Skip to main content

Specification of Cerebellar and Precerebellar Neurons

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders
  • 300 Accesses

Abstract

The cerebellum is thought to participate in the regulation of movement and is comprised of various types of neurons in the cerebellar cortex and nuclei. Each type of neurons has morphologically, immunohistochemically, and electrophysiologically distinct characteristics. In addition, there are two precerebellar afferent systems, the mossy fiber (MF) system and the climbing fiber (CF) system. MF neurons are located in various nuclei throughout the brainstem and send their axons to cerebellar granule cells, whereas CF neurons reside exclusively in the inferior olivary nucleus (ION) and project to Purkinje cells. Recently developed genetic lineage-tracing methods as well as gene-transfer technologies have accelerated the studies on the molecular machinery to specify neuronal subtypes in the cerebellum and the precerebellar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altman J, Bayer SA (1987) Development of the precerebellar nuclei in the rat. I–IV. J Comp Neurol 257:477–552

    Article  CAS  PubMed  Google Scholar 

  • Ambrosiani J, Armengol JA, Martinez S, Puelles L (1996) The avian inferior olive derives from the alar neuroepithelium of the rhombomeres 7 and 8: an analysis by using chick-quail chimeric embryos. Neuroreport 7:1285–1288

    Article  CAS  PubMed  Google Scholar 

  • Aruga J, Minowa O, Yaginuma H, Kuno J, Nagai T, Noda T, Mikoshiba K (1998) Mouse Zic1 is involved in cerebellar development. J Neurosci 18:284–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batini C, Compoint C, Buisseret-Delmas C, Daniel H, Guegan M (1992) Cerebellar nuclei and the nucleocortical projections in the rat: retrograde tracing coupled to GABA and glutamate immunohistochemistry. J Comp Neurol 315:74–84

    Article  CAS  PubMed  Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172

    Article  CAS  PubMed  Google Scholar 

  • Ben-Arie N, Hassan BA, Bermingham NA, Malicki DM, Armstrong D, Matzuk M, Bellen HJ, Zoghbi HY (2000) Functional conservation of atonal and Math1 in the CNS and PNS. Development 127:1039–1048

    CAS  PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422

    Article  CAS  PubMed  Google Scholar 

  • Bloch-Gallego E, Ezan F, Tessier-Lavigne M, Sotelo C (1999) Floor plate and netrin-1 are involved in the migration and survival of inferior olivary neurons. J Neurosci 19:4407–4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545

    Article  CAS  PubMed  Google Scholar 

  • Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14:91–100

    Article  PubMed  Google Scholar 

  • Carletti B, Grimaldi P, Magrassi L, Rossi F (2002) Specification of cerebellar progenitors after heterotopic-heterochronic transplantation to the embryonic CNS in vivo and in vitro. J Neurosci 22:7132–7146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan-Palay V, Palay SL, Brown JT, Van Itallie C (1977) Sagittal organization of olivocerebellar and reticulocerebellar projections: autoradiographic studies with 35S-methionine. Exp Brain Res 30:561–576

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov V, Millen KJ (2003) Development and malformations of the cerebellum in mice. Mol Genet Metab 80:54–65

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006) The roof plate regulates cerebellar cell-type specification and proliferation. Development 133:2793–2804

    Article  CAS  PubMed  Google Scholar 

  • Cramer KS, Fraser SE, Rubel EW (2000) Embryonic origins of auditory brain-stem nuclei in the chick hindbrain. Dev Biol 224:138–151

    Article  CAS  PubMed  Google Scholar 

  • De Luca A, Parmigiani E, Tosatto G, Martire S, Hoshino M, Buffor A, Leto K, Rossi F (2015) Exogenous Sonic Hedgehog modulates the pool of GABAergic interneurons during cerebellar development. Cerebellum 14:72–85

    Article  PubMed  CAS  Google Scholar 

  • De Zeeuw CI, Berrebi AS (1995) Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7:2322–2333

    Article  PubMed  Google Scholar 

  • Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–9195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farago AF, Awatramani RB, Dymecki SM (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Juan AH, Wang HA, Ko KD, Zare H, Sartorelli V (2016) Polycomb Ezh2 controls the fate of GABAergic neurons in the embryonic cerebellum. Development 143:1971–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming JT, He W, Hao C, Ketova T, Pan FC, Wright CC, Litingtung Y, Chaing C (2013) The Purkinje neuron act as a central regulator of spatially and functionally distinct cerebellar precursors. Dev Cell 27:278–292

    Article  CAS  PubMed  Google Scholar 

  • Flora A, Garcia JJ, Thaller C, Zoghbi HY (2007) The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors. Proc Natl Acad Sci U S A 104:15382–15387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiyama T, Yamada M, Terao M, Terashima T, Hioki H, Inoue YU, Inoue T, Masuyama N, Obata K, Yanagawa Y, Kawaguchi Y, Nabeshima Y, Hoshino M (2009) Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development 136:2049–2058

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi P, Parras C, Guillemot F, Rossi F, Wassef M (2009) Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum. Dev Biol 328:422–433

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Mikoshiba K (2003) Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci 23:11342–11351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatanaka Y, Zhu Y, Torigoe M, Kita Y, Murakami F (2016) From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. Proc Jpn Acad Ser B Phys Biol Sci 92:1–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoshino M (2006) Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhang Q, Song NN, Zhang L, Sun YL, Hu L, Chen JY, Zhu W, Li J, Ding YQ (2016) Lrp5/6 are required for cerebellar development and for suppressing TH expression in Purkinje cells via β-catenin. Mol Brain 9:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huard JM, Forster CC, Carter ML, Sicinski P, Ross ME (1999) Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development 126:1927–1935

    CAS  PubMed  Google Scholar 

  • Ivanova A, Yuasa S (1998) Neuronal migration and differentiation in the development of the mouse dorsal cochlear nucleus. Dev Neurosci 20:495–511

    Article  CAS  PubMed  Google Scholar 

  • Jankovski A, Rossi F, Sotelo C (1996) Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: evidence from heterochronic transplantations. Eur J Neurosci 8:2308–2319

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Jiang H, Xiao D, Zou M, Zhu J, Xiang M (2015) Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain 8:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju J, Liu Q, Zhang Y, Liu Y, Jiang M, Zhang L, He X, Peng C, Zheng T, Lu QR, Li H (2017) Olig2 regulates Purkinje cell generation in the early developing mouse cerebellum. Sci Rep 6:30711

    Article  CAS  Google Scholar 

  • Kawauchi D, Taniguchi H, Watanabe H, Saito T, Murakami F (2006) Direct visualization of nucleogenesis by precerebellar neurons: involvement of ventricle-directed, radial fibre-associated migration. Development 133:1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Kawauchi D, Hashimoto Y, Ogata T, Murakami F (2013) The control of precerebellar neuron migration by RNA-binding protein Csde1. Neuroscience 253:292–303

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Saragai S, Naito A, Ichio K, Kawauchi D, Murakami F (2015) Calm1 signaling pathway is essential for the migration of mouse precerebellar neurons. Development 142:375–384

    Article  CAS  PubMed  Google Scholar 

  • Kyriakopoulou K, de Diego I, Wassef M, Karagogeos D (2002) A combination of chain and neurophilic migration involving the adhesion molecule TAG-1 in the caudal medulla. Development 129:287–296

    CAS  PubMed  Google Scholar 

  • Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, Dymecki SM (2005) Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron 48:933–947

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Dietrich P, Jessell TM (2000) Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 403:734–740

    Article  CAS  PubMed  Google Scholar 

  • Leto K, Carletti B, Williams IM, Magrassi L, Rossi F (2006) Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci 26:11682–11694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, Rossi F (2009) Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci 29:7079–7091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Qiu F, Xu A, Price SM, Xiang M (2004) Barhl1 regulates migration and survival of cerebellar granule cells by controlling expression of the neurotrophin-3 gene. J Neurosci 24:3104–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Li H, Hu X, Yu L, Liu H, Han R, Colella R, Mower GD, Chen Y, Qiu M (2008) Control of precerebellar neuron development by Olig3 bHLH transcription factor. J Neurosci 28:10124–10133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundell TG, Zhou Q, Doughty ML (2009) Neurogenin1 expression in cell lineages of the cerebellar cortex in embryonic and postnatal mice. Dev Dyn 238:3310–3325

    Article  CAS  PubMed  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24

    Article  CAS  PubMed  Google Scholar 

  • Machold RP, Kittell DJ, Fishell GJ (2007) Antagonism between Notch and bone morphogenetic protein receptor signaling regulates neurogenesis in the cerebellar rhombic lip. Neural Dev 2:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maricich SM, Herrup K (1999) Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol 41:281–294

    Article  CAS  PubMed  Google Scholar 

  • Mathis L, Nicolas JF (2003) Progressive restriction of cell fates in relation to neuroepithelial cell mingling in the mouse cerebellum. Dev Biol 258:20–31

    Article  CAS  PubMed  Google Scholar 

  • Mathis L, Bonnerot C, Puelles L, Nicolas JF (1997) Retrospective clonal analysis of the cerebellum using genetic laacZ/lacZ mouse mosaics. Development 124:4089–4104

    CAS  PubMed  Google Scholar 

  • Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM (1996) The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development 122:3785–3797

    CAS  PubMed  Google Scholar 

  • Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769

    Article  CAS  PubMed  Google Scholar 

  • Minaki Y, Nakatani T, Mizuhara E, Inoue T, Ono Y (2008) Identification of a novel transcriptional corepressor, Corl2, as a cerebellar Purkinje cell-selective marker. Gene Expr Patterns 8:418–423

    Article  CAS  PubMed  Google Scholar 

  • Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, Sasai Y, Ono Y (2010) Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev Biol 338:202–214

    Article  CAS  PubMed  Google Scholar 

  • Morales D, Hatten ME (2006) Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. J Neurosci 26:12226–12236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muguruma K, Nishiyama A, Ono Y, Miyawaki H, Mizuhara E, Hori S, Kakizuka A, Obata K, Yanagawa Y, Hirano T, Sasai Y (2010) Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat Neurosci 13:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Nichols DH, Bruce LL (2006) Migratory routes and fates of cells transcribing the Wnt-1 gene in the murine hindbrain. Dev Dyn 235:285–300

    Article  CAS  PubMed  Google Scholar 

  • Nishida K, Nakayama K, Yoshimura S, Murakami F (2011) Role of Neph2 in pontine nuclei formation in the developing hindbrain. Mol Cell Neurosci 46:662–670

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Keino-Masu K, Masu M (2007) Migration and nucleogenesis of mouse precerebellar neurons visualized by in utero electroporation of a green fluorescent protein gene. Neurosci Res 57:40–49

    Article  CAS  PubMed  Google Scholar 

  • Owa T, Taya S, Miyashita S, Yamashita M, Adachi T, Yamada K, Yokoyama M, Aida S, Nishioka T, Yukiko UI, Goitsuka R, Nakamura T, Inoue T, Kaibuchi K, Hoshino M (2018) Meis1 coordi-nates cerebellar granule cell development by regulating Pax6 transcription, BMP signaling and Atoh1 degradation. J Neurosci 38:1277–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A 104:5193–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce ET (1967) Histogenesis of the dorsal and ventral cochlear nuclei in the mouse. An autoradiographic study. J Comp Neurol 131:27–54

    Article  CAS  PubMed  Google Scholar 

  • Pierce ET (1973) Time of origin of neurons in the brain stem of the mouse. Prog Brain Res 40:53–65

    Article  CAS  PubMed  Google Scholar 

  • Ramon y Cajal S (1911) Histologie du Systeme Nerveux de l’Homme et des Vertebres. Maloine, Paris

    Google Scholar 

  • Rodriguez CI, Dymecki SM (2000) Origin of the precerebellar system. Neuron 27:475–486

    Article  CAS  PubMed  Google Scholar 

  • Ruigrok TJ, Cella F, Voogd J (1995) Connections of the lateral reticular nucleus to the lateral vestibular nucleus in the rat. An anterograde tracing study with Phaseolus vulgaris leucoagglutinin. Eur J Neurosci 7:1410–1413

    Article  CAS  PubMed  Google Scholar 

  • Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK, Goodwin G, Houlston RS (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36:1301–1305

    Article  CAS  PubMed  Google Scholar 

  • Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M, Minaki Y, Hamaguchi A, Inoue YU, Inoue T, Miyashita S, Fujiyama T, Yamada M, Chapman H, Campbell K, Magnuson MA, Wright CV, Kawaguchi Y, Ikenaka K, Takebayashi H, Ishiwata S, Ono Y, Hoshino M (2014) Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun 5:3337

    Article  PubMed  CAS  Google Scholar 

  • Shinohara M, Zhu Y, Murakami F (2013) Four-dimensional analysis of nucleogenesis of the pontine nucleus in the hindbrain. J Comp Neurol 521:3340–3357

    Article  PubMed  Google Scholar 

  • Storm R, Cholewa-Waclaw J, Reuter K, Brohl D, Sieber M, Treier M, Muller T, Birchmeier C (2009) The bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. Development 136:295–305

    Article  CAS  PubMed  Google Scholar 

  • Sultan F, Czubayko U, Thier P (2003) Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis. J Comp Neurol 455:139–155

    Article  PubMed  Google Scholar 

  • Tan K, Le Douarin NM (1991) Development of the nuclei and cell migration in the medulla oblongata. Application of the quail-chick chimera system. Anat Embryol (Berl) 183:321–343

    Article  CAS  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43

    Article  CAS  PubMed  Google Scholar 

  • Weisheit G, Gliem M, Endl E, Pfeffer PL, Busslinger M, Schilling K (2006) Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons. Eur J Neurosci 24:466–478

    Article  PubMed  Google Scholar 

  • Wilson SW, Rubenstein JL (2000) Induction and dorsoventral patterning of the telencephalon. Neuron 28:641–651

    Article  CAS  PubMed  Google Scholar 

  • Wingate RJ, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development. Development 126:4395–4404

    CAS  PubMed  Google Scholar 

  • Yamada M, Terao M, Terashima T, Fujiyama T, Kawaguchi Y, Nabeshima Y, Hoshino M (2007) Origin of climbing fiber neurons and their developmental dependence on Ptf1a. J Neurosci 27:10924–10934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Seto Y, Taya S, Owa T, Inoue YU, Inoue T, Kawaguchi Y, Nabeshima Y, Hoshino M (2014) Specification of spatial identities of cerebellar neuron progenitors by Ptf1a and Atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci 34:4786–4800

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yee KT, Simon HH, Tessier-Lavigne M, O’Leary DM (1999) Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24:607–622

    Article  CAS  PubMed  Google Scholar 

  • Yeung J, Goldowitz D (2017) Wls expression in the rhombic lip orchestrates the embryonic development of the mouse cerebellum. Neuroscience 354:30–42

    Article  CAS  PubMed  Google Scholar 

  • Yeung J, Ha TJ, Swanson DJ, Choi K, Tong Y, Goldowitz D (2014) Wls provides a new compartmental view of the rhombic lip in mouse cerebellar development. J Neurosci 34:12527–37

    Article  PubMed  CAS  Google Scholar 

  • Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zainolabidin N, Kamath SP, Thanawalla AR, Chen AI (2017) Distinct activities of Tfap2A and Tfap2B in the specification of GABAergic interneurons in the developing cerebellum. Front Mol Neurosci 10:281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zervas M, Millet S, Ahn S, Joyner AL (2004) Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345–357

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Kwan KM, Mailloux CM, Lee WK, Grinberg A, Wurst W, Behringer RR, Westphal H (2007) LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control Purkinje cell differentiation in the developing cerebellum. Proc Natl Acad Sci U S A 104:13182–13186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zordan P, Croci L, Hawkes R, Consalez GG (2008) Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn 237:1726–1735

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Hoshino .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hoshino, M., Miyashita, S., Seto, Y., Yamada, M. (2019). Specification of Cerebellar and Precerebellar Neurons. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_5-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_5-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics