Skip to main content

Hemicerebellectomy

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

The experimental model of hemicerebellectomy is characterized by ablation of half of the vermis with one cerebellar hemisphere, including the deep cerebellar nuclei, while sparing the vestibular nuclei and all surrounding structures. This approach has been adopted widely by many groups in various contexts of research mainly for studying brain plasticity and compensation of lesion-induced deficits. The purpose of this assay is to review old and recent data focusing on morphological as well as functional data obtained in this model in addressing cerebellar function and brain plasticity mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altman J, Winfree AT (1977) Postnatal development of the cerebellar cortex in the rat. V. Spatial organization of purkinje cell perikarya. J Comp Neurol 171:1–16

    Article  CAS  PubMed  Google Scholar 

  • Ashton JC, Glass M (2007) The cannabinoid CB2 receptor as a target for inflammation-dependent neurodegeneration. Curr Neuropharmacol 5:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari M, Rapino C, Mozetic P, Maccarrone M (2010) The endocannabinoid system in gp120-mediated insults and HIV-associated dementia. Exp Neurol 224:74–84

    Article  CAS  PubMed  Google Scholar 

  • Barrionuevo G, Pechadre JC, Gautron M, Guiot F (1978) Negative effects of chronic hemicerebellectomy of epileptiform after-discharges elicited by focal cortical stimulation in baboons (Papio papio). Electroencephalogr Clin Neurophysiol 44:232–235

    Article  CAS  PubMed  Google Scholar 

  • Ben Taib NO, Manto M (2009) Trains of transcranial direct current stimulation antagonize motor cortex hypoexcitability induced by acute hemicerebellectomy. J Neurosurg 111:796–806

    Article  PubMed  Google Scholar 

  • Bialowas J, Hassler R, Wagner A (1984) Types of synapses and degeneration in the thalamic nucleus ventralis oralis posterior after cerebellar lesions in the squirrel monkey. J Hirnforsch 25:417–437

    CAS  PubMed  Google Scholar 

  • Bisicchia E, Chiurchiù V, Viscomi MT, Latini L, Fezza F, Battistini L, Maccarrone M, Molinari M (2013) Activation of type-2 cannabinoid receptor inhibits neuroprotective and antiinflammatory actions of glucocorticoid receptor α: when one is better than two. Cell Mol Life Sci 70:2191–2204

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  • Bramlett HM, Dietrich WD (2007) Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res 161:125–141

    Article  PubMed  Google Scholar 

  • Buffo A, Fronte M, Oestreicher AB, Rossi F (1998) Degenerative phenomena and reactive modifications of the adult rat inferior olivary neurons following axotomy and disconnection from their targets. Neuroscience 85:587–604

    Article  CAS  PubMed  Google Scholar 

  • Buffo A, Carulli D, Rossi F, Strata P (2003) Extrinsic regulation of injury/growth-related gene expression in the inferior olive of the adult rat. Eur J Neurosci 18:2146–2158

    Article  PubMed  Google Scholar 

  • Burello L, De Bartolo P, Gelfo F, Foti F, Angelucci F, Petrosini L (2012) Functional recovery after cerebellar damage is related to GAP-43-mediated reactive responses of pre-cerebellar and deep cerebellar nuclei. Exp Neurol 233:273–282

    Article  CAS  PubMed  Google Scholar 

  • Burke CJ, Tobler PN, Baddeley M, Schultz W (2010) Neural mechanisms of observational learning. Proc Natl Acad Sci USA 107:14431–14436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153:240–251

    Article  CAS  PubMed  Google Scholar 

  • Carrier EJ, Kearn CS, Barkmeier AJ, Breese NM, Yang W, Nithipatikom K, Pfister SL, Campbell WB, Hillard CJ (2004) Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacol 65:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Castro AJ (1978) Projections of the superior cerebellar peduncle in rats and the development of new connections in response to neonatal hemicerebellectomy. J Comp Neurol 178:611–627

    Article  CAS  PubMed  Google Scholar 

  • Castro AJ, Mihailoff GA (1983) Corticopontine remodelling after cortical and/or cerebellar lesions in newborn rats. J Comp Neurol 219:112–123

    Article  CAS  PubMed  Google Scholar 

  • Castro AJ, Smith DE (1979) Plasticity of spinovestibular projections in response to hemicerebellectomy in newborn rats. Neurosci Lett 12:69–74

    Article  CAS  PubMed  Google Scholar 

  • Cavallucci V, Bisicchia E, Cencioni MT, Ferri A, Latini L, Nobili A, Biamonte F, Nazio F, Fanelli F, Moreno S, Molinari M, Viscomi MT, D’Amelio M (2014) Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons. Cell Death Dis 5:e1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin CL, Tovcimak AE, Hradil VP, Seifert TR, Hollingsworth PR, Chandran P, Zhu CZ, Gauvin D, Pai M, Wetter J, Hsieh GC, Honore P, Frost JM, Dart MJ, Meyer MD, Yao BB, Cox BF, Fox GB (2008) Differential effects of cannabinoid receptor agonists on regional brain activity using pharmacological MRI. Br J Pharmacol 153:367–379

    Article  CAS  PubMed  Google Scholar 

  • Cho KO, Kim SK, Cho YJ, Sung KW, Kim SY (2007) Regional differences in the neuroprotective effect of minocycline in a mouse model of global forebrain ischemia. Life Sci 80:2030–2035

    Article  CAS  PubMed  Google Scholar 

  • Colombel C, Lalonde R, Caston J (2004) The effects of unilateral removal of the cerebellar hemispheres on spatial learning and memory in rats. Brain Res 1004:108–115

    Article  CAS  PubMed  Google Scholar 

  • Copeland KFT, Brooks JI (2010) A novel use for an old drug: the potential for minocycline as anti-HIV adjuvant therapy. J Infect Dis 201:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Molinari M, Restuccia D, Leggio MG, Nardone R, Fogli D, Tonali P (1994) Cerebro-cerebellar interactions in man: neurophysiological studies in patients with focal cerebellar lesions. Electroencephalogr Clin Neurophysiol 93:27–34

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Restuccia D, Nardone R, Leggio MG, Oliviero A, Profice P, Tonali P, Molinari M (1995) Motor cortex changes in a patient with hemicerebellectomy. Electroencephalogr Clin Neurophysiol 97:259–263

    PubMed  Google Scholar 

  • Diguet E, Fernagut PO, Wei X, Du Y, Rouland R, Gross C, Bezard E, Tison F (2004) Deleterious effects of minocycline in animal models of Parkinson’s disease and Huntington’s disease. Eur J Neurosci 19:3266–3276

    Article  PubMed  Google Scholar 

  • Dihne M, Grommes C, Lutzenburg M, Witte OW, Block F (2002) Different mechanisms of secondary neuronal damage in thalamic nuclei after focal cerebral ischemia in rats. Stroke 33:3006–3011

    Article  PubMed  Google Scholar 

  • Dow RS, Moruzzi G (1958) The physiology and pathology of the cerebellum. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Fernandez-Ruiz J, Pazos MR, Garcia-Arencibia M, Sagredo O, Ramos JA (2008) Role of CB2 receptors in neuroprotective effects of cannabinoids. Mol Cell Endocrinol 286:S91–S96

    Article  CAS  PubMed  Google Scholar 

  • Florenzano F, Viscomi MT, Cavaliere F, Volonte C, Molinari M (2002) Cerebellar lesion up-regulates P2X1 and P2X2 purinergic receptors in precerebellar nuclei. Neuroscience 115:425–434

    Article  CAS  PubMed  Google Scholar 

  • Florenzano F, Viscomi MT, Amadio S, D’Ambrosi N, Volonte C, Molinari M (2008) Do ATP and NO interact in the CNS? Prog Neurobiol 84:40–56

    Article  CAS  PubMed  Google Scholar 

  • Galve-Roperh I, Aguado T, Palazuelos J, Guzman M (2008) Mechanisms of control of neuron survival by the endocannabinoid system. Curr Pharm Des 14:2279–2288

    Article  CAS  PubMed  Google Scholar 

  • Gelfo F, Florenzano F, Foti F, Burello L, Petrosini L, De Bartolo P (2016) Lesion-induced and activity-dependent structural plasticity of Purkinje cell dendritic spines in cerebellar vermis and hemisphere. Brain Struct Funct 221:3405–3426

    Article  PubMed  Google Scholar 

  • Giulian D, Woodward J, Young DG, Krebs JF, Lachman LB (1988) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci 8:2485–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR (2006) Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain. Brain Res 1071:10–23

    Article  CAS  PubMed  Google Scholar 

  • Gramsbergen A (1993) Consequences of cerebellar lesions at early and later ages: clinical relevance of animal experiments. Early Hum Dev 34:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gramsbergen A, Ijkema-Paassen J (1982) CNS plasticity after hemicerebellectomy in the young rat. Quantitative relations between aberrant and normal cerebello-rubral projections. Neurosci Lett 33:129–134

    Article  CAS  PubMed  Google Scholar 

  • Gramsbergen A, Ijkema-Paassen J (1991) Increased cell number in remaining cerebellar nuclei after cerebellar hemispherectomy in neonatal rats. Neurosci Lett 124:97–100

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes JS, Freire MAM, Lima RR, Picanco-Diniz CW, Pereira A, Gomes-Leal W (2010) Minocycline treatment reduces white matter damage after excitotoxic striatal injury. Brain Res 1329:182–193

    Article  CAS  PubMed  Google Scholar 

  • Hains BC, Black JA, Waxman SG (2003) Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. J Comp Neurol 462:328–341

    Article  PubMed  Google Scholar 

  • Helmich RC, Siebner HR, Giffin N, Bestmann S, Rothwell JC, Bloem BR (2010) The dynamic regulation of cortical excitability is altered in episodic ataxia type 2. Brain 133:3519–3529

    Article  PubMed  Google Scholar 

  • Hess DC, Fagan SC (2010) Repurposing an old drug to improve the use and safety of tissue plasminogen activator for acute ischemic stroke: minocycline. Pharmacotherapy 30:55S–61S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodziejak A, Dziduszko J, Niechaj A, Tarnecki R (2000) Influence of acute cerebellar lesions on somatosensory evoked potentials (SEPs) in cats. J Physiol Pharmacol 51:41–55

    CAS  PubMed  Google Scholar 

  • Lee JH, Tigchelaar S, Liu J, Stammers AM, Streijger F, Tetzlaff W, Kwon BK (2010) Lack of neuroprotective effects of simvastatin and minocycline in a model of cervical spinal cord injury. Exp Neurol 225:219–230

    Article  CAS  PubMed  Google Scholar 

  • Leonard CT, Goldberger ME (1987) Consequences of damage to the sensorimotor cortex in neonatal and adult cats. I. Sparing and recovery of function. Brain Res 429:1–14

    Article  CAS  PubMed  Google Scholar 

  • Liepert J, Wessel K, Schwenkreis P, Trillenberg P, Otto V, Vorgerd M, Malin JP, Tegenthoff M (1998) Reduced intracortical facilitation in patients with cerebellar degeneration. Acta Neurol Scand 98:318–323

    Article  CAS  PubMed  Google Scholar 

  • Loddick SA, Rothwell NJ (1996) Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat. J Cereb Blood Flow Metab 16:932–940

    Article  CAS  PubMed  Google Scholar 

  • Luft AR, Kaelin-Lang A, Hauser TK, Buitrago MM, Thakor NV, Hanley DF, Cohen LG (2002) Modulation of rodent cortical motor excitability by somatosensory input. Exp Brain Res 142:562–569

    Article  PubMed  Google Scholar 

  • Luft AR, Manto MU, Ben Taib NO (2005) Modulation of motor cortex excitability by sustained peripheral stimulation: the interaction between the motor cortex and the cerebellum. Cerebellum 4:90–96

    Article  PubMed  Google Scholar 

  • Mandolesi L, Foti F, Cutuli D, Laricchiuta D, Gelfo F, De Bartolo P, Petrosini L (2010) Features of sequential learning in hemicerebellectomized rats. J Neurosci Res 88:478–486

    CAS  PubMed  Google Scholar 

  • Manni E, Petrosini L (1997) Luciani’s work on the cerebellum a century later. Trends Neurosci 20:112–116

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Petrosini L (1993) Hemicerebellectomy and motor behaviour in rats. III. Kinematics of recovered spontaneous locomotion after lesions at different developmental stages. Behav Brain Res 54:43–55

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Bentivoglio M, Granato A, Minciacchi D (1986) Increased collateralization of the cerebellothalamic pathways following neonatal hemicerebellectomy. Brain Res 372:1–10

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Petrosini L, Gremoli T (1990) Hemicerebellectomy and motor behaviour in rats. II. Effects of cerebellar lesion performed at different developmental stages. Exp Brain Res 82:483–492

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Restuccia D, Leggio MG (2005) Cerebellar information flow in the thalamus: implications for cortical functions. Thalamus Relat Syst 3:141–146

    Article  Google Scholar 

  • Molinari M, Chiricozzi F, Clausi S, Tedesco A, De Lisa M, Leggio M (2008) Cerebellum and detection of sequences, from perception to cognition. Cerebellum 7:611–615

    Article  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Naus CG, Flumerfelt BA, Hrycyshyn AW (1984) Topographic specificity of aberrant cerebellorubral projections following neonatal hemicerebellectomy in the rat. Brain Res 309:1–15

    Article  CAS  PubMed  Google Scholar 

  • O’Donoghue DL, Kartje-Tillotson G, Castro AJ (1987) Forelimb motor cortical projections in normal rats and after neonatal hemicerebellectomy: an anatomical study based upon the axonal transport of WGA/HRP. J Comp Neurol 256:274–283

    Article  PubMed  Google Scholar 

  • Oddi S, Latini L, Viscomi MT, Bisicchia E, Molinari M, Maccarrone M (2012) Distinct regulation of nNOS and iNOS by CB2 receptor in remote delayed neurodegeneration. J Mol Med (Berl) 90:371–387

    Article  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536

    Article  CAS  PubMed  Google Scholar 

  • Oulad Ben Taib N, Manto M (2008) Reinstating the ability of the motor cortex to modulate cutaneomuscular reflexes in hemicerebellectomized rats. Brain Res 1204:59–68

    Article  CAS  PubMed  Google Scholar 

  • Oulad BT, Manto M, Laute MA, Brotchi J (2005) The cerebellum modulates rodent cortical motor output after repetitive somatosensory stimulation. Neurosurgery 56:811–820

    Article  Google Scholar 

  • Owens T, Babcock AA, Millward JM, Toft-Hansen H (2005) Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Res Brain Res Rev 48:178–184

    Article  CAS  PubMed  Google Scholar 

  • Petrosini L, Molinari M, Gremoli T, Granato A (1988) Neonatal versus adult hemicerebellectomy: a behavioral and anatomical analysis. In: Flohr E (ed) Postlesional neural plasticity. Springer, Berlin/Heidelberg, pp 213–220

    Chapter  Google Scholar 

  • Petrosini L, Molinari M, Gremoli T (1990) Hemicerebellectomy and motor behaviour in rats. I. Development of motor function after neonatal lesion. Exp Brain Res 82:472–482

    Article  CAS  PubMed  Google Scholar 

  • Petrosini L, Leggio MG, Molinari M (1998) The cerebellum in the spatial problem solving: a co-star or a guest star? Prog Neurobiol 56:191–210

    Article  CAS  PubMed  Google Scholar 

  • Petrosini L, Graziano A, Mandolesi L, Neri P, Molinari M, Leggio MG (2003) Watch how to do it! New advances in learning by observation. Brain Res Rev 42:252–264

    Article  PubMed  Google Scholar 

  • Restuccia D, Valeriani M, Barba C, Le Pera D, Capecci M, Filippini V, Molinari M (2001) Functional changes of the primary somatosensory cortex in patients with unilateral cerebellar lesions. Brain 124:757–768

    Article  CAS  PubMed  Google Scholar 

  • Restuccia D, Della MG, Valeriani M, Leggio MG, Molinari M (2007) Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain 130:276–287

    Article  PubMed  Google Scholar 

  • Rossi S, Bernardi G, Centonze D (2010) The endocannabinoid system in the inflammatory and neurodegenerative processes of multiple sclerosis and of amyotrophic lateral sclerosis. Exp Neurol 224:92–102

    Article  CAS  PubMed  Google Scholar 

  • Sasso V, Bisicchia E, Latini L, Ghiglieri V, Cacace F, Carola V, Molinari M, Viscomi MT (2016) Repetitive transcranial magnetic stimulation reduces remote apoptotic cell death and inflammation after focal brain injury. J Neuroinflammation 13:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheng WS, Hu S, Min X, Cabral GA, Lokensgard JR, Peterson PK (2005) Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia 49:211–219

    Article  PubMed  Google Scholar 

  • Stefanova N, Mitschnigg M, Ghorayeb I, Diguet E, Geser F, Tison F, Poewe W, Wenning GK (2004) Failure of neuronal protection by inhibition of glial activation in a rat model of striatonigral degeneration. J Neurosci Res 78:87–91

    Article  CAS  PubMed  Google Scholar 

  • Strata P, Buffo A, Rossi F (2001) Regenerative events in the olivocerebellar pathway. Restor Neurol Neurosci 19:95–106

    CAS  PubMed  Google Scholar 

  • Swenson RS, Castro AJ (1982) Plasticity of meso-diencephalic projections to the inferior olive following neonatal hemicerebellectomy in rats. Brain Res 244:169–172

    Article  CAS  PubMed  Google Scholar 

  • Tamburin S, Fiaschi A, Marani S, Andreoli A, Manganotti P, Zanette G (2004) Enhanced intracortical inhibition in cerebellar patients. J Neurol Sci 217:205–210

    Article  PubMed  Google Scholar 

  • Tarnecki R (2003) Responses of the red nucleus neurons to limb stimulation after cerebellar lesions. Cerebellum 2:96–100

    Article  PubMed  Google Scholar 

  • Tarnecki R, Lupa K, Niechaj A (2001) Responses of the red nucleus neurons to stimulation of the paw pads of forelimbs before and after cerebellar lesions. J Physiol Pharmacol 52:423–436

    CAS  PubMed  Google Scholar 

  • Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  CAS  PubMed  Google Scholar 

  • Tsukahara N, Fujito Y, Kubota M (1983) Specificity of the newly-formed corticorubral synapses in the kitten red nucleus. Exp Brain Res 51:45–56

    Article  CAS  PubMed  Google Scholar 

  • Viscomi MT, Molinari M (2014) Remote neurodegeneration: multiple actors for one play. Mol Neurobiol 50:368–389

    Article  CAS  PubMed  Google Scholar 

  • Viscomi MT, Florenzano F, Conversi D, Bernardi G, Molinari M (2004) Axotomy dependent purinergic and nitrergic co-expression. Neuroscience 123:393–404

    Article  CAS  PubMed  Google Scholar 

  • Viscomi MT, Florenzano F, Latini L, Amantea D, Bernardi G, Molinari M (2008a) Methylprednisolone treatment delays remote cell death after focal brain lesion. Neuroscience 154:1267–1282

    Article  CAS  PubMed  Google Scholar 

  • Viscomi MT, Latini L, Florenzano F, Bernardi G, Molinari M (2008b) Minocycline attenuates microglial activation but fails to mitigate degeneration in inferior olive and pontine nuclei after focal cerebellar lesion. Cerebellum 7:401–405

    Article  CAS  PubMed  Google Scholar 

  • Viscomi MT, Florenzano F, Latini L, Molinari M (2009a) Remote cell death in the cerebellar system. Cerebellum 8:184

    Article  CAS  PubMed  Google Scholar 

  • Viscomi MT, Oddi S, Latini L, Pasquariello N, Florenzano F, Bernardi G, Molinari M, Maccarrone M (2009b) Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J Neurosci 29:4564–4570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viscomi MT, Oddi S, Latini L, Bisicchia E, Maccarrone M, Molinari M (2010) The endocannabinoid system: a new entry in remote cell death mechanisms. Exp Neurol 224:56–65

    Article  CAS  PubMed  Google Scholar 

  • Viscomi MT, D’Amelio M, Cavallucci V, Latini L, Bisicchia E, Nazio F, Fanelli F, Maccarrone M, Moreno S, Cecconi F, Molinari M (2012) Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage. Autophagy 8:222–235

    Article  CAS  PubMed  Google Scholar 

  • Viscomi MT, Latini L, Bisicchia E, Sasso V, Molinari M (2015) Remote degeneration: insights from the hemicerebellectomy model. Cerebellum 14:15–18

    Article  PubMed  Google Scholar 

  • Zipp F, Aktas O (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29:518–527

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Viscomi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Viscomi, M.T., Leggio, M.G., Molinari, M. (2020). Hemicerebellectomy. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_70-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_70-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics