Skip to main content

Abstract

The three segments of this chapter introduce phenomena that are of specific interest in the area of hydraulics. Where applicable (Cavitation, Sect. 15.1 and Sediment Transport, Sect. 15.3) introductory and descriptive material regarding the topic is provided. Terminology, physical examples and motivating descriptions introduce the comprehensive Cavitation subsection. Examples of the types of flows in which cavitation occurs are provided. This information sets the stage for a description of the types of facilities and instrumentation that are necessary to study the problem. Numerous photographs and descriptive sketches clarify and complement the text.

The wave height measurement segment first deals with fixed position single "point" techniques. More advanced techniques for: i) wave surface shape along a horizontal line, and ii) two-dimensional surface geometry measurements for laboratory and field observations are then described.

Following the introduction to sediment transport phenomena and terminology, the methods of measurement: manual, optical and acoustic are given detailed descriptions including calibration techniques for the latter two methods. Bed load sediment measurements: pressure difference, sediment trapping and acoustic are next described. Total load and the less common measurement techniques, plus references complete the subsection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

A/D:

analog-to-digital

ABS:

acoustic backscatter

ABS:

acoustic bubble spectrometer

ADCP:

acoustic Doppler current profiler

ASTM:

American Society for Testing and Materials

CCD:

charge-coupled device

CMOS:

complementary metal oxide semiconductor

CSM:

cavitation susceptibility meters

DAS:

direct absorption spectroscopy

DNS:

direct numerical simulation

DPIV:

digital PIV

FBRM:

focused beam reflectance measurement

FFT:

fast Fourier transform

FOBS:

fiber-optic backscatter

GPS:

global positioning system

HPR:

heave–pitch–roll

ICET:

international cavitation erosion test

ITTC:

international towing tank conference

JFTA:

joint frequency–time analysis

LDA:

laser Doppler anemometry

LDV:

laser Doppler velocimetry

LED:

light-emitting diodes

LIF:

laser-induced fluorescence

LISST:

laser in situ scattering and transmissometry

MARIN:

Maritime Research Institute Netherlands

MDPR:

mean depth of erosion penetration rate

NACA:

National Advisory Committee for Aeronautics

Nd:YAG:

neodymium-doped yttrium aluminum garnet

OBS:

optical backscatter

PCI:

peripheral component interface

PDA:

phase Doppler anemometry

PIV:

particle image velocimetry

PUV:

pressure and two components of horizontal current

PVDF:

polyvinylidene fluoride

RMS:

root-mean-square

UVW:

three components of velocity

VAO:

Versuchsanstalt für Wasserbau Obernach

References

  1. M.S. Plesset: Physical effects on cavitation and boiling, Proc. 1st Symp. Naval Hydrodynamics, ed. by F.S. Sherman (Academic, Washington 1957) 297–323

    Google Scholar 

  2. R.E.A. Arndt, R. Voigt, J.P. Sinclair, P.R. Rodrigue: Cavitation erosion in hydroturbines, J. Hydraul. Eng. 115, 1297–1315 (1989)

    Google Scholar 

  3. K.M. Kalumuck, G.L. Chahine: The use of cavitating jets to oxidize organic compounds in water, J. Fluids Eng. 122, 465–470 (2000)

    Google Scholar 

  4. C. Gong, D.P. Hart: Ultrasound induced cavitation and sonochemical yields, J. Acoust. Soc. Am. 5, 1–8 (1998)

    Google Scholar 

  5. L.C. Burrill: Sir Charles Parsons and cavitation – 1950 Parsons Memorial Lecture, Trans. Inst. Marine Eng. 63, 149–167 (1951)

    Google Scholar 

  6. L. Rayleigh: On the pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag. 34, 94–98 (1917)

    Google Scholar 

  7. M. Minnaert: On musical air-bubbles and sounds of running water, Phil. Mag. 16, 235–248 (1933)

    Google Scholar 

  8. M.S. Plesset, S.A. Zwick: The growth of vapor bubbles in superheated liquids, J. Appl. Phys 25(4), 493–500 (1954)

    MATH  MathSciNet  Google Scholar 

  9. P.S. Epstein, M.S. Plesset: On the stability of gas bubbles in liquid-gas solutions, J. Chem. Phys. 18(11), 1505–1509 (1950)

    Google Scholar 

  10. P. Eisenberg: Mechanics of cavitation. In: Handbook of Fluid Dynamics, ed. by V.L. Streeter (McGraw Hill, New York 1961) pp. 12.2–12.24, , Section 12

    Google Scholar 

  11. T.W. Wu: Cavity and wake flows, Annu. Rev. Fluid Mech. 4 (1972)

    Google Scholar 

  12. A.J. Acosta, B.R. Parkin: Cavitation inception – A selective review, J. Ship Res. 19, 193–205 (1975)

    Google Scholar 

  13. M.S. Plesset, A. Prosperetti: Bubble dynamics and cavitation, Annu. Rev. Fluid Mech. 9, 145–185 (1977)

    Google Scholar 

  14. R.E.A. Arndt: Cavitation in fluid machinery and hydraulic structures, Annu. Rev. Fluid Mech. 13, 273–328 (1981)

    Google Scholar 

  15. R.E.A. Arndt: Recent Advances in Cavitation Research, Adv. Hydrosci., Vol. 12 (Academic, San Diego 1981) pp. 1–77

    Google Scholar 

  16. R.E.A. Arndt: Cavitation in vortical flows, Annu. Rev. Fluid Mech. 34, 143–175 (2002)

    MathSciNet  Google Scholar 

  17. J.R. Blake, D.C. Gibson: Cavitation bubbles near boundaries, Annu. Rev. Fluid Mech. 19, 99–123 (1987)

    Google Scholar 

  18. E.P. Rood: Review – mechanisms of cavitation inception, J. Fluids Eng. 113, 163–175 (1991)

    Google Scholar 

  19. R.T. Knapp, J.W. Daily, F.G. Hammit: Cavitation (McGraw-Hill, New York 1970)

    Google Scholar 

  20. F.R. Young: Cavitation (McGraw-Hill, London 1989)

    Google Scholar 

  21. C.E. Brennen: Cavitation and Bubble Dynamics (Oxford University Press, New York 1995)

    Google Scholar 

  22. J.P. Franc, J.M. Michel: Fundamentals of Cavitation (Kluwer Academic, Dordrecht 2004)

    MATH  Google Scholar 

  23. I. Anton: Cavitatia. Editura Academei (Polytechnical Institute of Timisoara, Bucharest 1984), R-79717

    Google Scholar 

  24. W.H. Isay: Kavitation (Hansa Schroedter, 1981)

    Google Scholar 

  25. R. Taghavi: Cavitation Inception in Axisymmetric Jets. Ph.D. Thesis (University of Minnesota, Minneapolis 1985)

    Google Scholar 

  26. R.E.A. Arndt: Vortex Cavitation, Fluid Vortices (Kluwer Academic, Dordrecht 1995) pp. 731–782

    Google Scholar 

  27. R.W. Kermeen: Water tunnel tests of NACA 661 − 012 hydrofoil in noncavitating and cavitating flows, Calif. Inst. Tech. Hydrodynamics Lab. Rep. 47-7 (1956)

    Google Scholar 

  28. M.L. Billet: Cavitation nuclei measurements - a review, Cavitation and Multiphase Flow Forum (ASME, New York 1985)

    Google Scholar 

  29. D.D. Joseph: Cavitation and the state of stress in a flowing liquid, J. Fluid Mech. 366, 367–378 (1998)

    MATH  MathSciNet  Google Scholar 

  30. B. Gindroz, M.L. Billet: Influence of the nuclei on the cavitation inception for different types of cavitation on ship propellers, J. Fluids Eng. 120, 171–178 (1998)

    Google Scholar 

  31. J.W. Holl: An effect of air content on the occurrence of cavitation, J. Basic Eng. 82, 941–946 (1960)

    Google Scholar 

  32. M. Kjeldsen, R.E.A. Arndt, M. Effertz: Spectral characteristics of sheet/cloud cavitation, J. Fluids Eng. 122, 481–487 (2000)

    Google Scholar 

  33. W.M. Deeprose, N.W. King, P.J. McNulty, Pearsall: Cavitation noise, flow noise and erosion, Proc. Conf. Cavitation Inst. Mech. Eng., London (1974)

    Google Scholar 

  34. G.F. Wislicenus: Fluid Mechanics of Turbomachinery, Vol. 1 (Dover, New York 1965)

    Google Scholar 

  35. J.O. Young, J.W. Holl: Effects of cavitation on periodic wakes behind symmetric wedges, J. Basic Eng. 88, 163–176 (1966)

    Google Scholar 

  36. B. Belahadji, J. Michel: Numerical and experimental study of cavitating vortices in the turbulent wake, Proc. Third Int. Symp. Cavitation, Grenoble, ed. by J.M. Michel, H. Kato (1998)

    Google Scholar 

  37. K.R. Laberteaux, S.L. Ceccio: Flow in the Closure Region of Closed Partial Attached Cavitation, Proc. Third Int. Symp. Cavitation, Grenoble, ed. by J.M. Michel, H. Kato (1998) 197–202

    Google Scholar 

  38. S. Gopalan, J. Katz: Flow structure and modeling issues in the closure region of attached cavitation, Phys. Fluids 12, 895–911 (2000)

    MATH  Google Scholar 

  39. R.E.A. Arndt, C.C.S. Song, M. Kjeldsen, J. He, A. Keller: Instability of partial cavitation: A numerical/experimental approach. In: Proc. 23rd Symp. Naval Hydrodynamics, ed. by E. Rood (Academic, Washington 2000)

    Google Scholar 

  40. R.E.A. Arndt, C. Ellis, S. Paul: Preliminary investigation of the use of air injection to mitigate cavitation erosion, J. Fluids Eng. 117, 498–592 (1995)

    Google Scholar 

  41. Y. Kawanami, H. Kato, H. Yamagushi: Three-dimensional characteristics of the cavities formed on a two-dimensional hydrofoil, Trans Int. Symp. on Cavitation, ed. by J.M. Michel, H. Kato (1998) 191–196

    Google Scholar 

  42. D.R. Stinebring: Scaling of Cavitation Damage. MS Thesis (Pennsylvania State University, Pennsylvania 1976)

    Google Scholar 

  43. J.W. Daily, V.E. Johnson: Turbulence and boundary layer effects on cavitation inception from gas nuclei, Trans ASME 78, 1695–1706 (1956)

    Google Scholar 

  44. R.E.A. Arndt, A.T. Ippen: Rough surface effects on cavitation inception, J. Basic Eng. 90, 249–261 (1968)

    Google Scholar 

  45. R.E.A. Arndt, W.K. George: Pressure fields and cavitation in turbulent shear flows. In: 12th Symp. Naval Hydrodynamics, ed. by R. Cooper (Academic, Washington 1978) pp. 327–339

    Google Scholar 

  46. A. Michalke: On spatially growing disturbances in an inviscid shear layer, J. Fluid Mech. 23, 521–544 (1965)

    MathSciNet  Google Scholar 

  47. Chahine, V.E. Johnson: Mechanics of self-resonating cavitating jets, Jets and Cavities-Int. Symp. 31, 21–33 (1985)

    Google Scholar 

  48. C.S. Crowe, F.H. Champagne: Orderly structure in jet turbulence, J. Fluid Mech. 48, 547 (1971)

    Google Scholar 

  49. M. Versluis, B. Schmitz, A. von der Heydt, D. Lohse: On the sound of snapping shrimp, 53rd Annu. Meeting Am. Phys. Soc. Div. Fluid Dynamics, Washington (2000) , Video Presentation

    Google Scholar 

  50. B. Ran, J. Katz: Pressure fluctuations and their effect on cavitation inception within water jets, J. Fluid Mech. 262, 223–263 (1994)

    Google Scholar 

  51. K.K. Ooi: Scale effects on cavitation inception in submerged water jets: A new look, J. Fluid Mech. 151, 367–390 (1985)

    Google Scholar 

  52. J. Katz, T.J. OʼHern: Cavitation in large scale shear flows, J. Fluids Eng. 108, 373–376 (1986)

    Google Scholar 

  53. T.J. OʼHern: Cavitation Scale Effects: I. Nuclei Distributions in Natural Waters, II. Cavitation Inception in a Turbulent Shear Flow. Ph.D. Thesis (California Institute of Technology, Pasadena 1987)

    Google Scholar 

  54. S. Gopalan, J. Katz, O. Knio: The flow structure in the near field of jets and its effect on cavitation inception, J. Fluid Mech. 398, 1–43 (1999)

    MATH  Google Scholar 

  55. K.K. Ooi, A.J. Acosta: The utilization of specially tailored air bubbles as static pressure sensors in a jet, J. Fluids Eng. 106, 459–465 (1983)

    Google Scholar 

  56. R. Taghavi, R.E.A. Arndt: Cavitation in various types of shear flow, Cavitation in Hydraulic Structures and Turbomachinery, ASME FED-25 (ASME, New York 1985) pp. 129–134

    Google Scholar 

  57. T. Leger, S.L. Ceccio: Examination of the flow near the leading edge of attached cavitation – Part 1. Detachment of two-dimensional and axisymmetric cavities, J. Fluid Mech. 376, 61–90 (1998)

    MATH  Google Scholar 

  58. T. Leger, L.P. Bernal, S.L. Ceccio: Examination of the flow near the leading edge of attached cavitation – Part 2. Incipient breakdown of two-dimensional and axisymmetric cavities, J. Fluid Mech. 376, 91–113 (1998)

    MATH  Google Scholar 

  59. R.E.A. Arndt, C. Ellis, S. Paul: Application of piezoelectric film in cavitation research, J. Hydraul. Eng. 123, 539–548 (1997)

    Google Scholar 

  60. S. Watanabe, Y. Tsujimoto, J.-P. Franc, J.-M. Michel: Linear analyses of cavitating instabilities, Proc. Third Int. Symp. Cavitation, Grenoble, ed. by J.M. Michel, H. Kato (1998)

    Google Scholar 

  61. B. Svingen, M. Kjeldsen, R.E.A. Arndt: Dynamics of closed circuit hydraulic model loops, Proc. ASME Fluids Eng. Summer Meeting, Montreal (2002)

    Google Scholar 

  62. J.P. Franc: Partial cavity instabilities and re-entrant jet, CAV 2001: Fourth Int. Symp. Cavitation, ed. by C.E. Brennen, R.E.A. Arndt, L.S. Ceccio (California Institute of Technology, Pasadena 2001) , http://cav2001.library.caltech.edu/

    Google Scholar 

  63. F. Avellan, P. Dupont, M. Farhat: Cavitation erosion power, Proc. Cavitation 91.116, 135–140 (1991)

    Google Scholar 

  64. H. Yamaguchi, M. Tanaka, H. Kato: A numerical study on the mechanism of vortex generation downstream of a sheet cavity on a two dimensional hydrofoil, Cavitation and Multiphase Flow Forum, Vol. 109 (ASME, New York 1991)

    Google Scholar 

  65. M. Kjeldsen: Theoretical and experimental investigations of the instability of an attached cavity, Proc. ASME Fluids Eng. Div. Summer Mtg., Vancouver (1997) , Paper FEDSMS97-3268

    Google Scholar 

  66. R.E.A. Arndt: Cavitation Near Surfaces of Distributed Roughness. Ph.D. Dissertation (Massachusetts Institute of Technology, Boston 1967)

    Google Scholar 

  67. T.J. Schauer: An Experimental Study of a Ventilated Supercavitating Vehicle. MS Thesis (University of Minnesota, Minnesota 2003)

    Google Scholar 

  68. M. Wosnik, T.J. Schauer, R.E.A. Arndt: Experimental investigation of the turbulent bubbly wake in a ventilated flow. In: Advances in Turbulence X., ed. by H.I. Andersson, P.-A. Krogstad (CIMNE, Barcelona 2004) pp. 657–660

    Google Scholar 

  69. E.A. Brujan, G.S. Keen, A. Vogel, J.R. Blake: The final stage of the collapse of a cavitation bubble close to a rigid boundary, Phys. Fluids 14, 85–92 (2002)

    Google Scholar 

  70. W. Lauterborn, H. Bolle: Experimental investigations of cavitation-bubble collapse in the neighborhood of a solid boundary, J. Fluid Mech. 72, 391–399 (1975)

    Google Scholar 

  71. Y. Tomita, A. Shima: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse, J. Fluid Mech. 169, 535–564 (1986)

    Google Scholar 

  72. A. Vogel, W. Lauterborn, R. Timm: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary, J. Fluid Mech. 206, 299–338 (1989)

    Google Scholar 

  73. D.R. Stinebring, R.E.A. Arndt, J.W. Holl: Scaling of cavitation damage, J. Hydronautics 111(3), 67–73 (1977)

    Google Scholar 

  74. A. Thiruvengadam: Scaling laws for cavitation erosion (Hydronautics Inc., Laurel 1971)

    Google Scholar 

  75. R.E.A. Arndt: Hydraulic turbines. In: Hydropower Engineering Handbook, ed. by J. Gulliver, R.E.A. Arndt (McGraw-Hill, New York 1991) pp. 4.1–4.67

    Google Scholar 

  76. P. Bourdon, R. Simoneau, F. Avellan, M. Farhat: Vibratory Characteristics of Erosive Cavitation Vortices Downstream of a Fixed Leading Edge Cavity, Proc. 15th IAHR Symp., Belgrade (1990)

    Google Scholar 

  77. F. Avellan, P. Dupont, I. Ryhming: Generation mechanism and dynamics of cavitation vortices downstream of a fixed leading edge cavity, Proc. 17th Symp. on Naval Hydrodynamics, ed. by E. Rood (Academic, Washington 1988)

    Google Scholar 

  78. P.A. Abbot, R.E.A. Arndt, T.B. Shanahan: Modulation noise analysis of cavitating hydrofoils, ASME FED. 176. In: Proc. Symp. Bubble Noise and Cavitation Erosion in Fluid Systems, ed. by R.E.A. Arndt (ASME, New York 1993)

    Google Scholar 

  79. Q. Le, J.P. Franc, J.M. Michel: Partial cavities: Global behavior and mean pressure distribution, J. Fluids Eng. 115, 253–248 (1993)

    Google Scholar 

  80. Q. Le, J.P. Franc, J.M. Michel: Partial cavities: Pressure pulse distribution around cavity closure, J. Fluids Eng. 115, 249–254 (1993)

    Google Scholar 

  81. I. Hansson, K.A. Mørch: The dynamics of cavity clusters in ultrasonic (vibratory) cavitation erosion, J. Appl. Phys. 51, 4651–4658 (1980)

    Google Scholar 

  82. A. Prosperetti, N.Q. Lu, H.S. Kim: Active and passive acoustic behavior of bubble clouds at the oceanʼs surface, J. Acoust. Soc. Am. 93(6), 3117–3127 (1993)

    Google Scholar 

  83. T. Colonius, C.E. Brennen, A.T. Preston: A numerical investigation of unsteady bubbly cavitating nozzle flows, Phys. Fluids 14, 300–311 (2002)

    Google Scholar 

  84. L. van Wijngaarden: On the collective collapse of a large number of cavitation bubbles in water, Proc 11th Int. Cong. of Appl. Mech., ed. by H. Gortler (Springer, Berlin, Heidelberg 1964)

    Google Scholar 

  85. Y.C. Wang, C.E. Brennen: Shock development in the collapse of a cloud of bubbles, ASME Cavitation and Multiphase Flow Forum 153 (ASME, New York 1994)

    Google Scholar 

  86. P.A. Abbot, D.W. Morton, T.B. Shanahan: Hydroturbine cavitation detection using advanced acoustic emission techniques, Hydroacoustic Facilities and Experimentation Techniques, ASME Winter Annual Meeting, Atlanta (ASME, New York 1991)

    Google Scholar 

  87. J. Wetzel, R.E.A. Arndt: Hydrodynamic design considerations for hydroacoustic facilities: I flow quality, J. Fluids Eng. 116(2), 324–331 (1994)

    Google Scholar 

  88. J. Wetzel, R.E.A. Arndt: Hydrodynamic design considerations for hydroacoustic facilities: II pump design factors, J. Fluids Eng. 116(2), 332–337 (1994)

    Google Scholar 

  89. H. Durrer: Cavitation erosion and fluid mechanics, Sulzer Tech. Rev. 3, 55–61 (1986)

    Google Scholar 

  90. H. Soyama, H. Kumano: The fundamental threshold level – a new parameter for predicting cavitation erosion resistance, J. Testing Evaluation 30(5), 421–431 (2002)

    Google Scholar 

  91. B. Vyas, C.M. Preece: Stress produced in a solid by cavitation, J. Appl. Phys. 47, 5133–5138 (1976)

    Google Scholar 

  92. R. Simoneau, A. Archer: Transposition of Cavitation Marks on Different Hardness Metals. ASME Fluids Engineering Division Summer Meeting, FEDSM97-3300 (ASME, New York 1997)

    Google Scholar 

  93. B. Belahadji, J.P. Franc, J.M. Michel: A statistical analysis of cavitation erosion pits, J. Fluid Eng. 113, 700–706 (1991)

    Google Scholar 

  94. H. Soyama, T. Ikohagi, R. Oba: Observation of the cavitating jet in a narrow watercourse, ASME FED Cavitation Multiphasec Flow 194, 79–82 (1994)

    Google Scholar 

  95. J. Steller: International cavitation erosion test and quaititative assessment of material resistance to cavitation, Wear 233–235, 51–64 (1999)

    Google Scholar 

  96. B.C. Syamala Rao, N.S. Lakshmana Rao, K. Seetharamiah: Cavitation erosion studies with venturi and rotating disk in water, J. Basic Eng. 92, 563–579 (1970)

    Google Scholar 

  97. H. Kadoi, T. Sasajima: Cavitation erosion prediction using a “soft surface”, Int. Shipbuilding Prog. 25, 141–150 (1978)

    Google Scholar 

  98. H. Lindgren, C.A. Johnsson: Cavitation inception on headforms, ITTC comparitive experiments, Proc. 11th Towing Tank Conf., Tokyo (1966) 219–232

    Google Scholar 

  99. M.S. Plesset: Cavitating Flows, California Institute of Technology, Rep. 85-46 (California Institute of Technology, Pasadena 1969)

    Google Scholar 

  100. C.C. Church: A method to account for acoustic microstreaming when predicting bubble growth rates produced by rectified diffusion, J. Acoust. Soc. Am. 84, 1758–1764 (1988)

    Google Scholar 

  101. H.B. Marschall, K.A. Morch, A.P. Keller, M. Kjeldsen: Cavitation inception by almost spherical solid particles in water, 4th Int. Symp. on Cavitation, Pasadena, ed. by C.E. Brennen, R.E.A. Arndt, L.S. Ceccio (2001)

    Google Scholar 

  102. D. Ma: Experimental Studies of Water Quality Effects on Tip Vortex Cavitation. MS Thesis (University of Minnesota, Minnesota 1994)

    Google Scholar 

  103. J.H.J. van der Meulen: Incipient and desinent cavtitation on hemispherical nosed bodies, Int. Shipbuilding Prog. 12, 21–32 (1972)

    Google Scholar 

  104. A.P. Keller: Cavitation Scale Effects: Empirically Found Relations and the Correlation of Cavitation Number and Hydrodynamic Coefficients, 4th Int. Symp. on Cavitation, Pasadena, ed. by C.E. Brennen, R.E.A. Arndt, L.S. Ceccio (2001)

    Google Scholar 

  105. D.T. Kawakami, Q. Qin, R.E.A. Arndt: Can water quality affect the lift dynamics of cavitating hydrofoils?, 5th Int. Symp. on Cavitation, Osaka, ed. by Y. Tsujimoto (2003)

    Google Scholar 

  106. A.B. Hastings: Biographical Memoirs: Donald Dexter van Slyke (National Academy of Sciences, Washington 1976) pp. 308–361

    Google Scholar 

  107. F. Numachi: Über die Kavitationsentstehung mit besonderem Bezug auf der Luftgehalt des Wassers, Ing-Arch. 7, 396–409 (1936)

    Google Scholar 

  108. W. Heller: Hydrodynamische Effekte unter besonderer Berücksichtigung der Wasserqualität (Technische Universität Dresden, Dresden 2004)

    Google Scholar 

  109. W. Heller: A new approach for determination of cavitation sensitivity of water, 4th ASME JSME Joint fluid Engineering Conference, Honolulu (2003)

    Google Scholar 

  110. F.B. Peterson: Hydrodynamic cavitation and some considerations of the influence of free gas content. In: 9th Symp. on Naval Hydrodynamics, ed. by R. Cooper (Academic, Washington 1972)

    Google Scholar 

  111. R.E.A. Arndt, A.P. Keller: Free gas content effects on cavitation inception and noise in a free shear flow, Proc. IAHR Symp. Two Phase Flow and Cavitation in Power Generation Systems, Grenoble (1976) 3–16

    Google Scholar 

  112. R. Duraiswami, S. Prabhukumar, G.L. Chahine: Bubble size measurement using an inverse acoustic scattering method, J. Acoust. Soc. Am. 104, 2699–2717 (1998)

    Google Scholar 

  113. G.L. Chahine, K.M. Kalumuck: Development of a near real-time instrument for nuclei measurement: The ABS acoustic bubble spectrometer, 4th ASME JSME Joint Fluid Eng. Conf., Honolulu (ASME, New York 2003)

    Google Scholar 

  114. T.M. Pham, J.M. Michel, Y. Lecoffre: Dynamical nuclei measurment: On the development and the performance evaluation of an optimized center-body meter, J. Fluids Eng. 119, 744–750 (1997)

    Google Scholar 

  115. T.G. Leighton: The Acoustic Bubble (Academic, San Diego 1994)

    Google Scholar 

  116. D.M. Oldenziel: Bubble Cavitation in Relation to Liquid Quality. Ph.D. Thesis (Technical University Twente, Twente 1979)

    Google Scholar 

  117. A.P. Keller: Influence of the cavitation nucleus spectrum on cavitation inception, investigated with a scattered light counting method, J. Basic Eng. 94, 917–925 (1972)

    Google Scholar 

  118. H. Wang: Experimental Study of Water Bubbly Hydrofoil Wakes. MS Thesis (University of Minnesota, Minnesota 2004)

    Google Scholar 

  119. H. Tanger, E.A. Weitendorf: Applicability tests for the phase Doppler anemometer for cavitation nuclei measurements, J. Fluids Eng. 114, 443–449 (1992)

    Google Scholar 

  120. Schiebe F.R.: Measurement of the Cavitation Susceptibility of Water Using Standard Bodies. St. Anthony Falls Hydraulic Laboratory, Rep. 118 (1972)

    Google Scholar 

  121. A.P. Keller: A vortex-nozzle cavitation susceptibility meter in routine application in cavitation inception measurements, Proc. Euromech. Colloquium 222 – Unsteady Cavitation and Its Effects (1987)

    Google Scholar 

  122. Silberman E., Schiebe F.R., Mrosla E.: The Use of Standard Bodies to Measure the Cavitation Strength of Water. St Anthony Falls Hydraulic Laboratory, Rep. 141 (1973)

    Google Scholar 

  123. D.M. Oldenziel: Measurements on the cavtiation susceptibility of water, 5th Conf. on Fluid Machinery Budapest 2, 737–748 (1975)

    Google Scholar 

  124. Y. Lecoffre, J. Bonnin: Cavitation Test and Nucleation Control. In: International Symposium on Cavitation Inception, ASME Winter Annual Meeting, New York, ed. by W.B. Morgan, B.R. Parkin (ASME, New York 1979) pp. 141–147

    Google Scholar 

  125. L. dʼAgostino, A.J. Acosta: On the design of cavitation susceptibility meters, Proc. 20th Am. Towing Tank Conf. 1, 307–350 (1983)

    Google Scholar 

  126. F.G. Blake: The Onset of Cavitation in Liquids I, Acoustics Res. Lab., Tech Memo No 12 (Harvard Univ., Cambridge 1949)

    Google Scholar 

  127. F.E. Fox, K.F. Herzfeld: Gas bubbles with organic skin as cavitation nuclei, Ac. Soc. Am. 26, 984–989 (1954)

    Google Scholar 

  128. E.N. Harvey, W.D. McElroy, A.H. Whiteley: On cavitation formation in water, J. Appl. Phys. 18, 162–172 (1947)

    Google Scholar 

  129. R.E.A. Arndt, A.P. Keller: Water quality effects on cavitation inception in a trailing vortex, J. Fluids Eng. 114, 430–438 (1992)

    Google Scholar 

  130. J.W. Holl, A.L. Treaster: Cavitation hysteresis, J. Basic Eng. 88, 199–212 (1966)

    Google Scholar 

  131. R.E.A. Arndt, A.P. Keller: A case study of international cooperation: 30 years of collaboration in cavitation research, Proc. 4th ASME-JSME Joint Fluids Eng. Conf., Honolulu (2003) , Available on CD

    Google Scholar 

  132. A. Richardson: The Evolution of the Parsons Steam Turbine (Engineering, London 1911)

    Google Scholar 

  133. R.E.A. Arndt, B.H. Maines: Nucleation and bubble dynamics in vortical flows, J. Fluids Eng. 122, 488–493 (2000)

    Google Scholar 

  134. W.K. Blake, M.J. Wolpert, F.E. Geib: Cavitation noise and inception as influenced by boundary layer development on a hydrofoil, J. Fluid Mech. 80(4), 617–640 (1977)

    Google Scholar 

  135. H. Higuchi, R.E.A. Arndt, M.F. Rogers: Characteristics of tip vortex noise, J. Fluids Eng. 111, 495–501 (1989)

    Google Scholar 

  136. S.J. Barker: Measurements of radiated noise in the Caltech high-speed water tunnel, Part II: Radiated noise from cavitating hydrofoils, GALCIT (1975) , Final Report on ONR contract Hydrodynamic Radiated Noise

    Google Scholar 

  137. R.E.A. Arndt, C.C.S. Song, Q. Qin: Experimental and numerical investigations of cavitation, 22nd IAHR Symposium on Hydraulic Machinery and Systems, Stockholm (2004)

    Google Scholar 

  138. R.W. Kermeen, B.R. Parkin: Incipient cavitation and wake flow behind sharp edged disks, CIT Hydrodynamics Lab Rep. 84-5 (1957)

    Google Scholar 

  139. R.E.A. Arndt, M. Levy: Acoustic radiation from cavitating hydrofoils, Proc. 7th Int. Congress on Noise and Vibration, Garmisch (1999)

    Google Scholar 

  140. T.H. Maiman: Stimulated optical radiation in ruby, Nature 187, 493–494 (1960)

    Google Scholar 

  141. F. Durst, A. Melling, J.H. Whitelaw: Principles and Practice of Laser Doppler Anemometry (Academic, London 1981)

    Google Scholar 

  142. H.E. Albrecht, M. Borys, N. Damaschke, C. Tropea: Laser Doppler and Phase Doppler Measurement Techniques (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  143. R.J. Adrian: Particle-imaging techniques for experimental fluid mechanics, Annu. Rev. Fluid Mech. 23, 261–304 (1991)

    Google Scholar 

  144. J. Westerweel: Fundamentals of digital particle image velocimetry, Meas. Sci. Technol. 8, 1379–1392 (1997)

    Google Scholar 

  145. G. Sridhar, B. Ran, J. Katz: Implementation of particle image velocimetry to multi-phase flow, Cavitation Multiphase Flow Forum 109, 205–210 (1991)

    Google Scholar 

  146. D.P. Towers, C.E. Towers, C.H. Buckberry, M. Reeves: A colour PIV system employing fluorescent particles for two-phase flow measurements, Meas. Sci. Technol. 10, 824–830 (1999)

    Google Scholar 

  147. L.G. Fontecha: PIV measurements in the wake of a supercavitating body. MS Thesis (Chalmers University of Technology, Gothenburg 2004)

    Google Scholar 

  148. Y.A. Hassan, T.K. Blanchat, C.H. Seeley, R.E. Canaan: Simultaneous velocity measurements of both components of a two-phase flow using particle image velocimetry, Int. J. Multiphase Flow 18, 371–395 (1992)

    MATH  Google Scholar 

  149. Y.A. Hassan, W. Schmidl, J. Ortiz-Villafuerte: Investigation of three-dimensional two-phase flow structure in a bubbly pipe flow, Meas. Sci. Technol. 9, 309–326 (1998)

    Google Scholar 

  150. L. Gui, W. Merzkirch: Phase separation of PIV measurements in two-phase flow by applying a digital mask technique, ERCOFTAC Bull. 30, 45–48 (1996)

    Google Scholar 

  151. R. Lindken, L. Gui, W. Merzkirch: Velocity measurements in multiphase flow by means of particle image velocimetry, Chem. Eng. Tech. 22, 202–206 (1999)

    Google Scholar 

  152. R. Lindken, W. Merzkirch: Velocity measurements of liquid and gaseous phase for a system of bubbles rising in water, Exp. Fluids 29, S194–S201 (2000)

    Google Scholar 

  153. J. Sakakibara, R.B. Wicker, J.K. Eaton: Measurements of the particle-fluid velocity correlation and the extra dissipation in a round jet, Int. J. Multiphase Flow 22, 863–881 (1996)

    MATH  Google Scholar 

  154. W.J. Easson, M.L. Jakobsen: Slippage measurements in two-phase flows using particle image velocimetry, Institute of Physics Optical Group Half Day Conference Optics and Optical Diagnostics in Combustion (1996)

    Google Scholar 

  155. T.R. Oakley, E. Loth, R.J. Adrian: A two-phase cinematic PIV method for bubbly flows, J. Fluids Eng. 119, 707–712 (1997)

    Google Scholar 

  156. K.T. Kiger, C. Pan: PIV technique for the simultaneous measurement of dilute two-phase flow, J. Fluids Eng. 122, 811–818 (2000)

    Google Scholar 

  157. E. Delnoij, J. Westerweel, N.G. Deen, J.A.M. Kuipers, W.P.M. van Swaaij: Ensemble correlation PIV applied to bubble plumes rising in a bubble column, Chem. Eng. Sci. 54, 5159–5171 (1999)

    Google Scholar 

  158. D.A. Khalitov, E.K. Longmire: Simultaneous two-phase PIV by two-parameter phase discrimination, Simultaneous two-phase PIV by two-parameter phase discrimination, Exp. Fluids 32(2), 252–268 (2002)

    Google Scholar 

  159. M. Arnardottir: Fundamentals of PIV Applied to Two-Phase Water-Bubble Flow. MS Thesis (Aalborg University, Aalborg 2001)

    Google Scholar 

  160. G. Chaine, D.E. Nikitopoulos: Multiphase digital particle image velocimetry in a dispersed, bubbly, axisymmetric jet, Proc. ASME 2002 FEDSM, FEDSM2002-31435, Montreal (ASME, New York 2002)

    Google Scholar 

  161. A. Melling: Tracer particles and seeding for particle image velocimetry, Meas. Sci. Technol. 8, 1406–1416 (1997)

    Google Scholar 

  162. K.R. Laberteaux, S.L. Ceccio: Partial cavity flows – Part 1. Cavities forming on models without spanwise variation, J. Fluid Mech. 431, 1–41 (2001)

    MATH  Google Scholar 

  163. K.R. Laberteaux, S.L. Ceccio: Partial cavity flows – Part 2. Cavities forming test objects with spanwise variation, J. Fluid Mech. 431, 43–63 (2001)

    Google Scholar 

  164. C.O. Iyer, S.L. Ceccio: The influence of developed cavitation on the flow of a turbulent shear layer, Phys. Fluids 14, 3414–3431 (2002)

    Google Scholar 

  165. M. Wosnik, T.J. Schauer, R.E.A. Arndt: Experimental Study of a Ventilated Supercavitating Vehicle, Conference paper for CAV 2003-Fifth International Symposium on Cavitation, Osaka, ed. by Y. Tsujimoto (2003)

    Google Scholar 

  166. M. Wosnik, L. Fontecha, R.E.A. Arndt: Measurements in high void-fraction bubbly wakes created by ventilated supercavitation, Proc. ASME-FEDSM2005, ASME Fluids Eng. Div. Summer Meeting, Houston (2005) , paper FEDSM2005-77200

    Google Scholar 

  167. M. Wosnik, R.E.A. Arndt: Measurements in high void-fraction turbulent bubbly wakes created by axisymmetric ventilated supercavitation, Proc. Sixth Int. Symp. Cavitation CAV2006, Wageningen (2006)

    Google Scholar 

  168. P.B.V. Johansson, W.K. George, M.J. Gourlay: Equilibrium similarity, effects of initial conditions and local Reynolds number on the axisymmetric wake, Phys. Fluids 15, 603–617 (2003)

    MathSciNet  Google Scholar 

  169. D.P. Hart: High-speed PIV analysis using compressed image correlatoion, J. Fluids Eng. 120, 463–470 (1998)

    Google Scholar 

  170. A. Vogel, W. Lauterborn: Time-resolved particle image velocimetry used in the investigation of cavitation bubble dynamics, Appl. Opt. 27(9), 1869–1876 (1988)

    Google Scholar 

  171. R.F. Mudde, J.S. Groen, H.E.A. van den Akker: Application of LDA to bubbly flows, Nucl. Eng. Des. 184, 329–338 (1998)

    Google Scholar 

  172. J.S. Groen, R.F. Mudde, H.E.A. van den Akker: On the application of LDA to bubbly flow in the wobbling regime, Exp. Fluids 27, 435–449 (1999)

    Google Scholar 

  173. T. Börner, W.W. Martin, H.J. Leutheuser: Comparative measurements in bubbly two-phase flow using laser Doppler and hot-film anemometry, Chem. Eng. Commun. 28, 29–43 (1984)

    Google Scholar 

  174. S.L. Lee, F. Durst: On the motion of particles in turbulent duct flow, Int. J. Multiphase Flow 8, 125–146 (1982)

    Google Scholar 

  175. S. So, H. Morikita, S. Tagaki, Y. Matsumoto: Laser Doppler velocimetry measurement of turbulent bubbly channel flow, Exp. Fluids 33, 135–142 (2002)

    Google Scholar 

  176. H.R.E. van Maanen: Retrieval of Turbulence and Turbulence Properties Form Randomly Sampled Laser Doppler Anemometry Data with Noise. Ph.D. Thesis (Delft University of Technology, Delft 1999)

    Google Scholar 

  177. S. Guet, H.R.E. van Maanen, R.F. Mudde: Feasibility of LDA measurements in high void fraction bubbly flow, 11th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon (2002)

    Google Scholar 

  178. A. Kubota, H. Kato, H. Yamaguchi, M. Maeda: Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique, J. Fluids Eng. 111, 204–210 (1989)

    Google Scholar 

  179. A.A. Naqwi, R. Menon, L.M. Fingerson: An adaptive phase/Doppler system and its applications including particle sizing in submicron and nanometer ranges, Exp. Fluids 20, 328–334 (1996)

    Google Scholar 

  180. F. Burdin, N.A. Tsochatzidis, P. Guiraud, A.M. Wilhelm, H. Delmas: Characterisation of the acoustic cavitation cloud by two laser techniques, Ultrason. Sonochem. 6, 43–51 (1999)

    Google Scholar 

  181. T.J. Sun: A Theoretical and Experimental Study of Non-Condensible Turbulent Bubbly Jets. Ph.D. Thesis (Pennsylvania State University, Pennsylvania 1985)

    Google Scholar 

  182. T.Y. Sun, G.M. Faeth: Structure of turbulent bubbly jets – I. Methods and centerline properties, Int. J. Multiphase Flow 12, 99–114 (1986)

    Google Scholar 

  183. T.Y. Sun, G.M. Faeth: Structure of turbulent bubbly jets – II. Phase property profiles, Int. J. Multiphase Flow 12, 115–126 (1986)

    Google Scholar 

  184. S. Kumar, D.E. Nikitopoulos, E.E. Michaelides: Effect of bubbles on the turbulence near the exit of a liquid jet, Exp. Fluids 7, 487–494 (1989)

    Google Scholar 

  185. K.N. Stanley: Non-Intrusive Characterization of a Dispersed Bubbly Axisymmetric Jet. Ph.D. Thesis (Louisiana State University, Baton Rouge 2001)

    Google Scholar 

  186. K.N. Stanley, D.E. Nikitopoulos: Dispersed bubbly axisymmetric jets, Proc. of the 4th Int. Conference on Multiphase Flows, New Orleans (2001)

    Google Scholar 

  187. S. Kim, X.Y. Fu, X. Wang, M. Ishii: Development of the miniaturized four-sensor conductivity probe and the signal processing scheme, Int. J. Heat Mass Transfer 43, 4101–4118 (2000)

    MATH  Google Scholar 

  188. L.G. Neal, S.G. Bankoff: A high resolution resistivity probe for determination of local void properties in gas liquid flow, AIChE J. 9, 490–494 (1963)

    Google Scholar 

  189. O.C. Jones: Two-phase flow measurement techniques in gas-liquid systems. In: Fluid Mechanics Measurements, ed. by R.J. Goldstein (Hemisphere, Washington 1983) pp. 479–558

    Google Scholar 

  190. R.F. Mudde, T. Saito: Hydrodynamical similarities between bubble column and bubbly pipe flow, J. Fluid Mech. 437, 203–228 (2001)

    MATH  Google Scholar 

  191. J.-M. Le Corre, E. Hervieu, M. Ishii, J.-M. Delhaye: Benchmarking and improvements of measurement techniques for local-time-averaged two-phase flow parameters, Exp. Fluids 35, 448–458 (2003)

    Google Scholar 

  192. A. Cartellier: Simultaneous void fraction measurement, bubble velocity, and size estimate using a single optical probe in gas-liquid two-phase flows, Rev. Sci. Instrum. 63, 5442–5453 (1992)

    Google Scholar 

  193. G.J. Kirouac, T.A. Trabold, P.F. Vassallo, W.E. Moore, R. Kumar: Instrumentation development in two-phase flow, Exp. Thermal Fluid Sci. 20, 79–93 (1999)

    Google Scholar 

  194. B. Shamoun, M. El Beshbeeshy, R. Bonazza: Light extinction technique for void fraction measurements in bubbly flow, Exp. Fluids 26, 16–26 (1999)

    Google Scholar 

  195. F. Burdin, P. Guiraud, A.M. Wilhelm, H. Delmas: Implementation of the laser diffraction technique for acoustic cavitation bubble investigations, Part. Part. Syst. Charact. 19, 73–83 (2002)

    Google Scholar 

  196. S. Vagle, D.M. Farmer: A comparison of four methods for bubble size and void fraction measurements, IEEE J. Oceanic Eng. 23, 211–222 (1998)

    Google Scholar 

  197. M. Perlin: Statistical Analysis of Visual Wave Observations and Gage/Radar Measurements, Coastal Engr Res. Center, USACE, Misc Paper 84-6 (U.S. Army Corps of Engineers, Washington 1984)

    Google Scholar 

  198. A.V. Babanin, I.R. Young, M.L. Banner: Breaking probabilities for dominant surface waves on water of finite constant depth, J. Geophys. Res. 106(C6), 11659–11676 (2001)

    Google Scholar 

  199. TM6: An Ocean Wave Measuring Instrument, Tech. Memo 6, Beach Erosion Board 1-52 (1948)

    Google Scholar 

  200. W.S. Campbell: An Electronic Wave-Height Measuring Apparatus, US Navy DW Taylor Model Basin, Rep. 859 (U.S. Dept. of the Navy, Washington 1953)

    Google Scholar 

  201. L.B. Wilner: Variable capacitance liquid level sensors, Rev. Sci. Inst. 31(5), 501–507 (1960)

    Google Scholar 

  202. S.A. Hughes: Physical Models and Laboratory Techniques in Coastal Engineering (World Scientific, Singapore 1993)

    Google Scholar 

  203. F.T. Korsmeyer: The Capacitance Wave Probe, NA & ME Dept Rep (Univ. Michigan, Ann Arbor 1980)

    Google Scholar 

  204. G.V. Sturm, F.Y. Sorrell: Optical wave measurement technique and experimental comparison with conventional wave height probes, Appl. Opt. 12(8), 1928–1933 (1973)

    Google Scholar 

  205. M. Perlin, C.-L. Ting: Steep gravity-capillary waves within the internal resonance regime, Phys. Fluids A 4(11), 2466–2478 (1992)

    Google Scholar 

  206. W.H. Munk: Measurement of Waves from Pressure Fluctuations at Ocean Bottom, Scripps Inst. Ocean, Wave Proj Rep No. 5 (The Scripps Institution of Oceanograhphy, La Jolla 1944)

    Google Scholar 

  207. R.G. Folsom, A.B. White, M.F. Killory: Deep Water Wave Measurements, I, II, III, IV (Univ. of Calif. Fluid Mech. Lab, Berkeley 1945, 1946)

    Google Scholar 

  208. B. Strong, B. Brumley, E.A. Terray, G.W. Stone: The Performance of ADCP-Derived Directional Wave Spectra and Comparison with other Independent Measurements, Proc. MTS/IEEE Oceans Conf., Providence (Institute of Electronic and Electrical Engineers, Piscataway 2000)

    Google Scholar 

  209. M.V. Trevorrow: Measurement of ocean wave directional spectra using Doppler side-scan sonar arrays, J. Atmos. Oceanic Technol. 12(3), 603–616 (1995)

    Google Scholar 

  210. H.-T. Liu, J.-T. Lin: On the spectra of high-frequency wind waves, J. Fluid Mech. 123, 165–185 (1982)

    Google Scholar 

  211. J.H. Duncan, A.A. Dimas: Surface ripples due to steady breaking waves, J. Fluid Mech. 329, 309–339 (1996)

    Google Scholar 

  212. C.S. Cox: Measurements of slopes of high-frequency wind waves, J. Marine Res. 16(3), 199–225 (1958)

    Google Scholar 

  213. J.R. Saylor: Internal reflection beneath capillary water waves: A method for measuring wave slope, Appl. Opt. 36(6), 1121–1129 (1997)

    Google Scholar 

  214. J. Wu, J.M. Lawrence, E.S. Tebay, M.P. Tulin: A multiple purpose optical instrument for studies of short steep water waves, Rev. Sci. Instrum. 40(9), 1209–1213 (1969)

    Google Scholar 

  215. J. Wu: Directional slope and curvature distributions of wind waves, J. Fluid Mech. 79(3), 463–480 (1977)

    Google Scholar 

  216. J.D. Barter, K.L. Beach, P.H.Y. Lee: Collocated and simultaneous measurement of surface slope and amplitude of water waves, Rev. Sci. Instrum. 64(9), 2661–2665 (1993)

    Google Scholar 

  217. B. Jahne, M. Schmidt, R. Rocholz: Combined optical slope/height measurements of short wind waves: Principle and calibration, Meas. Sci. Technol. 16, 1937–1944 (2005)

    Google Scholar 

  218. B. Jahne, J. Klinke, S. Waas: Imaging of short ocean wind waves: A critical theoretical review, J. Opt. Soc. Am. A 11(8), 2197–2209 (1994)

    Google Scholar 

  219. X. Liu, J.H. Duncan: The effects of surfactants on spilling breaking waves, Nature 421, 520–523 (2003)

    Google Scholar 

  220. J.M. Killen: The sonic surface-wave transducer, Am. Towing Tank Conf., Univ. Calif., Berkeley (Defense Technical Information Center, Ft. Belvoir 1959)

    Google Scholar 

  221. H. Mitsuyasu, Y.-Y. Kuo, A. Masuda: On the dispersion relation of random gravity waves – Part 2: An experiment, J. Fluid Mech. 92, 731–749 (1979)

    MATH  MathSciNet  Google Scholar 

  222. D.W. Wang, P.A. Hwang: The dispersion relation of short wind waves from space-time wave measurements, J. Atmos. Oceanic Technol. 21, 1936–1945 (2004)

    Google Scholar 

  223. M. Perlin, H. Lin, C.-L. Ting: On parasitic capillary waves generated by steep gravity waves: An experimental investigation with spatial and temporal measurements, J. Fluid Mech. 255, 597–620 (1993)

    Google Scholar 

  224. J.B. Carneal, C.W. Baumann, P. Atsavapranee, J.H. Hamilton, J. Shan: A global laser rangefinder profilometry system for the measurement of three-dimensional wave surfaces, Proc. of REDSM05, 2005, ASME Fluids Eng. Div. Summer Meeting and Exhib., Houston (Am. Soc. Mech. Eng., Washington 2005)

    Google Scholar 

  225. M.L. Banner, I.S.F. Jones, J.C. Trinder: Wavenumber spectra of short gravity waves, J. Fluid Mech. 198, 321–344 (1989)

    MATH  Google Scholar 

  226. J.M. Wanek, C.H. Wu: Automated trinocular stereo imaging system for three-dimensional surface wave measurement, Ocean Eng. 33, 723–747 (2006)

    Google Scholar 

  227. I. Grant, Y. Zhao, G.H. Smith, J.N. Stewart: Split-screen, single-camera, laser-matrix, stereogrammetry instrument for topographical water wave measurements, Appl. Opt. 34(19), 3806–3809 (1995)

    Google Scholar 

  228. I. Grant, N. Stewart, I.A. Padilla-Perez: Topographical measurements of water waves using the projection moire method, Appl. Opt. 29(28), 3981–3983 (1990)

    Google Scholar 

  229. E.J. Bock, T. Hara: Optical measurements of capillary-gravity wave spectra using a scanning laser slope gauge, J. Atmos. Oceanic Technol. 12, 395–403 (1995)

    Google Scholar 

  230. Q. Li, M. Zhao, S. Tang, S. Sun, J. Wu: Two-dimensional scanning laser slope gauge: Measurements of ocean-ripple structures, Appl. Opt. 32(24), 4590–4597 (1993)

    Google Scholar 

  231. B. Jahne, K. Riemer: Two-dimensional wave number spectra of small-scale water surface waves, J. Geophys. Res. 95(C7), 11531–11546 (1990)

    Google Scholar 

  232. W.C. Keller, B.L. Gotwols: Two-dimensional optical measurement of wave slope, Appl. Opt. 22, 3476–3478 (1983)

    Google Scholar 

  233. X. Zhang, C.S. Cox: Measuring the two-dimensional structure of a wavy water surface optically: A surface gradient detector, Exp. Fluids 17, 225–237 (1994)

    MATH  Google Scholar 

  234. X. Zhang, D. Dabiri, M. Gharib: Optical mapping of fluid density interfaces: Concepts and implementations, Rev. Sci. Instrum. 67(5), 1858–1868 (1996)

    MATH  Google Scholar 

  235. J.S. Bendat, A.G. Piersol: Random Data: Analysis and Measurement Procedures (Wiley, New York 1986)

    MATH  Google Scholar 

  236. A. Papoulis: Probability, Random Variables and Stochastic Processes, 2nd edn. (McGraw Hill, New York 1984)

    MATH  Google Scholar 

  237. M.K. Ochi: Applied Probability and Stochastic Processes (Wiley-Interscience, New York 1990)

    MATH  Google Scholar 

  238. M.K. Ochi: Ocean Waves: The Stochastic Approach (Cambridge Univ Press, Cambridge 1998)

    MATH  Google Scholar 

  239. K.R. Bodge: The Design, Development, and Evaluation of a Differential Pressure Gauge Directional Wave Monitor, Coastal Engr Res Center, USACE, Misc Rep 82-11 (U.S. Army Corps of Engineers, Washington 1982)

    Google Scholar 

  240. M.S. Longuet-Higgins, D.E. Cartwright, N.D. Smith: Observations of the Directional Spectrum of Sea Waves Using the Motions of a Floating Buoy, Ocean Waves Spectra (Prentice-Hall, Englewood Cliffs 1963)

    Google Scholar 

  241. H.E. Krogstad, S.F. Barstow, S.E. Aasen, I. Rodriguez: Some recent developments in wave buoy measurement technology, Coastal Eng. 37(3-4), 309–329 (1999)

    Google Scholar 

  242. RD Instruments: Waves Userʼs Guide, Pub No. 957-6148-00 (RD Instruments, San Diego 2001)

    Google Scholar 

  243. C. Zuffada, G. Hajj, J.B. Thomas: Sea Height and Roughness with GPS Reflections, http://www.nasatech.com/Briefs/Jun02/NPO20943.html (NASA, Washington 2002)

    Google Scholar 

  244. W.H. Graf: Hydraulics of Sediment Transport (McGraw-Hill, New York 1971)

    Google Scholar 

  245. S.M. Yalin: Mechanics of Sediment Transport (Pergamon, Oxford 1972)

    Google Scholar 

  246. T.E. White: Status of measurement techniques for coastal sediment transport, Coastal Eng. 35(1998), 17–45 (1998)

    Google Scholar 

  247. J.M. Phillips, D.E. Walling: An assessment of the effects of sample collection, storage, and resuspension on the representativeness of measurements of the effective particle size distribution of fluvial suspended sediment, Water Resour. 29, 298–308 (1995)

    Google Scholar 

  248. J.D. Smith, S.R. McLean: Spatially averaged flow over a wavy surface, J. Geophys. Res. 83, 1735–1746 (1977)

    Google Scholar 

  249. L.C. van Rijn: Sediment transport – Part II. Suspended load transport, J. Hydraul. Eng. 110(11), 1613–1641 (1984)

    Google Scholar 

  250. M. García, G. Parker: Entrainment of bed sediment into suspension, J. Hydraul. Eng. 117(4), 414–435 (1991)

    Google Scholar 

  251. E. Meyer-Peter, R. Muller: Formulas for bedload transport, Proc. 2nd Cong. International Association of Hydraulic Res., Stockholm (IAHR, Delft 1948) 39–64

    Google Scholar 

  252. M. Wong: Does the bedload equation of Meyer-Peter and Muller fit its own data?, Int. Association of Hydraulic Research Congress, Thessaloniki (IAHR, Delft 2003)

    Google Scholar 

  253. H. Einstein: The Bed-Load Function for Sediment Transportation in Open Channel Flows, Technical Bulletin 1026, Soil Conservation Service (U.S. Dept. of Agriculture, Washington 1950)

    Google Scholar 

  254. M.S. Yalin: An expression for bedload transportation, J. Hydraul. Div. ASCE 89(HY3), 221–250 (1963)

    Google Scholar 

  255. F. Engelund, J. Fredsoe: A sediment transport model for straight alluvial channels, Nordic Hydrol. 7, 293–306 (1976)

    Google Scholar 

  256. R. Fernandez Luque, R. van Beek: Erosion and transport of bed sediment, J. Hydraul. Res. 14(2), 127–144 (1976)

    Google Scholar 

  257. R.K. Dewey, W.R. Crawford: Bottom stress estimates from vertical dissipation rate profiles on the continental shelf, J. Phys. Oceanography 18(8), 1167–1177 (1988)

    Google Scholar 

  258. R.L. Soulsby, K.R. Dyer: The form of the near-bed velocity profile in tidally accelerating flow, J. Geophys. Res. 86(C9), 8067–8074 (1981)

    Google Scholar 

  259. K.W. Bedford, O. Wai, C.M. Libicki, R.I.II. van Evra: Sediment entrainment and deposition measurements in long island sound, J. Hydraul. Div. ASCE 113(10), 1325–1342 (1987)

    Google Scholar 

  260. M.W. Schmeeckle, J.M. Nelson: Direct numerical simulation of bedload transport using a local, dynamic boundary condition, Sedimentology 50(2), 279–301 (2003)

    Google Scholar 

  261. D.G. Wren, B.D. Barkdoll, R.A. Kuhnle, R.W. Derrow: Field techniques for suspended-sediment measurement, J. Hydraul. Eng. 126(2), 97–104 (2000)

    Google Scholar 

  262. L.C. van Rijn, A.S. Schaafsma: Evaluation of measuring instruments for suspended sediment, Int. Conf. Measuring Techniques of Hydraulics Phenomena in Offshore, Coastal, and Inland Waters, London (British Hydraulic Research Association, Cranfield 1986) 401–423

    Google Scholar 

  263. J.J. Bosman, E.T.J.M. van der Velden, C.H. Hulsbergen: Sediment concentration measurement by transverse suction, Coastal Eng. 11, 353–370 (1987)

    Google Scholar 

  264. V.A. Vanoni: Transportation of suspended sediment by water, ASCE Trans. 111(3), 67–102 (1946)

    Google Scholar 

  265. R.P. Apmann, R.R. Rumer: Diffusion of sediment in developing flow, J. Hydraul. Div. ASCE 96(1), 109–123 (1970)

    Google Scholar 

  266. H.E. Jobson, W.W. Sayre: Vertical transfer in open channel flow, J. Hydraul. Div. ASCE 96(3), 703–724 (1970)

    Google Scholar 

  267. N.L. Coleman: Velocity profiles with suspended sediment, J. Hydraul. Res. 19(3), 211–229 (1981)

    Google Scholar 

  268. L.C. van Rijn: Entrainment of Fine Sediment Particles, Development of Concentration Profiles in a Steady, Uniform Flow Without Initial Sediment Load, Report on Model Investigation, Delft Hydraulics Laboratory M1531 Part II (Delft Hydraulics Laboratory, Delft 1981)

    Google Scholar 

  269. T.A. Winterstein, H.G. Stefan: Suspended Sediment Sampling in Flowing Water: Laboratory Study of the Effects of Nozzle Orientation, Withdrawal Rate and Particle Size, External Memorandum M-168, St. Anthony Falls Hydraulic Laboratory (University of Minnesota, Minneapolis 1983)

    Google Scholar 

  270. T.K. Edwards, G.D. Glysson: Field Methods for Measurement of Fluvial Sediment: U.S.G.S. Techniques of Water-Resources Investigations (USGS, Reston 1999)

    Google Scholar 

  271. A.E. Hay: Sound scattering from a particle-laden turbulent jet, J. Acoust. Soc. Am. 90(4), 2055–2074 (1991)

    MathSciNet  Google Scholar 

  272. M.E. Nelson, P.C. Benedict: Measurement and analysis of suspended sediment loads in streams, Proc. ASCE 76(31), 1–28 (1950)

    Google Scholar 

  273. E.T. Baker, J.W. Lavelle: The effect of particle size on the light attenuation coefficient of natural suspensions, J. Geophys. Res. 89(C5), 8197–8203 (1984)

    Google Scholar 

  274. J.P.-Y. Maa: Laboratory measurements of instantaneous sediment concentration under waves, IEEE J. Oceanic Eng. 13(4), 299–302 (1988)

    Google Scholar 

  275. N.J. Clifford, K.S. Richards, R.A. Brown, S.N. Lane: Laboratory and field assessment of an infrared turbidity probe and its response to particle size and variation in suspended sediment concentration, Hydrol. Sci. J. 40(6), 771–791 (1995)

    Google Scholar 

  276. J.P. Downing, R.W. Sternberg, C.R.B. Lister: New instrumentation for investigation of sediment suspension in the shallow marine environment, Marine Geol. 42, 19–34 (1981)

    Google Scholar 

  277. D&A Instrument Company: OBS-3 Product Information (D&A Instrument Company, Port Townsend 2005)

    Google Scholar 

  278. R.A. Beach, R.W. Sternberg, R. Johnson: A fiber optic sensor for monitoring suspended sediment, Marine Geol. 103, 513–520 (1992)

    Google Scholar 

  279. P.D. Osborne, C.E. Vincent, B. Greenwood: Measurement of suspended sand concentrations in the nearshore: Field intercomparison of optical and acoustic backscatter sensors, Continental Shelf Res. 14(2/3), 159–174 (1994)

    Google Scholar 

  280. M.O. Green, J.D. Boon III: The measurement of constituent concentrations in nonhomogeneous sediment suspensions using optical backscatter sensors, Marine Geol. 110, 73–81 (1993)

    Google Scholar 

  281. T.F. Sutherland, P.M. Lane, C.L. Amos, J. Downing: The calibration of optical backscatter sensors for suspended sediment of varying darkness levels, Marine Geol. 162, 587–597 (2000)

    Google Scholar 

  282. D.H. Schoellhamer: Biological interference of optical backscatterance sensors in Tampa Bay, Florida, Marine Geol. 110, 303–313 (1993)

    Google Scholar 

  283. P. Ridd, G. Day, S. Thomas, J. Harradence, D. Fox, J. Bunt, O. Renagi, C. Jago: Measurement of sediment deposition rates using an optical backscatter sensor, Estuarine, Coastal Shelf Sci. 52, 155–163 (2001)

    Google Scholar 

  284. J.A. Puleo, R.A. Beach, R.A. Holman, J.S. Allen: Swash zone sediment suspension and transport and the importance of bore-generated turbulence, J. Geophys. Res. 105(C7), 17021–17044 (2000)

    Google Scholar 

  285. D.J. Law, A.J. Bale, S.E. Jones: Adaptation of focused beam reflectance measurement to in-situ particle sizing in estuaries and coastal waters, Marine Geol. 140, 47–59 (1997)

    Google Scholar 

  286. J.M. Phillips, D.E. Walling: Calibration of a Par-Tec 200 laser back-scatter probe for in situ sizing of fluvial suspended sediment, Hydrol. Processes 12, 221–231 (1998)

    Google Scholar 

  287. A.R. Heath, P.D. Fawell, P.A. Bahri, J.D. Swift: Estimating average particle size by focused beam reflectance measurement (FBRM), Part. Part. Syst. Char. 19, 84–95 (2002)

    Google Scholar 

  288. Y.C. Agrawal, H.C. Pottsmith: Laser diffraction particle sizing in STRESS, Cont. Shelf Res. 14, 1101–1121 (1994)

    Google Scholar 

  289. Y.C. Agrawal, H.C. Pottsmith: Instruments for particle size and settling velocity observations in sediment transport, Marine Geol. 168, 89–114 (2000)

    Google Scholar 

  290. Sequoia Scientific Inc.: LISST-100 Product Information (Sequoia Scientific, Redmond 2005)

    Google Scholar 

  291. J.W. Gartner: Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California, Marine Geol. 211, 169–187 (2004)

    Google Scholar 

  292. D.M. Admiraal, R. Musalem, M.H. García: A Study of self-formed ripples using Particle Image Velocimetry (PIV), 4th IAHR Symposium on River, Coastal, and Estuarine Morphodynamics, Barcelona (IAHR, Delft 2003)

    Google Scholar 

  293. I. Nezu, R. Azuma: Turbulence characteristics and interaction between particles and fluid in particle-laden open channel flows, J. Hydraul. Eng. 130(10), 988–1001 (2004)

    Google Scholar 

  294. S.C. Knowles, J.T. Wells: In situ aggregate analysis camera (ISAAC): A quantitative tool for analyzing fine-grained suspended material, Limnol. Oceanogr. 43(8), 1954–1962 (1998)

    Google Scholar 

  295. C. Libicki, K.W. Bedford, J.F. Lynch: The interpretation and evaluation of a 3 MHz acoustic backscatter device for measuring benthic boundary layer sediment dynamics, J. Acoust. Soc. Am. 85(4), 1501–1511 (1989)

    Google Scholar 

  296. A.E. Hay, J. Sheng: Vertical profiles of suspended sand concentration and size from multifrequency acoustic backscatter, J. Geophys. Res. 97(C10), 15661–15677 (1992)

    Google Scholar 

  297. C. Shen, U. Lemmin: Application of an acoustic particle flux profiler, J. Hydraul. Res. 37(3), 407–419 (1999)

    Google Scholar 

  298. D.M. Admiraal, M.H. García: Laboratory measurement of suspended sediment concentration using an Acoustic Concentration Profiler (ACP), Exp. Fluids 28, 116–127 (2000)

    Google Scholar 

  299. M.G. Kleinhans, W.B.M. Ten Brinke: Accuracy of cross-channel sampled sediment transport in large sand-gravel-bed rivers, J. Hydraul. Eng. 127(4), 258–269 (2001)

    Google Scholar 

  300. P.D. Thorne, D.M. Hanes: A review of acoustic measurement of small-scale sediment processes, Continental Shelf Res. 22, 603–632 (2002)

    Google Scholar 

  301. A.M. Crawford, A.E. Hay: Determining suspended sand size and concentration from multifrequency acoustic backscatter, J. Acoust. Soc. Am. 94(6), 3312–3324 (1993)

    Google Scholar 

  302. J.F. Lynch, J.D. Irish, C.R. Sherwood, Y.C. Agrawal: Determining suspended sediment particle size information from acoustical and optical backscatter measurements, Continental Shelf Res. 14(10/11), 1139–1165 (1994)

    Google Scholar 

  303. P.D. Thorne, S.C. Campbell: Backscattering by a suspension of spheres, J. Acoust. Soc. Am. 92(2), 978–986 (1992)

    Google Scholar 

  304. P.D. Thorne, P.J. Hardcastle, R.L. Soulsby: Analysis of acoustic measurements of suspended sediments, J. Geophys. Res. 98(C1), 899–910 (1993)

    Google Scholar 

  305. F.H. Fisher, V.P. Simmons: Sound absorption in sea water, J. Acoust. Soc. Am. 62(3), 558–564 (1977)

    Google Scholar 

  306. P.D. Thorne, G.P. Holdaway, P.J. Hardcastle: Constraining acoustic backscatter estimates of suspended sediment concentration profiles using the bed echo, J. Acoust. Soc. Am. 98(4), 2280–2288 (1995)

    Google Scholar 

  307. L. Zedel, A. Hay: A coherent Doppler profiler for high-resolution particle velocimetry in the ocean: Laboratory measurements of turbulence and particle flux, J. Atmos. Oceanic Technol. 16, 1102–1117 (1999)

    Google Scholar 

  308. C. Shen, U. Lemmin: A two-dimensional acoustic sediment flux profiler, Meas. Sci. Technol. 8, 880–884 (1997)

    Google Scholar 

  309. K.F. Betterridge, P.D. Thorne, P.S. Bell: Assessment of acoustic coherent Doppler and cross-correlation techniques for measuring near-bed velocity and suspended sediment profiles in the marine environment, J. Atmos. Oceanic Technol. 19, 367–380 (2002)

    Google Scholar 

  310. G.P. Holdaway, P.D. Thorne, D. Flatt, S.E. Jones, D. Prandle: Comparison between ADCP and transmissometer measurements of suspended sediment concentration, Continental Shelf Res. 19(3), 421–441 (1999)

    Google Scholar 

  311. W.W. Emmett: A Field Calibration of the Sediment-Trapping Characteristics of the Helley–Smith Bed Load Sampler, US Geological Survey Professional Paper 1139 (USGS, Washington 1980)

    Google Scholar 

  312. E.J. Helley, W. Smith: Development and calibration of a pressure-difference bedload sampler, US Geol. Survey Open-File Rep. 73-108, 18 (1971)

    Google Scholar 

  313. J.M. Gaudet, A.G. Roy, J.L. Best: Effect of orientation and size of Helley–Smith sampler on its efficiency, J. Hydraul. Eng. 120(6), 758–767 (1994)

    Google Scholar 

  314. D.W. Hubbell, H.H. Stevens Jr., J.V. Skinner, J.P. Beverage: New approach to calibrating bed load samplers, J. Hydraul. Eng. 111(4), 677–694 (1985)

    Google Scholar 

  315. S.M. Sterling, M. Church: Sediment trapping characteristics of a pit trap and the Helley–Smith sampler in a cobble gravel bed river, Water Resour. Res. 38(8), 10.1029/2000WR000052 (2002)

    Google Scholar 

  316. K. Bunte, S.R. Abt, J.P. Potyondy, S.E. Ryan: Measurement of coarse gravel and cobble transport using portable bedload traps, J. Hydraul. Eng. 130(9), 879–893 (2004)

    Google Scholar 

  317. M.T.K. Gaweesh, L.C. van Rijn: Bed-load sampling in sand-bed rivers, J. Hydraul. Eng. 120(12), 1364–1384 (1994)

    Google Scholar 

  318. K.T. Lee, Y.L. Liu, K.H. Cheng: Experimental investigation of bedload transport processes under unsteady flow conditions, Hydrol. Processes 18, 2439–2454 (2004)

    Google Scholar 

  319. D.W.T. Jackson: A new, instantaneous aeolian sand trap design for field use, Sedimentology 43, 791–796 (1996)

    Google Scholar 

  320. B.O. Bauer, S.L. Namikas: Design and field test of a continuously weighing, tipping-bucket assembly for Aeolian sand traps, Earth Surf. Processes Landforms 23, 1171–1183 (1998)

    Google Scholar 

  321. C.D. Rennie, R.G. Millar, M.A. Church: Measurement of bed load velocity using an acoustic Doppler current profiler, J. Hydraul. Eng. 128(5), 473–483 (2002)

    Google Scholar 

  322. C.D. Rennie, R.G. Millar: Measurement of the spatial distribution of fluvial bedload transport velocity in both sand and gravel, Earth Surf. Processes Landforms 29, 1173–1193 (2004)

    Google Scholar 

  323. P.C. Benedict, M.L. Albertson, M.Q. Matejka: Total sediment load measured in turbulence flume, Trans. ASCE, Vol. 120 (1955) 457–488, Paper 2750

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roger Arndt Prof. , Damien Kawakami M.Sc. , Martin Wosnik Ph.D , Marc Perlin Prof. , David Admiraal Dr. or Marcelo García Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Arndt, R., Kawakami, D., Wosnik, M., Perlin, M., Admiraal, D., García, M. (2007). Hydraulics. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics