Skip to main content

Ataxic Syrian Hamster

  • Living reference work entry
  • First Online:
Book cover Handbook of the Cerebellum and Cerebellar Disorders
  • 90 Accesses

Abstract

A spontaneous genetic model of cerebellar ataxia in the Syrian hamster (Mesocricetus auratus) is described. Breeding data indicate that the ataxic condition is inherited as an autosomal recessive trait. The homozygous mutant hamsters are smaller in size than the unaffected littermates but have a normal appearance. Both homozygous males and females are fertile, and females are able to nurture litters. They develop a progressive but moderate ataxia beginning at 7 weeks of age; however, they live a normal life span. The major pathologic change in the ataxic mutants is significant cerebellar atrophy, including a rapid and substantial loss of Purkinje cells. Despite the obvious corticocerebellar atrophy, the general structure of the cerebellum is well retained. In addition, most other regions in the brain appear normal by light microscopy. The degeneration of cerebellar Purkinje cells starts after the third postnatal week in mutants and peaks around the fifth week; they then lose almost all Purkinje cells by around 18 months old. They also exhibit a slow and moderate reduction in granule-cell density, probably as a consequence of the primary loss of Purkinje cells. In the homozygous hamster brain, expression of Nna1, the gene responsible for the Purkinje cell degeneration (pcd) phenotype in mice, is suppressed. A phenotypic comparison of the ataxic hamsters with the pcd mutant mice suggests that influence of the causal allele in ataxic hamsters is considerably milder than those of most of the alleles found in the pcd mice. Thus, this ataxic Syrian hamster is a unique animal model of cerebellar ataxia with a severity distinct from any of the pcd phenotypes in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akita K, Arai S (2009) The ataxic Syrian hamster: an animal model homologous to the pcd mutant mouse? Cerebellum 8:202–210

    Article  Google Scholar 

  • Akita K, Arai S, Ohta T et al (2007) Suppressed Nna1 gene expression in the brain of ataxic Syrian hamsters. J Neurogenet 21:19–29

    Article  CAS  Google Scholar 

  • Arai S, Hanaya T, Sakurai T et al (2005) A novel phenomenon predicting the entry into a state of hibernation in Syrian hamsters (Mesocricetus auratus). J Vet Med Sci 67:215–217

    Article  Google Scholar 

  • Balk MW, Slater GM (1987) Care and management. In: van Hoosier GL, McPherson CW (eds) Laboratory hamsters. Academic, Orland

    Google Scholar 

  • Berezniuk I, Sironi J, Callaway MB et al (2010) CCP1/Nna1 functions in protein turnover in mouse brain: implication for cell death in Purkinje cell degeneration mice. FASEB J 24:1813–1823

    Article  CAS  Google Scholar 

  • Chakrabarti L, Neal JT, Miles M et al (2006) The Purkinje cell degeneration 5 J mutation is a single amino acid insertion that destabilizes Nna1 protein. Mamm Genome 17:103–110

    Article  CAS  Google Scholar 

  • Chakrabarti L, Eng J, Martinez RA (2008) The zinc-binding domain of Nna1 is required to prevent retinal photoreceptor loss and cerebellar ataxia in Purkinje cell degeneration (pcd) mice. Vision Res 48:1999–2005

    Article  CAS  Google Scholar 

  • Chakrabarti L, Eng J, Ivanov N et al (2009) Autophagy activation and enhanced mitophagy characterize the Purkinje cell of pcd mice prior to neuronal death. Mol Brain 2:24

    Article  Google Scholar 

  • Evidente VGH, Gwinn-Hardy KA, Caviness JN et al (2000) Hereditary ataxias. Mayo Clin Proc 75:475–490

    Article  CAS  Google Scholar 

  • Fernandez-Gonzalez A, La Spada AR, Treadaway J et al (2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295:1904–1906

    Article  CAS  Google Scholar 

  • Ghetti B, Norton J, Triarhou LC (1987) Nerve cell atrophy and loss in the inferior olivary complex of “Purkinje cell degeneration” mutant mice. J Comp Neurol 260:409–422

    Article  CAS  Google Scholar 

  • Greer CA, Shepherd GM (1982) Mitral cell degeneration and sensory function in the neurological mutant mouse Purkinje cell degeneration (PCD). Brain Res 235:156–161

    Article  CAS  Google Scholar 

  • Handel MA, Dawson M (1981) Effects on spermiogenesis in the mouse of a male sterile neurological mutation, Purkinje cell degeneration. Gamete Res 4:185–192

    Article  Google Scholar 

  • Harris A, Morgan JI, Pecot M et al (2000) Regenerating motor neurons express Nna1, a novel ATP/GTP-binding protein related to zinc carboxypeptidase. Mol Cell Neurosci 16:578–596

    Article  CAS  Google Scholar 

  • Heintz N, Zoghbi HY (2000) Insights from mouse models into the molecular basis of neurodegeneration. Annu Rev Physiol 62:779–802

    Article  CAS  Google Scholar 

  • Homburger F, Peterson J (1987) Experimental biology: genetic models in biomedical research. In: van Hoosier GL, McPherson CW (eds) Laboratory hamsters. Academic, Orland

    Google Scholar 

  • Kalinina E, Biswas R, Berezniuk I (2007) A novel subfamily of mouse cytosolic carboxypeptidases. FASEB J 21:836–850

    Article  CAS  Google Scholar 

  • La Vail MM, Blanks JC, Mullen RJ (1982) Retinal degeneration in the pcd cerebellar mutant mouse. I. Light microscopic and autoradiographic analysis. J Comp Neurol 212:217–230

    Article  Google Scholar 

  • Lalonde R, Strazielle C (2007) Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res 1140:51–74

    Article  CAS  Google Scholar 

  • Mullen RJ, Eicher EM, Sidman RL (1976) Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA 73:208–212

    Article  CAS  Google Scholar 

  • O’Gorman S, Sidman RL (1985) Degeneration of thalamic neurons in “Purkinje cell degeneration” mutant mice. I. Distribution of neuron loss. J Comp Neurol 234:277–297

    Article  Google Scholar 

  • Rodriguez de la Vega M, Sevilla RG, Hermoso A (2007) Nna1-like proteins are active metallocarboxypeptidases of a new and diverse M14 subfamily. FASEB J 20:851–865

    Article  Google Scholar 

  • Silver LM (1995) Reproduction and breeding. In: Silver LM (ed) Mouse genetics: concept and applications. Oxford University Press, New York

    Google Scholar 

  • Triarhou LC (1998) Rate of neuronal fallout in a transsynaptic cerebellar model. Brain Res Bull 47:219–222

    Article  CAS  Google Scholar 

  • Triarhou LC, Norton J, Alyea CJ et al (1985) A quantitative study of the granule cells in Purkinje cell degeneration (pcd) mutant. Ann Neurol 18:146

    Google Scholar 

  • Wang T, Morgan JI (2007) The Purkinje cell degeneration (pcd) mouse: an unexpected molecular link between neuronal degeneration and regeneration. Brain Res 1140:26–40

    Article  CAS  Google Scholar 

  • Wang T, Parris J, Li L et al (2006) The carboxypeptidase-like substrate-binding site in Nna1 is essential for the rescue of the Purkinje cell degeneration (pcd) phenotype. Mol Cell Neurosci 33:200–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Akita .

Editor information

Editors and Affiliations

Section Editor information

Additional information

The inbred strain of ataxic Syrian hamsters has been disrupted as of March 2020.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Akita, K. (2020). Ataxic Syrian Hamster. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_69-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_69-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics