

  14. P.K. Watson: Space charged limited currents in liquid dielectrics. In: Electrohydrodyamics, ed. by A. Castellanos (Springer, Berlin, Heidelberg 1998), Chap. 10

    Google Scholar 

  15. A. Denat, B. Gosse, J.P. Gosse: Electrical conduction of solutions of an ionic surfactant in hydrocarbons, J. Electrostat. 12, 197–205 (1982)

    Article  Google Scholar 

  16. L. Onsager: Deviations from Ohmʼs law in weak electrolites, J. Chem. Phys. 2, 599-615 (1934), in The collected works of Lars Onsager (World Scientific, Singapore 1996)

    Google Scholar 

  17. P.K. Watson, T.M. Clancy: Electron injection technique for investigating processes in insulating liquids and solids, Rev. Sci. Instrum. 36(2), 217–222 (1965)

    Article  Google Scholar 

  18. F. Vega, A.T. Pérez: Corona-induced electrohydrodynamic instabilities in low conducting liquids, Exp. Fluids 34, 726–735 (2003)

    Article  Google Scholar 

  19. R. Tobazéon: Sur lʼelectrodialyse de liquides non polaires ou faiblement polaires, C. R. Acad. Sci. 282, C153–C156 (1976)

    Google Scholar 

  20. N.J. Félici, R. Tobazéon: Charge carrier elimination and production by electrodyalitic polymers in contact with dielectric liquids, J. Electrostat. 11, 135–161 (1981)

    Article  Google Scholar 

  21. A. Denat, B. Gosse, J.P. Gosse: Ion injections in hydrocarbons, J. Electrostat. 7, 220–225 (1979)

    Article  Google Scholar 

  22. A.I. Zhakin: Classic theories of ion recombination and dissociation in liquids. In: Electrohydrodyamics, ed. by A. Castellanos (Springer, Berlin, Heidelberg 1998), Chap. 6

    Google Scholar 

  23. A.T. Pérez, P.A. Vázquez, A. Castellanos: Dynamics and linear stability of charged jets in dielectric liquids, IEEE T. Ind. Appl. 31(4), 761–767 (1995)

    Article  Google Scholar 

  24. F.MJ. McCluskey, P. Atten, A.T. Pérez: Heat Transfer enhancement by electroconvection resulting from an injected space charge between parallel plates, Int. J. Heat Mass Tran. 34(9), 2237–2250 (1991)

    Article  Google Scholar 

  25. M. Medrano, A.T. Pérez, C. Soria-Hoyo: Design of a conductivity meter for highly insulating liquids, J. Phys. D: Appl. Phys. 40, 1477–1482 (2007)

    Article  Google Scholar 

  26. M. Hilaire, C. Marteau, R. Tobazéon: Apparatus developed for measurement of the resistivity of highly insulating liquids, IEEE T. Electr. Insul. 23(4), 779–787 (1988)

    Article  Google Scholar 

  27. R. Tobazéon, J.C. Filippini, C. Marteau: On the measurement of the conductivity of highly insulating liquids, IEEE T. Dielect. El. In. 1(6), 1000–1004 (1994)

    Article  Google Scholar 

  28. P. Atten, J.P. Gosse: Transient of one-carrier injections in polar liquids, J. Chem. Phys. 51(7), 2804–2811 (1969)

    Article  Google Scholar 

  29. H.T. Davis, S.A. Rice, L. Meyer: On the kinetic theory of simple dense fluids – XI. Experimental and theoretical studies of positive ion mobility in liquid Ar, Kr, and Xe, J. Chem. Phys. 37(5), 947–956 (1962)

    Article  Google Scholar 

  30. B.L. Henson: Mobility of positive ions in liquefied argon and nitrogen, Phys. Rev. 135(4A), A1002–A1008 (1964)

    Article  Google Scholar 

  31. A. Alj, J.P. Gosse, B. Gosse, A. Denat, M. Nemancha: Influence de la nature du surfactant ionique sur la conduction électrique de ses solutions dans le cyclohexane, Rev. Phys. Appl. 22, 1043–1053 (1987)

    Google Scholar 

  32. A. Denat: Etude de la conduction eléctrique dans les solvants non polaires, Ph.D. Thesis (Université Joseph-Fourier, Grenoble 1982)

    Google Scholar 

  33. D.E. Gray (Ed.): American Institute of Physics Handbook (McGraw-Hill, New York 1957)

    MATH  Google Scholar 

  34. J.C. Lacroix: Etude et realisation dʼune cellule de Kerr a champ electrique tournant, Ph.D. Thesis (Université Joseph-Fourier, Grenoble 1970)

    Google Scholar 

  35. R. Tobazéon: Etude du transfert convectif de charges electriques par un jet de liquide isolant et application a la generation de tensions elevés, Ph.D. Thesis (Université Joseph-Fourier, Grenoble 1973)

    Google Scholar 

  36. M. Zahn: Optical, electrical and electromechanical meaurement methodologies of field, charge and polarization in dielectrics, IEEE T. Dielect. El. In. 5, 627–650 (1998)

    Article  Google Scholar 

  37. D. Filipovic, P. Osmokrovic, Z. Lazarevic: Electro-optical Kerr effect in liquid dielectrics, Mater. Sci. Forum 413, 197–200 (2002)

    Article  Google Scholar 

  38. L.E. Drain: The Laser Doppler Technique (Wiley, New York 1980)

    Google Scholar 

  39. R. Disselnkotter, K. Barner: Seeding of electrohydrodynamic convection flows for light scattering experiments, J. Electrostat. 19, 323–336 (1987)

    Article  Google Scholar 

  40. F.MJ. McCluskey, A.T. Pérez: The electrohydrodynamic plume between a line source of ions and a flat plate, IEEE T. Electr. Insul. 27(2), 334–341 (1992)

    Article  Google Scholar 

  41. P. Atten, M. Haidara: Electrical conduction and EHD motion of dielectric liquids in a knife-plane electrode assembly, IEEE T Electr. Insul. 20(2), 187–198 (1985)

    Article  Google Scholar 

  42. R.J. Adrian: Laser velocimetry. In: Fluid Mechanics Measurements, ed. by R.J. Goldstein (Springer, Berlin, Heidelberg 1983)

    Google Scholar 

  43. R.J. Hunter: Foundations of Colloid Science, 2nd edn. (Oxford Univ. Press, Oxford 2001)

    Google Scholar 

  44. T.B. Jones: Electromechanics of Particles (Cambridge Univ. Press, New York 1991)

    Google Scholar 

  45. J.P. Dalbiez, K. Tabti, P.J. Derian, M. Drifford: Vélocimétrie Doppler sous champ électrique: technique et application à lʼétude de la mobilité électrophorétique des colloïdes et des polyélectorlytes, Rev. Phys. Appl. 22, 1013–1024 (1987)

    Google Scholar 

  46. R.J. Goldstein: Optical systems for flow measurement: Shadowgraph, Schlieren and interferometric techniques. In: Fluid Mechanics Measurements, ed. by R.J. Goldstein (Springer, Berlin, Heidelberg 1983)

    Google Scholar 

  47. N.G. Green, A. Ramos, A. González, H. Morgan, A. Castellanos: Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes – III. Observation of streamlines and numerical simulation, Phys. Rev. E 66, 026305–026315 (2002)

    Article  Google Scholar 

  48. B. Malraison, P. Atten, A.T. Pérez: Panaches chargés résultant de lʼinjection dʼions dans un liquide isolant par une lame ou une pointe placée en face dʼun plan, J. Phys. III 4, 75–85 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Castellanos Prof. or Alberto Pérez Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Castellanos, A., Pérez, A. (2007). Electrohydrodynamic Systems. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics