Skip to main content

Tottering Mouse

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

The tottering mouse (tg/tg) results from a mutation in the gene that encodes for the Cav2.1 (P/Q-type) Ca2+ channel and is a model for the Cav2.1 channelopathy, episodic ataxia type 2 (EA2). EA2 patients suffer from periods of transient cerebellar dysfunction and other neurological deficits. The tg/tg mouse has a behavioral phenotype of episodic motor attacks, absence seizures, and mild ataxia. The cerebellum plays an essential role in the episodic dystonia, and numerous episodic symptoms can be triggered by stress, ethanol, and caffeine in both EA2 patients and tg/tg. While linked to mobilization of intracellular Ca2+ stores, how these triggers act to initiate the motor attacks is unknown. The morphological changes in tg/tg are rather modest, most notably an increase in noradrenergic innervation by the locus coeruleus. There is an upregulation of L-type Ca2+ channels in tg/tg that is strongly implicated in the episodic dystonia. The P/Q-type channel is expressed heavily in the cerebellum and widely involved with presynaptic neurotransmitter release in the nervous system. The mutation affects the pore-lining region of the P/Q-type channel and leads to a reduction in channel function. Synaptic transmission is reduced at several synapses, including the parallel fiber-Purkinje cell synapse. However, at many synapses compensation for the loss of P/Q-type channels by other voltage-gated Ca2+ channels mitigates the deficits in synaptic transmission in tg/tg. Irregular Purkinje cell simple spike firing is linked to Ca2+-activated K+ channels and the behavioral abnormalities. The recent observation of transient low-frequency oscillations in the cerebellum and cerebral cortex may provide a mechanism for the paroxysmal motor attacks. These oscillations are intrinsically generated, coupled to the episodic dystonia, and linked to the upregulation of L-type channels. Although much remains to be understood, the tg/tg mouse continues to be a highly useful murine model of a Cav2.1 channelopathy and episodic neurologic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott LC, Isaacs KR, Heckroth JA (1996) Co-localization of tyrosine hydroxylase and zebrin II immunoreactivities in Purkinje cells of the mutant mice, tottering and tottering/leaner. Neuroscience 71:461–475

    Article  CAS  PubMed  Google Scholar 

  • Abercrombie ED, Jacobs BL (1987) Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. J Neurosci 7:2837–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvina K, Khodakhah K (2010a) KCa channels as therapeutic targets in episodic ataxia type-2. J Neurosci 30:7249–7257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvina K, Khodakhah K (2010b) The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci 30:7258–7268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aumann TD (2002) Cerebello-thalamic synapses and motor adaptation. Cerebellum 1:69–77

    Article  CAS  PubMed  Google Scholar 

  • Austin MC, Schultzberg M, Abbott LC, Montpied P, Evers JR, Paul SM, Crawley JN (1992) Expression of tyrosine hydroxylase in cerebellar Purkinje neurons of the mutant tottering and leaner mouse. Brain Res Mol Brain Res 15:227–240

    Article  CAS  PubMed  Google Scholar 

  • Ayata C, Shimizu-Sasamata M, Lo EH, Noebels JL, Moskowitz MA (2000) Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the alpha1A subunit of P/Q type calcium channels. Neuroscience 95:639–645

    Article  CAS  PubMed  Google Scholar 

  • Baloh RW, Yue Q, Furman JM, Nelson SF (1997) Familial episodic ataxia: clinical heterogeneity in four families linked to chromosome 19p. Ann Neurol 41:8–16

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW (2008) Noradrenergic modulation of arousal. Brain Res Rev 58:1–17

    Article  CAS  PubMed  Google Scholar 

  • Caddick SJ, Wang C, Fletcher CF, Jenkins NA, Copeland NG, Hosford DA (1999) Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1a(tg)) mouse thalami. J Neurophysiol 81:2066–2074

    Article  CAS  PubMed  Google Scholar 

  • Calandriello L, Veneziano L, Francia A, Sabbadini G, Colonnese C, Mantuano E, Jodice C, Trettel F, Viviani P, Manfredi M, Frontali M (1997) Acetazolamide-responsive episodic ataxia in an Italian family refines gene mapping on chromosome 19p13. Brain 120(Pt 5):805–812

    Article  PubMed  Google Scholar 

  • Campbell DB, Hess EJ (1998) Cerebellar circuitry is activated during convulsive episodes in the tottering (tg/tg) mutant mouse. Neuroscience 85:773–783

    Article  CAS  PubMed  Google Scholar 

  • Campbell DB, Hess EJ (1999) L-type calcium channels contribute to the tottering mouse dystonic episodes. Mol Pharmacol 55:23–31

    Article  CAS  PubMed  Google Scholar 

  • Campbell DB, North JB, Hess EJ (1999) Tottering mouse motor dysfunction is abolished on the Purkinje cell degeneration (pcd) mutant background. Exp Neurol 160:268–278

    Article  CAS  PubMed  Google Scholar 

  • Carter AG, Vogt KE, Foster KA, Regehr WG (2002) Assessing the role of calcium-induced calcium release in short-term presynaptic plasticity at excitatory central synapses. J Neurosci 22:21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catterall WA (1998) Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 24:307–323

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Popa LS, Wang X, Gao W, Barnes J, Hendrix CM, Hess EJ, Ebner TJ (2009) Low frequency oscillations in the cerebellar cortex of the tottering mouse. J Neurophysiol 101:234–245

    Article  PubMed  Google Scholar 

  • Cheong E, Shin HS (2014) T-type Ca2+ channels in absence epilepsy. Pflugers Arch 466:719–734

    Article  CAS  PubMed  Google Scholar 

  • Cicale M, Ambesi-Impiombato A, Cimini V, Fiore G, Muscettola G, Abbott LC, de BA (2002) Decreased gene expression of calretinin and ryanodine receptor type 1 in tottering mice. Brain Res Bull 59:53–58

    Article  CAS  PubMed  Google Scholar 

  • Cramer SW, Popa LS, Carter RE, Chen G, Ebner TJ (2015) Abnormal excitability and episodic low frequency oscillation in the cerebral cortex of the tottering mouse. J Neurosci 35:5664–5679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denier C, Ducros A, Vahedi K, Joutel A, Thierry P, Ritz A, Castelnovo G, Deonna T, Gerard P, Devoize JL, Gayou A, Perrouty B, Soisson T, Autret A, Warter JM, Vighetto A, van Bogaert P, Alamowitch S, Roullet E, Tournier-Lasserve E (1999) High prevalence of CACNA1A truncations and broader clinical spectrum in episodic ataxia type 2. Neurology 52:1816–1821

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Sugimori M, Llinas R (1995) Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 92:8279–8282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducros A, Denier C, Joutel A, Cecillon M, Lescoat C, Vahedi K, Darcel F, Vicaut E, Bousser MG, Tournier-Lasserve E (2001) The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 345:17–24

    Article  CAS  PubMed  Google Scholar 

  • Edgerton JR, Reinhart PH (2003) Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol 548:53–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson MA, Haburcak M, Smukler L, Dunlap K (2007) Altered functional expression of Purkinje cell calcium channels precedes motor dysfunction in tottering mice. Neuroscience 150:547–555

    Article  CAS  PubMed  Google Scholar 

  • Feil K, Claassen J, Bardins S, Teufel J, Krafczyk S, Schneider E, Schniepp R, Jahn K, Kalla R, Strupp M (2013) Effect of chlorzoxazone in patients with downbeat nystagmus: a pilot trial. Neurology 81:1152–1158

    Article  CAS  PubMed  Google Scholar 

  • Finch EA, Augustine GJ (1998) Local calcium signaling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396:753–756

    Article  CAS  PubMed  Google Scholar 

  • Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617

    Article  CAS  PubMed  Google Scholar 

  • Fletcher CF, Tottene A, Lennon VA, Wilson SM, Dubel SJ, Paylor R, Hosford DA, Tessarollo L, McEnery MW, Pietrobon D, Copeland NG, Jenkins NA (2001) Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity. FASEB J 15:1288–1290

    Article  CAS  PubMed  Google Scholar 

  • Fogerson PM, Huguenard JR (2016) Tapping the brakes: cellular and synaptic mechanisms that regulate thalamic oscillations. Neuron 92:687–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fureman BE, Hess EJ (2005) Noradrenergic blockade prevents attacks in a model of episodic dysfunction caused by a channelopathy. Neurobiol Dis 20:227–232

    Article  CAS  PubMed  Google Scholar 

  • Fureman BE, Jinnah HA, Hess EJ (2002) Triggers of paroxysmal dyskinesia in the calcium channel mouse mutant tottering. Pharmacol Biochem Behav 73:631–637

    Article  CAS  PubMed  Google Scholar 

  • Glasauer S, Rossert C, Strupp M (2011) The role of regularity and synchrony of cerebellar Purkinje cells for pathological nystagmus. Ann N Y Acad Sci 1233:162–167

    Article  PubMed  Google Scholar 

  • Green MC, Sidman RL (1962) Tottering – a neuromuscular mutation in the mouse and its linkage with oligosyndacylism. J Hered 53:233–237

    Article  CAS  PubMed  Google Scholar 

  • Griggs RC, Moxley RT III, Lafrance RA, McQuillen J (1978) Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 28:1259–1264

    Article  CAS  PubMed  Google Scholar 

  • Guida S, Trettel F, Pagnutti S, Mantuano E, Tottene A, Veneziano L, Fellin T, Spadaro M, Stauderman K, Williams M, Volsen S, Ophoff R, Frants R, Jodice C, Frontali M, Pietrobon D (2001) Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. Am J Hum Genet 68:759–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann J, Konnerth A (2005) Determinants of postsynaptic Ca2+ signaling in Purkinje neurons. Cell Calcium 37:459–466

    Article  CAS  PubMed  Google Scholar 

  • Hawkes R, Herrup K (1995) Aldolase C/zebrin II and the regionalization of the cerebellum. J Mol Neurosci 6:147–158

    Article  CAS  PubMed  Google Scholar 

  • Heller AH, Dichter MA, Sidman RL (1983) Anticonvulsant sensitivity of absence seizures in the tottering mutant mouse. Epilepsia 24:25–34

    Article  CAS  PubMed  Google Scholar 

  • Herrup K, Wilczynski SL (1982) Cerebellar cell degeneration in the leaner mutant mouse. Neuroscience 7:2185–2196

    Article  CAS  PubMed  Google Scholar 

  • Hess EJ, Wilson MC (1991) Tottering and leaner mutations perturb transient developmental expression of tyrosine hydroxylase in embryologically distinct Purkinje cells. Neuron 6:123–132

    Article  CAS  PubMed  Google Scholar 

  • Hirono M, Obata K (2006) Alpha-adrenoceptive dual modulation of inhibitory GABAergic inputs to Purkinje cells in the mouse cerebellum. J Neurophysiol 95:700–708

    Article  CAS  PubMed  Google Scholar 

  • Hoebeek FE, Stahl JS, van Alphen AM, Schonewille M, Luo C, Rutteman M, van den Maagdenberg AM, Molenaar PC, Goossens HH, Frens MA, De Zeeuw CI (2005) Increased noise level of purkinje cell activities minimizes impact of their modulation during sensorimotor control. Neuron 45:953–965

    Article  CAS  PubMed  Google Scholar 

  • Hoebeek FE, Khosrovani S, Witter L, De Zeeuw CI (2008) Purkinje cell input to cerebellar nuclei in tottering: ultrastructure and physiology. Cerebellum 7:547–558

    Article  PubMed  Google Scholar 

  • Hoffer BJ, Siggins GR, Oliver AP, Bloom FE (1973) Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence of noradrenergic central inhibition. J Pharmacol Exp Ther 184:553–569

    CAS  PubMed  Google Scholar 

  • Isaacs KR, Abbott LC (1995) Cerebellar volume decreases in the tottering mouse are specific to the molecular layer. Brain Res Bull 36:309–314

    Article  CAS  PubMed  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki S, Momiyama A, Uchitel OD, Takahashi T (2000) Developmental changes in calcium channel types mediating central synaptic transmission. J Neurosci 20:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jen J, Wan J, Graves M, Yu H, Mock AF, Coulin CJ, Kim G, Yue Q, Papazian DM, Baloh RW (2001) Loss-of-function EA2 mutations are associated with impaired neuromuscular transmission. Neurology 57:1843–1848

    Article  CAS  PubMed  Google Scholar 

  • Jen J, Kim GW, Baloh RW (2004) Clinical spectrum of episodic ataxia type 2. Neurology 62:17–22

    Article  CAS  PubMed  Google Scholar 

  • Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW (2007) Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130:2484–2493

    Article  CAS  PubMed  Google Scholar 

  • Jorntell H, Hansel C (2006) Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 52:227–238

    Article  PubMed  CAS  Google Scholar 

  • Jouvenceau A, Eunson LH, Spauschus A, Ramesh V, Zuberi SM, Kullmann DM, Hanna MG (2001) Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 358:801–807

    Article  CAS  PubMed  Google Scholar 

  • Jun K, Piedras-Renteria ES, Smith SM, Wheeler DB, Lee SB, Lee TG, Chin H, Adams ME, Scheller RH, Tsien RW, Shin HS (1999) Ablation of P/Q-type ca(2+) channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha(1A)-subunit. Proc Natl Acad Sci U S A 96:15245–15250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaja S, Hann V, Payne HL, Thompson CL (2007a) Aberrant cerebellar granule cell-specific GABA(A) receptor expression in the epileptic and ataxic mouse mutant, tottering. Neuroscience 148:115–125

    Article  CAS  PubMed  Google Scholar 

  • Kaja S, van d V, Broos LA, Frants RR, Ferrari MD, van den Maagdenberg AM, Plomp JJ (2007b) Characterization of acetylcholine release and the compensatory contribution of non-Ca(v)2.1 channels at motor nerve terminals of leaner Ca(v)2.1-mutant mice. Neuroscience 144:1278–1287

    Article  CAS  PubMed  Google Scholar 

  • Kalla R, Glasauer S, Buttner U, Brandt T, Strupp M (2007) 4-aminopyridine restores vertical and horizontal neural integrator function in downbeat nystagmus. Brain 130:2441–2451

    Article  PubMed  Google Scholar 

  • Kano M, Garaschuk O, Verkhratsky A, Konnerth A (1995) Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones. J Physiol 487(Pt 1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan BJ, Seyfried TN, Glaser GH (1979) Spontaneous polyspike discharges in an epileptic mutant mouse (tottering). Exp Neurol 66:577–586

    Article  CAS  PubMed  Google Scholar 

  • Kinder S, Ossig C, Wienecke M, Beyer A, von der HM, Storch A, Smitka M (2015) Novel frameshift mutation in the CACNA1A gene causing a mixed phenotype of episodic ataxia and familiar hemiplegic migraine. Eur J Paediatr Neurol 19:72–74

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Marty A (1997) Protein kinase A-mediated enhancement of miniature IPSC frequency by noradrenaline in rat cerebellar stellate cells. J Physiol 498:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konnerth A, Llano I, Armstrong CM (1990) Synaptic currents in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 87:2662–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostopoulos GK (2001) Involvement of the thalamocortical system in epileptic loss of consciousness. Epilepsia 42(Suppl 3):13–19

    Article  PubMed  Google Scholar 

  • Kramer PL, Yue Q, Gancher ST, Nutt JG, Baloh R, Smith E, Browne D, Bussey K, Lovrien E, Nelson S (1995) A locus for the nystagmus-associated form of episodic ataxia maps to an 11-cM region on chromosome 19p. Am J Hum Genet 57:182–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kros L, Eelkman Rooda OH, Spanke JK, Alva P, van Dongen MN, Karapatis A, Tolner EA, Strydis C, Davey N, Winkelman BH, Negrello M, Serdijn WA, Steuber V, van den Maagdenberg AM, De Zeeuw CI, Hoebeek FE (2015) Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol 77:1027–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulik A, Haentzsch A, Luckermann M, Reichelt W, Ballanyi K (1999) Neuron-glia signaling via alpha(1) adrenoceptor-mediated Ca(2+) release in Bergmann glial cells in situ. J Neurosci 19:8401–8408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kullmann DM (2002) The neuronal channelopathies. Brain 125:1177–1195

    Article  PubMed  Google Scholar 

  • Levitt P (1988) Normal pharmacological and morphometric parameters in the noradrenergic hyperinnervated mutant mouse, “tottering”. Cell Tissue Res 252:175–180

    Article  CAS  PubMed  Google Scholar 

  • Levitt P, Noebels JL (1981) Mutant mouse tottering: selective increase of locus ceruleus axons in a defined single-locus mutation. Proc Natl Acad Sci U S A 78:4630–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt P, Lau C, Pylypiw A, Ross LL (1987) Central adrenergic receptor changes in the inherited noradrenergic hyperinnervated mutant mouse tottering. Brain Res 418:174–177

    Article  CAS  PubMed  Google Scholar 

  • Lonchamp E, Dupont JL, Doussau F, Shin HS, Poulain B, Bossu JL (2009) Deletion of Cav2.1(alpha1(A)) subunit of Ca2+-channels impairs synaptic GABA and glutamate release in the mouse cerebellar cortex in cultured slices. Eur J Neurosci 30:2293–2307

    Article  PubMed  Google Scholar 

  • Maejima T, Wollenweber P, Teusner LU, Noebels JL, Herlitze S, Mark MD (2013) Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice. J Neurosci 33:5162–5174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mark MD, Maejima T, Kuckelsberg D, Yoo JW, Hyde RA, Shah V, Gutierrez D, Moreno RL, Kruse W, Noebels JL, Herlitze S (2011) Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1a mutations. J Neurosci 31:4311–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita K, Wakamori M, Rhyu IJ, Arii T, Oda S, Mori Y, Imoto K (2002) Bidirectional alterations in cerebellar synaptic transmission of tottering and rolling Ca2+ channel mutant mice. J Neurosci 22:4388–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier H, MacPike AD (1971) Three syndromes produced by two mutant genes in the mouse. Clinical, pathological, and ultrastructural bases of tottering, leaner, and heterozygous mice. J Hered 62:297–302

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Zwingman TA, Wakamori M, Lutz CM, Cook SA, Hosford DA, Herrup K, Fletcher CF, Mori Y, Frankel WN, Letts VA (2008) Two novel alleles of tottering with distinct Ca(v)2.1 calcium channel neuropathologies. Neuroscience 155:31–44

    Article  CAS  PubMed  Google Scholar 

  • Mintz IM, Adams ME, Bean BP (1992) P-type calcium channels in rat central and peripheral neurons. Neuron 9:85–95

    Article  CAS  PubMed  Google Scholar 

  • Mintz IM, Sabatini BL, Regehr WG (1995) Calcium control of transmitter release at a cerebellar synapse. Neuron 15:675–688

    Article  CAS  PubMed  Google Scholar 

  • Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N, Mori E, Copeland NG, Jenkins NA, Matsushita K, Matsuyama Z, Imoto K (2000) Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)). J Neurosci 20:5654–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA (2008) The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain 131:2499–2509

    Article  PubMed  PubMed Central  Google Scholar 

  • Noebels JL (1984) A single gene error of noradrenergic axon growth synchronizes central neurones. Nature 310:409–411

    Article  CAS  PubMed  Google Scholar 

  • Noebels JL, Sidman RL (1979) Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204:1334–1336

    Article  CAS  PubMed  Google Scholar 

  • Olson L, Fuxe K (1971) On the projections from locus coeruleus norepinephrine neurones: the cerebellar projections. Brain Res 28:165–171

    Article  CAS  PubMed  Google Scholar 

  • Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552

    Article  CAS  PubMed  Google Scholar 

  • Pardo NE, Hajela RK, Atchison WD (2006) Acetylcholine release at neuromuscular junctions of adult tottering mice is controlled by N-(cav2.2) and R-type (cav2.3) but not L-type (cav1.2) Ca2+ channels. J Pharmacol Exp Ther 319:1009–1020

    Article  CAS  PubMed  Google Scholar 

  • Perkel DJ, Hestrin S, Sah P, Nicoll RA (1990) Excitatory synaptic currents in Purkinje cells. Proc Biol Sci 241:116–121

    Article  CAS  PubMed  Google Scholar 

  • Pickel VM, Segal M, Bloom FE (1974) A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J Comp Neurol 155:15–42

    Article  CAS  PubMed  Google Scholar 

  • Pietrobon D (2010) CaV2.1 channelopathies. Pflugers Arch 460:375–393

    Article  CAS  PubMed  Google Scholar 

  • Plomp JJ, Vergouwe MN, van den Maagdenberg AM, Ferrari MD, Frants RR, Molenaar PC (2000) Abnormal transmitter release at neuromuscular junctions of mice carrying the tottering alpha(1A) Ca(2+) channel mutation. Brain 123 Pt 3:463–471

    Article  PubMed  Google Scholar 

  • Ptacek LJ, Fu YH (2001) Channelopathies: episodic disorders of the nervous system. Epilepsia 42(Suppl 5):35–43

    Article  PubMed  Google Scholar 

  • Qian J, Noebels JL (2000) Presynaptic Ca(2+) influx at a mouse central synapse with Ca(2+) channel subunit mutations. J Neurosci 20:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raike RS, Jinnah HA, Hess EJ (2005) Animal models of generalized dystonia. NeuroRx 2:504–512

    Article  PubMed  PubMed Central  Google Scholar 

  • Raike RS, Pizoli CE, Weisz C, van den Maagdenberg AM, Jinnah HA, Hess EJ (2012) Limited regional cerebellar dysfunction induces focal dystonia in mice. Neurobiol Dis

    Google Scholar 

  • Raike RS, Weisz C, Hoebeek FE, Terzi MC, De Zeeuw CI, van den Maagdenberg AM, Jinnah HA, Hess EJ (2013) Stress, caffeine and ethanol trigger transient neurological dysfunction through shared mechanisms in a mouse calcium channelopathy. Neurobiol Dis 50:151–159

    Article  CAS  PubMed  Google Scholar 

  • Rajakulendran S, Graves TD, Labrum RW, Kotzadimitriou D, Eunson L, Davis MB, Davies R, Wood NW, Kullmann DM, Hanna MG, Schorge S (2010) Genetic and functional characterisation of the P/Q calcium channel in episodic ataxia with epilepsy. J Physiol 588:1905–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall A, Tsien RW (1995) Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 15:2995–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinert KC, Dunbar RL, Gao W, Chen G, Ebner TJ (2004) Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo. J Neurophysiol 92:199–211

    Article  CAS  PubMed  Google Scholar 

  • Reinert KC, Gao W, Chen G, Ebner TJ (2007) Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo. J Neurosci Res 85:3221–3232

    Article  CAS  PubMed  Google Scholar 

  • Rhyu IJ, Abbott LC, Walker DB, Sotelo C (1999) An ultrastructural study of granule cell/Purkinje cell synapses in tottering (tg/tg), leaner (tg(la)/tg(la)) and compound heterozygous tottering/leaner (tg/tg(la)) mice. Neuroscience 90:717–728

    Article  CAS  PubMed  Google Scholar 

  • Rhyu IJ, Nahm SS, Hwang SJ, Kim H, Suh YS, Oda SI, Frank TC, Abbott LC (2003) Altered neuronal nitric oxide synthase expression in the cerebellum of calcium channel mutant mice. Brain Res 977:129–140

    Article  CAS  PubMed  Google Scholar 

  • Ryan DP, Ptacek LJ (2010) Episodic neurological channelopathies. Neuron 68:282–292

    Article  CAS  PubMed  Google Scholar 

  • Saitow F, Satake S, Yamada J, Konishi S (2000) Beta-adrenergic receptor-mediated presynaptic facilitation of inhibitory GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. J Neurophysiol 84:2016–2025

    Article  CAS  PubMed  Google Scholar 

  • Sasaki S, Huda K, Inoue T, Miyata M, Imoto K (2006) Impaired feedforward inhibition of the thalamocortical projection in epileptic Ca2+ channel mutant mice, tottering. J Neurosci 26:3056–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholle HC, Jinnah HA, Arnold D, Biedermann FH, Faenger B, Grassme R, Hess EJ, Schumann NP (2010) Kinematic and electromyographic tools for characterizing movement disorders in mice. Mov Disord 25:265–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Seyfried TN, Glaser GH (1985) A review of mouse mutants as genetic models of epilepsy. Epilepsia 26:143–150

    Article  CAS  PubMed  Google Scholar 

  • Seyfried TN, Itoh T, Glaser GH, Miyazawa N, Yu RK (1981) Cerebellar gangliosides and phospholipids in mutant mice with ataxia and epilepsy: the tottering/leaner syndrome. Brain Res 216:429–436

    Article  CAS  PubMed  Google Scholar 

  • Shakkottai VG, Chou CH, Oddo S, Sailer CA, Knaus HG, Gutman GA, Barish ME, LaFerla FM, Chandy KG (2004) Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J Clin Invest 113:582–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakkottai VG et al (2017) Current opinions and areas of consensus on the role of the cerebellum in dystonia. Cerebellum 16:577–594

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirley TL, Rao LM, Hess EJ, Jinnah HA (2008) Paroxysmal dyskinesias in mice. Mov Disord 23:259–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Sintas C, Carreno O, Fernandez-Castillo N, Corominas R, Vila-Pueyo M, Toma C, Cuenca-Leon E, Barroeta I, Roig C, Volpini V, Macaya A, Cormand B (2017) Mutation spectrum in the CACNA1A gene in 49 patients with episodic ataxia. Sci Rep 7:2514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song I, Kim D, Choi S, Sun M, Kim Y, Shin HS (2004) Role of the alpha1G T-type calcium channel in spontaneous absence seizures in mutant mice. J Neurosci 24:5249–5257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spacey SD, Hildebrand ME, Materek LA, Bird TD, Snutch TP (2004) Functional implications of a novel EA2 mutation in the P/Q-type calcium channel. Ann Neurol 56:213–220

    Article  CAS  PubMed  Google Scholar 

  • Spacey SD, Materek LA, Szczygielski BI, Bird TD (2005) Two novel CACNA1A gene mutations associated with episodic ataxia type 2 and interictal dystonia. Arch Neurol 62:314–316

    Article  PubMed  Google Scholar 

  • Stahl JS, Thumser ZC (2013) 4-aminopyridine does not enhance flocculus function in tottering, a mouse model of vestibulocerebellar dysfunction and ataxia. PLoS One 8:e57895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl JS, Thumser ZC (2014) Flocculus Purkinje cell signals in mouse Cacna1a calcium channel mutants of escalating severity; an investigation of the role of firing irregularity in ataxia. J Neurophysiol 112:2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl JS, James RA, Oommen BS, Hoebeek FE, De Zeeuw CI (2006) Eye movements of the murine P/Q calcium channel mutant tottering, and the impact of aging. J Neurophysiol 95:1588–1607

    Article  PubMed  Google Scholar 

  • Stephens GJ, Morris NP, Fyffe RE, Robertson B (2001) The Cav2.1/alpha1A (P/Q-type) voltage-dependent calcium channel mediates inhibitory neurotransmission onto mouse cerebellar Purkinje cells. Eur J Neurosci 13:1902–1912

    Article  CAS  PubMed  Google Scholar 

  • Steriade M (1995) Two channels in the cerebellothalamocortical system. J Comp Neurol 354:57–70

    Article  CAS  PubMed  Google Scholar 

  • Strupp M, Kalla R, Dichgans M, Freilinger T, Glasauer S, Brandt T (2004) Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 62:1623–1625

    Article  CAS  PubMed  Google Scholar 

  • Strupp M, Zwergal A, Brandt T (2007) Episodic ataxia type 2. Neurotherapeutics 4:267–273

    Article  CAS  PubMed  Google Scholar 

  • Strupp M, Kalla R, Glasauer S, Wagner J, Hufner K, Jahn K, Brandt T (2008) Aminopyridines for the treatment of cerebellar and ocular motor disorders. Prog Brain Res 171:535–541

    Article  PubMed  Google Scholar 

  • Strupp M, Kalla R, Claassen J, Adrion C, Mansmann U, Klopstock T, Freilinger T, Neugebauer H, Spiegel R, Dichgans M, Lehmann-Horn F, Jurkat-Rott K, Brandt T, Jen JC, Jahn K (2011) A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 77:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sved AF, Cano G, Passerin AM, Rabin BS (2002) The locus coeruleus, Barrington’s nucleus, and neural circuits of stress. Physiol Behav 77:737–742

    Article  CAS  PubMed  Google Scholar 

  • Syapin PJ (1983) Inhibition of pentylenetetrazol induced genetically-determined stereotypic convulsions in tottering mutant mice by diazepam. Pharmacol Biochem Behav 18:389–394

    Article  CAS  PubMed  Google Scholar 

  • Tehrani MH, Barnes EM Jr (1990) Basal and drug-induced cAMP levels in cortical slices from the tottering mouse. Epilepsy Res 7:205–209

    Article  CAS  PubMed  Google Scholar 

  • Tehrani MH, Barnes EM Jr (1995) Reduced function of gamma-aminobutyric acid a receptors in tottering mouse brain: role of cAMP-dependent protein kinase. Epilepsy Res 22:13–21

    Article  CAS  PubMed  Google Scholar 

  • Todorov B, Kros L, Shyti R, Plak P, Haasdijk ED, Raike RS, Frants RR, Hess EJ, Hoebeek FE, De Zeeuw CI, van den Maagdenberg AM (2012) Purkinje cell-specific ablation of ca(V)2.1 channels is sufficient to cause cerebellar ataxia in mice. Cerebellum 11:246–258

    Article  CAS  PubMed  Google Scholar 

  • Tsuji S, Meier H (1971) Evidence for allelism of leaner and tottering in the mouse. Genet Res 17:83–88

    Article  CAS  PubMed  Google Scholar 

  • Usowicz MM, Sugimori M, Cherksey B, Llinas R (1992) P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells. Neuron 9:1185–1199

    Article  CAS  PubMed  Google Scholar 

  • Vighetto A, Froment JC, Trillet M, Aimard G (1988) Magnetic resonance imaging in familial paroxysmal ataxia. Arch Neurol 45:547–549

    Article  CAS  PubMed  Google Scholar 

  • von Brederlow B, Hahn AF, Koopman WJ, Ebers GC, Bulman DE (1995) Mapping the gene for acetazolamide responsive hereditary paryoxysmal cerebellar ataxia to chromosome 19p. Hum Mol Genet 4:279–284

    Article  Google Scholar 

  • Wakamori M, Yamazaki K, Matsunodaira H, Teramoto T, Tanaka I, Niidome T, Sawada K, Nishizawa Y, Sekiguchi N, Mori E, Mori Y, Imoto K (1998) Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J Biol Chem 273:34857–34867

    Article  CAS  PubMed  Google Scholar 

  • Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K (2006) Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 9:389–397

    Article  CAS  PubMed  Google Scholar 

  • Wappl E, Koschak A, Poteser M, Sinnegger MJ, Walter D, Eberhart A, Groschner K, Glossmann H, Kraus RL, Grabner M, Striessnig J (2002) Functional consequences of P/Q-type Ca2+ channel Cav2.1 missense mutations associated with episodic ataxia type 2 and progressive ataxia. J Biol Chem 277:6960–6966

    Article  CAS  PubMed  Google Scholar 

  • Weisz CJ, Raike RS, Soria-Jasso LE, Hess EJ (2005) Potassium channel blockers inhibit the triggers of attacks in the calcium channel mouse mutant tottering. J Neurosci 25:4141–4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 15:6403–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Womack MD, Khodakhah K (2002) Characterization of large conductance Ca2+-activated K+ channels in cerebellar Purkinje neurons. Eur J Neurosci 16:1214–1222

    Article  PubMed  Google Scholar 

  • Womack MD, Khodakhah K (2003) Somatic and dendritic small-conductance calcium-activated potassium channels regulate the output of cerebellar purkinje neurons. J Neurosci 23:2600–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Womack MD, Chevez C, Khodakhah K (2004) Calcium-activated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons. J Neurosci 24:8818–8822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward DJ, Moises HC, Waterhouse BD, Hoffer BJ, Freedman R (1979) Modulatory actions of norepinephrine in the central nervous system. Fed Proc 38:2109–2116

    CAS  PubMed  Google Scholar 

  • Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19:726–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Q, Jen JC, Nelson SF, Baloh RW (1997) Progressive ataxia due to a missense mutation in a calcium-channel gene. Am J Hum Genet 61:1078–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou YD, Turner TJ, Dunlap K (2003) Enhanced G protein-dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca2+ channel-mutant mouse, tottering. J Physiol 547:497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwingman TA, Neumann PE, Noebels JL, Herrup K (2001) Rocker is a new variant of the voltage-dependent calcium channel gene Cacna1a. J Neurosci 21:1169–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Ebner .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ebner, T.J., Carter, R.E., Chen, G. (2020). Tottering Mouse. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_67-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_67-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics