Skip to main content

Functional Topography of the Human Cerebellum Revealed by Functional Neuroimaging Studies

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

Functional imaging studies in healthy controls report cerebellar activation during a wide range of tasks, from motor execution (finger tapping, motor learning, smooth pursuit eye movements) to higher-level cognitive tasks (Tower of London, working memory paradigms, verbal fluency) in which motor responses are eliminated or controlled for. The anatomical connections between the cerebellum, the spinal cord, and sensorimotor and association areas of the cerebral cortex suggest a functional topography exists within the human cerebellum, such that different cerebellar regions are part of distributed spino-cerebellar and cerebro-cerebellar circuits. This topography is supported by data from human functional imaging studies, in which regional activation patterns differ for sensorimotor vs. cognitive and affective task paradigms. Here we review these neuroimaging data and consider both cross-task comparisons and within-task topography. We argue that cerebellar activation patterns are related to the specific demands of a given task, and the localization of the activation patterns reflects the engagement of different cerebro-cerebellar networks. Establishing cerebellar functional topography in humans has important implications for the interpretation of functional imaging data, the understanding of clinical outcomes in cerebellar damage or disease, and the broader understanding of the role of the cerebellum in motor and nonmotor functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann H (2008) Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci 31:265–72

    Google Scholar 

  • Ackermann H, Vogel M, Petersen D et al (1992) Speech deficits in ischaemic cerebellar lesions. J Neurol 239:223–227

    Article  CAS  PubMed  Google Scholar 

  • Ahmadian N, van Baarsen K, van Zandvoort M, Robe PA (2019) The Cerebellar Cognitive Affective Syndrome—a Meta-analysis. Cerebellum 18:941–950

    Google Scholar 

  • Akkal D, Dum RP, Strick PL (2007) Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27:10659–10673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez TA, Fiez JA (2018) Current perspectives on the cerebellum and reading development. Neurosci Biobehav Rev 92:55–66

    Google Scholar 

  • Alvarez TL, Alkan Y, Gohel S et al (2010) Functional anatomy of predictive vergence and saccade eye movements in humans: a functional MRI investigation. Vis Res 50:2163–2175

    Article  PubMed  Google Scholar 

  • Amarenco P, Hauw JJ (1990) Cerebellar infarction in the territory of the superior cerebellar artery: a clinicopathologic study of 33 cases. Neurology 40:1383–1390

    Article  CAS  PubMed  Google Scholar 

  • Amarenco P, Chevrie-Muller C, Roullet E et al (1991) Paravermal infarct and isolated cerebellar dysarthria. Ann Neurol 30:211–213

    Article  CAS  PubMed  Google Scholar 

  • Ang C, Zhang J, Chu M, et al (2020) Intrinsic Cerebro-Cerebellar Functional Connectivity Reveals the Function of Cerebellum VI in Reading-Related Skills. Front Psychol 11:420

    Google Scholar 

  • Argyropoulos GPD, van Dun K, Adamaszek M, et al (2020) The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. Cerebellum 19:102–125

    Google Scholar 

  • Ashida R, Cerminara NL, Edwards RJ, et al (2019) Sensorimotor, language, and working memory representation within the human cerebellum. Hum Brain Mapp 40:4732–4747

    Google Scholar 

  • Baddeley AD, Hitch G (1974) Working Memory. In: Psychology of Learning and Motivation. Elsevier, pp 47–89

    Google Scholar 

  • Balsters JH, Laird AR, Fox PT, Eickhoff SB (2014) Bridging the gap between functional and anatomical features of cortico-cerebellar circuits using meta-analytic connectivity modeling. Hum Brain Mapp 35:3152–69

    Google Scholar 

  • Baumann O, Mattingley JB (2012) Functional topography of primary emotion processing in the human cerebellum. NeuroImage 61:805–811

    Google Scholar 

  • Beauregard M, Leroux JM, Bergman S et al (1998) The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. Neuroreport 9:3253–3258

    Article  CAS  PubMed  Google Scholar 

  • Benedek M, Beaty R, Jauk E, et al (2014) Creating metaphors: the neural basis of figurative language production. NeuroImage 90:99–106

    Google Scholar 

  • Beneventi H, Barndon R, Ersland L et al (2007) An fMRI study of working memory for schematic facial expressions. Scand J Psychol 48:81–86

    Article  PubMed  Google Scholar 

  • Beneventi H, Tonnessen FE, Ersland L, Hugdahl K (2010) Working memory deficit in dyslexia: behavioral and FMRI evidence. Int J Neurosci 120:51–9

    Google Scholar 

  • Benischek A, Long X, Rohr CS, et al (2020) Pre-reading language abilities and the brain’s functional reading network in young children. 217:116903

    Google Scholar 

  • Bermpohl F, Pascual-Leone A, Amedi A et al (2006) Dissociable networks for the expectancy and perception of emotional stimuli in the human brain. NeuroImage 30:588–600

    Article  PubMed  Google Scholar 

  • Bernard JA, Seidler RD (2013) Cerebellar contributions to visuomotor adaptation and motor sequence learning: an ALE meta-analysis. Frontiers Hum Neurosci 7:27

    Google Scholar 

  • Bernard JA, Seidler RD, Hassevoort KM, et al (2012) Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Frontiers Neuroanat 6:31

    Google Scholar 

  • Bernard JA, Peltier SJ, Benson BL, et al (2014) Dissociable functional networks of the human dentate nucleus. Cereb Cortex 24:2151–9

    Google Scholar 

  • Bernard JA, Leopold DR, Calhoun VD, Mittal VA (2015) Regional cerebellar volume and cognitive function from adolescence to late middle age. Hum Brain Mapp 36:1102–20

    Google Scholar 

  • Blaxton TA, Zeffiro TA, Gabrieli JD et al (1996) Functional mapping of human learning: a positron emission tomography activation study of eyeblink conditioning. J Neurosci 16:4032–4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boillat Y, Bazin P-L, van der Zwaag W (2020) Whole-body somatotopic maps in the cerebellum revealed with 7T fMRI. NeuroImage 211:116624

    Google Scholar 

  • Bonda E, Petrides M, Frey S et al (1995) Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci U S A 92:11180–11184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth J, Wood L, Lu D et al (2007) The role of the basal ganglia and cerebellum in language processing. Brain Res 1133:136–144

    Article  CAS  PubMed  Google Scholar 

  • Boyd LA, Vidoni ED, Siengsukon CF et al (2009) Manipulating time-to-plan alters patterns of brain activation during the Fitts’ task. Exp Brain Res 194:527–539

    Article  PubMed  Google Scholar 

  • Brissenden JA, Tobyne SM, Osher DE, et al (2018) Topographic cortico-cerebellar networks revealed by visual attention and working memory. Current Biology 28:3364–3372.e5

    Google Scholar 

  • Brodal P (1978) The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101:251–283

    Article  CAS  PubMed  Google Scholar 

  • Brodal P (1979) The pontocerebellar projection in the rhesus monkey: an experimental study with retrograde axonal transport of horseradish peroxidase. Neuroscience 4:193–208

    Article  CAS  PubMed  Google Scholar 

  • Buckner RL, Krienen FM, Castellanos A, et al (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106:2322–45

    Google Scholar 

  • Bultmann U, Pierscianek D, Gizewski ER, et al (2014) Functional recovery and rehabilitation of postural impairment and gait ataxia in patients with acute cerebellar stroke. Gait & Posture 39:563–9

    Google Scholar 

  • Bushara K, Wheat J, Khan A et al (2001) Multiple tactile maps in the human cerebellum. Neuroreport 12:2483–2486

    Article  CAS  PubMed  Google Scholar 

  • Carreiras M, Mechelli A, Estevez A et al (2007) Brain activation for lexical decision and reading aloud: two sides of the same coin? J Cogn Neurosci 19:433–444

    Article  PubMed  Google Scholar 

  • Chen SHA, Desmond JE (2005a) Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia 43:1227–1237

    Article  PubMed  Google Scholar 

  • Chen SHA, Desmond JE (2005b) Cerebro-cerebellar networks during articulatory rehearsal and verbal working memory tasks. NeuroImage 24:332–338

    Article  PubMed  Google Scholar 

  • Cheng DT, Disterhoft JF, Power JM et al (2008) Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci U S A 105:8108–8113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coghill RC, Sang CN, Maisog JM et al (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82:1934–1943

    Article  CAS  PubMed  Google Scholar 

  • Copeland D, deMoor C, Moore BM III et al (1999) Neurocognitive development of children after a cerebellar tumor in infancy: a longitudinal study. J Clin Oncol 17:3476–3486

    Article  CAS  PubMed  Google Scholar 

  • Creem-Regehr SH, Neil JA, Yeh HJ (2007) Neural correlates of two imagined egocentric transformations. NeuroImage 35:916–927

    Article  PubMed  Google Scholar 

  • Debas K, Carrier J, Orban P et al (2010) Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proc Natl Acad Sci U S A 107:17839–17844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desmond JE, Gabrieli JDE, Wagner AD et al (1997) Lobular patterns of cerebellar activation in verbal working memory and finger tapping tasks as revealed by functional MRI. J Neurosci 17:9675–9685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieterich M, Bucher SF, Seelos KC et al (2000) Cerebellar activation during optokinetic stimulation and saccades. Neurology 54:148–155

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova A, Weber J, Maschke M et al (2002) Eyeblink-related areas in human cerebellum as shown by fmri. Hum Brain Mapp 17:100–115

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Mello AM, Moore DM, Crocetti D, et al (2016) Cerebellar gray matter differentiates children with early language delay in autism. Autism Research 9:1191–1204

    Google Scholar 

  • D’Mello AM, Turkeltaub PE, Stoodley CJ (2017) Cerebellar tDCS Modulates Neural Circuits during Semantic Prediction: A Combined tDCS-fMRI Study. J Neurosci 37:1604–1613

    Google Scholar 

  • D’Mello A, Gabrieli JDE, Nee DE (2020) Evidence for hierarchical cognitive control in the human cerebellum. Curr Biol 30:1881–1892.e3

    Google Scholar 

  • Dresel C, Castrop F, Haslinger B et al (2005) The functional neuroanatomy of coordinated orofacial movements: sparse sampling fMRI of whistling. NeuroImage 28:588–597

    Article  PubMed  Google Scholar 

  • Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89:634–639

    Article  PubMed  Google Scholar 

  • Dum RP, Li C, Strick PL (2002) Motor and nonmotor domains in the monkey dentate. Annals NY Acad Sci 978:289–301

    Google Scholar 

  • Eckert MA, Keren NI, Roberts DR, Calhoun VD, Harris KC (2010) Age-related changes in processing speed: unique contributions of cerebellar and prefrontal cortex. Front Hum Neurosci 4:10

    Google Scholar 

  • Exner C, Weniger G, Irle E (2004) Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology 63:2132–2135

    Article  PubMed  Google Scholar 

  • Fabbro F, Tavano A, Corti S et al (2004) Long-term neuropsychological deficits after cerebellar infarctions in two young adult twins. Neuropsychologia 42:536–545

    Article  CAS  PubMed  Google Scholar 

  • Faulmann I, Descloux V, Saj A, Maurer R (2020) Neuroanatomic correlates of distance and direction processing during cognitive map retrieval. Front Behav Neurosci 14:130

    Google Scholar 

  • Feng X, Li L, Zhang M, et al (2017) Dyslexic children show atypical cerebellar activation and cerebro-cerebellar functional connectivity in orthographic and phonological processing. Cerebellum 16:496–507

    Google Scholar 

  • Fink GR, Marshall JC, Shah NJ et al (2000) Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology 54:1324–1331

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank B, Schoch B, Richter S et al (2007) Cerebellar lesion studies of cognitive function in children and adolescents – limitations and negative findings. Cerebellum 6:242–253

    Article  PubMed  Google Scholar 

  • Frings M, Dimitrova A, Schorn C et al (2006) Cerebellar involvement in verb generation: an fMRI study. Neurosci Lett 409:19–23

    Article  CAS  PubMed  Google Scholar 

  • George MS, Ketter TA, Gill DS et al (1993) Brain regions involved in recognizing facial emotion or identity: an oxygen-15 PET study. J Neuropsychiatry Clin Neurosci 5:384–394

    Article  CAS  PubMed  Google Scholar 

  • Glickstein M, Sultan F, Voogd J (2011) Functional localization in the cerebellum. Cortex 47:59–80

    Article  PubMed  Google Scholar 

  • Gottwald B, Mihajlovic Z, Wilde B et al (2003) Does the cerebellum contribute to specific aspects of attention? Neuropsychologia 41:1452–1460

    Article  PubMed  Google Scholar 

  • Gottwald B, Wilde B, Mihajlovic Z et al (2004) Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry 75:1124–1131

    Article  Google Scholar 

  • Grodd W, Hulsmann E, Lotze M et al (2001) Sensorimotor mapping of the human cerebellum: FMRI evidence of somatotopic organization. Hum Brain Mapp 13:55–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grodd W, Hulsmann E, Ackermann H (2005) Functional MRI localizing in the cerebellum. Neurosurg Clin N Am 16:77–99

    Article  PubMed  Google Scholar 

  • Grogan A, Green DW, Ali N, et al (2009) Structural correlates of semantic and phonemic fluency ability in first and second languages. Cerebral Cortex 19:2690–8

    Google Scholar 

  • Gross-Tsur V, Ben-Bashat D, Shalev RS et al (2006) Evidence of a developmental cerebello-cerebral disorder. Neuropsychologia 44:2569–2572

    Article  PubMed  Google Scholar 

  • Gruber O (2001) Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cereb Cortex 11:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Guell X, Schmahmann J (2019) Cerebellar functional anatomy: a didactic summary based on human fMRI evidence. Cerebellum 22:1371–1378

    Google Scholar 

  • Guell X, DE Gabrieli J, Schmahmann JD (2018a) Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. NeuroImage 172:437–449

    Article  PubMed  Google Scholar 

  • Guell X, Schmahmann J, Gabrieli J, Ghosh S (2018b) Functional gradients of the cerebellum. elife 7:e36652

    Article  PubMed  PubMed Central  Google Scholar 

  • Guell X, D’Mello AM, Hubbard NA, Romeo RR, Gabrieli JDE et al (2019) Functional territories of human dentate nucleus. Cereb Cortex 30:2401–2417

    Article  PubMed Central  Google Scholar 

  • Gundel H, O’Connor MF, Littrell L et al (2003) Functional neuroanatomy of grief: an fMRI study. Am J Psychiatry 160:1946–1953

    Article  PubMed  Google Scholar 

  • Habas C, Kamdar N, Nguyen D et al (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29:8586–8594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanakawa T, Dimyan MA, Hallett M (2008) Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex 18:2775–2788

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. NeuroImage 67:283–297

    Google Scholar 

  • Hautzel H, Mottaghy FM, Specht K et al (2009) Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. NeuroImage 47:2073–2082

    Article  PubMed  Google Scholar 

  • Helmchen C, Mohr C, Erdmann C et al (2004) Cerebellar neural responses related to actively and passively applied noxious thermal stimulation in human subjects: a parametric fMRI study. Neurosci Lett 361:237–240

    Article  CAS  PubMed  Google Scholar 

  • Higuchi S, Imamizu H, Kawato M (2007) Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex 43:350–358

    Article  PubMed  Google Scholar 

  • Hoche F, Guell X, Vangel MG, et al (2018) The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 141:248–270

    Google Scholar 

  • Hofer A, Siedentopf CM, Ischebeck A et al (2006) Gender differences in regional cerebral activity during the perception of emotion: a functional MRI study. NeuroImage 32:854–862

    Article  PubMed  Google Scholar 

  • Hofer A, Siedentopf CM, Ischebeck A et al (2007) Sex differences in brain activation patterns during processing of positively and negatively valenced emotional words. Psychol Med 37:109–119

    Article  PubMed  Google Scholar 

  • Hogan MJ, Staff RT, Bunting BP, et al (2011) Cerebellar brain volume accounts for variance in cognitive performance in older adults. Cortex 47:441–50

    Google Scholar 

  • Hokkanen LS, Kauranen V, Roine RO et al (2006) Subtle cognitive deficits after cerebellar infarcts. Eur J Neurol 13:161–170

    Article  CAS  PubMed  Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62:1–30

    Article  Google Scholar 

  • Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubrich-Ungureanu P, Kaemmerer N, Henn F et al (2002) Lateralized organization of the cerebellum in a silent verbal fluency task: a functional magnetic resonance imaging study in healthy volunteers. Neurosci Lett 319:91–94

    Article  CAS  PubMed  Google Scholar 

  • Hull C (2020) Prediction signals in the cerebellum: Beyond supervised motor learning. eLife 9:e54073

    Google Scholar 

  • Ilg W, Christensen A, Mueller OM, et al (2013) Effects of cerebellar lesions on working memory interacting with motor tasks of different complexities. Journal of Neurophysiology 110:2337–2349

    Google Scholar 

  • Ilg W, Giese MA, Gizewski ER et al (2008) The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 131:2913–2927

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi S, Mori K, Kiritani S et al (1997) Vocal identification of speaker and emotion activates different brain regions. Neuroreport 8:2809–2812

    Article  CAS  PubMed  Google Scholar 

  • Imamizu H, Kawato M (2009) Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res 73:527–544

    Article  PubMed  Google Scholar 

  • Ino T, Inoue Y, Kage M et al (2002) Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neurosci Lett 322:182–186

    Article  CAS  PubMed  Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  • Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313

    Article  CAS  PubMed  Google Scholar 

  • Jahanshahi M, Dirnberger G, Fuller R et al (2000) The role of the dorsolateral prefrontal cortex in random number generation: a study with positron emission tomography. NeuroImage 12:713–725

    Article  CAS  PubMed  Google Scholar 

  • Jansen A, Floel A, Randenborgh JV et al (2005) Crossed cerebro-cerebellar language dominance. Hum Brain Mapp 24:165–172

    Article  PubMed  Google Scholar 

  • Joubert S, Beauregard M, Walter N et al (2004) Neural correlates of lexical and sublexical processes in reading. Brain Lang 89:9–20

    Article  PubMed  Google Scholar 

  • Kansal K, Yang Z, Fishman AM, et al (2017) Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration. Brain 140:707–720

    Google Scholar 

  • Kase CS, Norrving B, Levine SR et al (1993) Cerebellar infarction. Clinical and anatomic observations in 66 cases. Stroke 24:76–83

    Article  CAS  PubMed  Google Scholar 

  • Kelly R, Strick P (2003) Cerebellar loops with motor cortex and prefrontal cortex. J Neurosci 23:8432–8444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keren-Happuch E, Chen SH, Ho MH, Desmond JE (2014) A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Human Brain Mapping 35:593–615

    Google Scholar 

  • King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J (2019) Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci 22(8):1371–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kircher T, Nagels A, Kirner-Veselinovic A, Krach S (2011) Neural correlates of rhyming vs. lexical and semantic fluency. Brain Res 1391:71–80

    Google Scholar 

  • Kirschen MP, Chen SH, Desmond JE (2010) Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study. Behav Neurol 23:51–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirschen MP, Chen SHA, Schraedley-Desmond P, Desmond JE (2005) Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. NeuroImage 24:462–472

    Google Scholar 

  • Klaus J, Schutter DJLG (2021) Functional topography of anger and aggression in the human cerebellum. NeuroImage 226:117582

    Google Scholar 

  • Konczak J, Schoch B, Dimitrova A et al (2005) Functional recovery of children and adolescents after cerebellar tumour resection. Brain 128:1428–1441

    Article  PubMed  Google Scholar 

  • Konen CS, Kleiser R, Seitz RJ et al (2005) An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans. Exp Brain Res 165:203–216

    Article  PubMed  Google Scholar 

  • Koppelmans V, Hoogendam YY, Hirsiger S, et al (2017) Regional cerebellar volumetric correlates of manual motor and cognitive function. Brain Structure & Function 222:1929–1944

    Google Scholar 

  • Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19:2485–2497

    Article  PubMed  PubMed Central  Google Scholar 

  • Krüger B, Hettwer M, Zabicki A, et al (2020) Practice modality of motor sequences impacts the neural signature of motor imagery. Sci Rep 10:19176

    Google Scholar 

  • Kuper M, Thurling M, Maderwald S, et al (2012) Structural and functional magnetic resonance imaging of the human cerebellar nuclei. Cerebellum 11:314–24

    Google Scholar 

  • Lamm C, Batson CD, Decety J (2007) The neural substrate of human empathy: effects of perspective-taking and cognitive appraisal. J Cogn Neurosci 19:42–58

    Article  PubMed  Google Scholar 

  • Lane RD, Reiman EM, Bradley MM et al (1997) Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 35:1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Lang P, Bradley M, Cuthbert B (2005) International affective picture system (IAPS): affective ratings of pictures and instruction manual. Technical report A-6. University of Florida, Gainsville

    Google Scholar 

  • Lee G, Meador K, Loring D et al (2004) Neural substrates of emotion as revealed by functional magnetic resonance imaging. Cogn Behav Neurol 17:9–17

    Article  PubMed  Google Scholar 

  • Lee TM, Liu HL, Hung KN et al (2005) The cerebellum’s involvement in the judgment of spatial orientation: a functional magnetic resonance imaging study. Neuropsychologia 43:1870–1877

    Article  PubMed  Google Scholar 

  • Leggio M, Olivito G (2018) Topography of the cerebellum in relation to social brain regions and emotions. In: Handbook of Clinical Neurology. Elsevier, pp 71–84

    Google Scholar 

  • Lesage E, Hansen PC, Miall RC (2017) Right Lateral Cerebellum Represents Linguistic Predictability. J Neurosci 37:6231–6241

    Google Scholar 

  • Levisohn L, Cronin-Golomb A, Schmahmann J (2000) Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 123:1041–1050

    Article  PubMed  Google Scholar 

  • Lie CH, Specht K, Marshall JC et al (2006) Using fMRI to decompose the neural processes underlying the Wisconsin card sorting test. NeuroImage 30:1038–1049

    Article  PubMed  Google Scholar 

  • Logan C, Grafton S (1995) Functional anatomy of human eyeblink conditioning determined with regional cerebral glucose metabolism and positron-emission tomography. Proc Natl Acad Sci U S A 92:7500–7504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Wang B, Narayana S et al (2010) Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain Res 1318:64–76

    Article  CAS  PubMed  Google Scholar 

  • Maderwald S, Thürling M, Küper M, et al (2012) Direct visualization of cerebellar nuclei in patients with focal cerebellar lesions and its application for lesion-symptom mapping. NeuroImage 63:1421–1431

    Google Scholar 

  • Marek S, Siegel JS, Gordon EM, et al (2018) Spatial and temporal organization of the individual human cerebellum. Neuron 100:977–993.e7

    Google Scholar 

  • Mariën P, Ackermann H, Adamaszek M, et al (2014) Consensus Paper: Language and the Cerebellum: an Ongoing Enigma. Cerebellum 13(3):386–410

    Google Scholar 

  • Manni E, Petrosini L (2004) A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 4:240–249

    Google Scholar 

  • Marien P, Saerens J, Nanhoe R et al (1996) Cerebellar induced aphasia: case report of cerebellar induced prefrontal aphasic language phenomena supported by spect findings. J Neurol Sci 144:34–43

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Schurz M, Kronbichler M, Richlan F (2015) Reading in the brain of children and adults: A meta-analysis of 40 functional magnetic resonance imaging studies: Reading in the Brain of Children and Adults. Hum Brain Mapp 36:1963–1981

    Google Scholar 

  • Marvel CL, Desmond JE (2010) The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex 46:880–895

    Article  PubMed  Google Scholar 

  • McAvoy M, Mitra A, Coalson RS, et al (2016) Unmasking language lateralization in human brain intrinsic activity. Cereb Cortex 26:1733–1746

    Google Scholar 

  • Mechelli A, Gorno-Tempini ML, Price CJ (2003) Neuroimaging studies of word and pseudoword reading: consistencies, inconsistencies, and limitations. J Cogn Neurosci 15:260–271

    Article  PubMed  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121(6):1013–1052

    Article  PubMed  Google Scholar 

  • Middleton F, Strick P (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461

    Google Scholar 

  • Middleton F, Strick P (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250

    Article  CAS  PubMed  Google Scholar 

  • Middleton F, Strick P (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moberget T, Gullesen EH, Andersson S, et al (2014) Generalized role for the cerebellum in encoding internal models: Evidence from semantic processing. J Neurosci 34:2871–2878

    Google Scholar 

  • Moore DM, D’Mello AM, McGrath LM, Stoodley CJ (2017) The developmental relationship between specific cognitive domains and grey matter in the cerebellum. Developmental Cognitive Neuroscience 24:1–11

    Google Scholar 

  • Moulton EA, Elman I, Pendse G, Schmahmann J, Becerra L, Borsook D (2011) Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. J Neurosci 31(10):3795–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller AM, Meyer M (2014) Language in the brain at rest: new insights from resting state data and graph theoretical analysis. Front Hum Neurosci 8:228

    Google Scholar 

  • Nagels A, Kircher T, Dietsche B, et al (2012) Neural processing of overt word generation in healthy individuals: The effect of age and word knowledge. NeuroImage 61:832–840

    Google Scholar 

  • Neuner I, Stocker T, Kellermann T et al (2007) Wechsler memory scale revised edition: neural correlates of the visual paired associates subtest adapted for fMRI. Brain Res 1177:66–78

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Kleinschmidt A, Wessel K et al (1996) Somatotopic motor representation in the human anterior cerebellum: a high-resolution functional MRI study. Brain 119:1023–1029

    Article  PubMed  Google Scholar 

  • Nitschke MF, Binkofski F, Buccino G et al (2004) Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study. Hum Brain Mapp 22:155–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Norton ES, Black JM, Stanley LM, et al (2014) Functional neuroanatomical evidence for the double-deficit hypothesis of developmental dyslexia. Neuropsychologia 61:235–246

    Google Scholar 

  • O’Reilly JX, Beckmann CF, Tomassini V et al (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965

    Article  PubMed  Google Scholar 

  • Palesi F, Tournier J-D, Calamante F, et al (2015) Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Struct Funct 220:3369–3384

    Google Scholar 

  • Paradiso S, Andreasen NC, Oleary DS et al (1997) Cerebellar size and cognition: correlations with IQ, verbal memory and motor dexterity. Neuropsychiatry Neuropsychol Behav Neurol 10:1–8

    CAS  PubMed  Google Scholar 

  • Paradiso S, Johnson DL, Andreasen NC et al (1999) Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. Am J Psychiatry 156:1618–1629

    Article  CAS  PubMed  Google Scholar 

  • Paradiso S, Robinson RG, Boles Ponto LL et al (2003) Regional cerebral blood flow changes during visually induced subjective sadness in healthy elderly persons. J Neuropsychiatry Clin Neurosci 15:35–44

    Article  PubMed  Google Scholar 

  • Park JY, Gu BM, Kang DH et al (2010) Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex 46:161–169

    Article  PubMed  Google Scholar 

  • Parsons LM, Fox PT, Downs JH et al (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375:54–58

    Article  CAS  PubMed  Google Scholar 

  • Paulus K, Magnano I, Conti M et al (2004) Pure post-stroke cerebellar cognitive affective syndrome: a case report. Neurol Sci 25:220–224

    Article  CAS  PubMed  Google Scholar 

  • Peeva MG, Guenther FH, Tourville JA, et al (2010) Distinct representations of phonemes, syllables, and supra-syllabic sequences in the speech production network. NeuroImage 50:626–638

    Google Scholar 

  • Peterburs J, Cheng DT, Desmond JE (2016) The association between eye movements and cerebellar activation in a verbal working memory task. Cereb Cortex 26:3802–3813

    Google Scholar 

  • Peterburs J, Liang Y, Cheng DT, Desmond JE (2021) Sensory acquisition functions of the cerebellum in verbal working memory. Brain Struct Funct 226:833–844

    Google Scholar 

  • Petersen SE, Fox PT, Posner MI et al (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585–589

    Article  CAS  PubMed  Google Scholar 

  • Petersen S, Fox P, Posner M et al (1989) Positron emission tomographic studies of the processing of single words. J Cogn Neurosci 1:153–170

    Article  CAS  PubMed  Google Scholar 

  • Pilgramm S, Lorey B, Stark R et al (2010) Differential activation of the lateral premotor cortex during action observation. BMC Neurosci 11:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Ploghaus A, Tracey I, Gati JS et al (1999) Dissociating pain from its anticipation in the human brain. Science 284:1979–1981

    Article  CAS  PubMed  Google Scholar 

  • Price CJ (2012) A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage 62:816–847

    Google Scholar 

  • Ramanoël S, Durteste M, Bécu M, et al (2020) Differential brain activity in regions linked to visuospatial processing during landmark-based navigation in young and healthy older adults. Front Hum Neurosci 14:552111

    Google Scholar 

  • Ramnani N, Toni I, Josephs O et al (2000) Learning- and expectation-related changes in the human brain during motor learning. J Neurophysiol 84:3026–3035

    Article  CAS  PubMed  Google Scholar 

  • Ramnani N, Behrens T, Johansen-Berg H et al (2006) The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex 16:811–818

    Article  PubMed  Google Scholar 

  • Rao C, Singh NC (2015) Visuospatial complexity modulates reading in the brain. Brain and Language 141:50–61

    Google Scholar 

  • Reiman E, Raichle M, Robins E et al (1989) Neuroanatomical correlates of a lactate-induced anxiety attack. Arch Gen Psychiatry 46:493–500

    Article  CAS  PubMed  Google Scholar 

  • Rentiya Z, Khan N-S, Ergun E, et al (2017) Distinct cerebellar regions related to motor and cognitive performance in SCA6 patients. Neuropsychologia 107:25–30

    Google Scholar 

  • Richter S, Schoch B, Kaiser O et al (2005a) Behavioral and affective changes in children and adolescents with chronic cerebellar lesions. Neurosci Lett 381:102–107

    Article  CAS  PubMed  Google Scholar 

  • Richter S, Gerwig M, Aslan B et al (2007b) Cognitive functions in patients with MR-defined chronic focal cerebellar lesions. J Neurol 254:1193–1203

    Article  PubMed  Google Scholar 

  • Riecker A, Mathiak K, Wildgruber D et al (2005) FMRI reveals two distinct cerebral networks subserving speech motor control. Neurology 64:700–706

    Article  CAS  PubMed  Google Scholar 

  • Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain 123:1051–1061

    Article  PubMed  Google Scholar 

  • Salmi J, Pallesen KJ, Neuvonen T et al (2010) Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci 22:2663–2676

    Article  PubMed  Google Scholar 

  • Schall U, Johnston P, Lagopoulos J et al (2003) Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20:1154–1161

    Article  PubMed  Google Scholar 

  • Scheuerecker J, Frodl T, Koutsouleris N et al (2007) Cerebral differences in explicit and implicit emotional processing – an fMRI study. Neuropsychobiology 56:32–39

    Article  CAS  PubMed  Google Scholar 

  • Schlerf JE, Verstynen TD, Ivry RB et al (2010) Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol 103:3330–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmahmann JD (1991) An emerging concept: the cerebellar contribution to higher function. Arch Neurol 48:1178–1187

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4:174–198

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD (2000) The role of the cerebellum in affect and psychosis. J Neurolinguistics 13:189–214

    Article  Google Scholar 

  • Schmahmann JD (2004) Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1989) Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol 289:53–73

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1991) Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol 308:224–248

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1997a) The cerebrocerebellar system. In: Schmahmann J (ed) The cerebellum and cognition. Academic, San Diego

    Google Scholar 

  • Schmahmann JD, Pandya DN (1997b) Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci 17:438–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Doyon J, Toga A et al (2000) MRI atlas of the human cerebellum. Academic, San Diego

    Google Scholar 

  • Schmahmann JD, Rosene DL, Pandya DN (2004) Motor projections to the basis pontis in rhesus monkey. J Comp Neurol 478:248–268

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Macmore J, Vangel M (2009) Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience 162:852–861

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Guell X, Stoodley CJ, Halko MA (2019) The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci 42:337–364

    Google Scholar 

  • Schoch B, Dimitrova A, Gizewski ER et al (2006) Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. NeuroImage 30:36–51

    Article  CAS  PubMed  Google Scholar 

  • Schraa-Tam CK, van Broekhoven P, van der Geest JN et al (2009) Cortical and cerebellar activation induced by reflexive and voluntary saccades. Exp Brain Res 192:175–187

    Article  PubMed  Google Scholar 

  • Schreurs BG, McIntosh AR, Bahro M et al (1997) Lateralization and behavioral correlation of changes in regional cerebral blood flow with classical conditioning of the human eyeblink response. J Neurophysiol 77:2153–2163

    Article  CAS  PubMed  Google Scholar 

  • Scott RB, Stoodley CJ, Anslow P et al (2001) Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol 43:685–691

    Article  CAS  PubMed  Google Scholar 

  • Sheu Y-S, Liang Y, Desmond JE (2019) Disruption of cerebellar prediction in verbal working memory. Front Hum Neurosci 13:61

    Google Scholar 

  • Singer T, Seymour B, O’Doherty J et al (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Snider R, Eldred E (1951) Electro-anatomical studies on cerebro-cerebellar connections in the cat. J Comp Neurol 95:1–16

    Article  CAS  PubMed  Google Scholar 

  • Sokolov AA (2018) The cerebellum in social cognition. Front Cell Neurosci 12:145

    Google Scholar 

  • Sokolov AA, Miall RC, Ivry RB (2017) The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences 21:313–332

    Google Scholar 

  • Sokolov AA, Zeidman P, Erb M, et al (2020) Brain circuits signaling the absence of emotion in body language. Proc Natl Acad Sci USA 117:20868–20873

    Google Scholar 

  • Steele CJ, Penhune VB (2010) Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning. J Neurosci 30:8332–8341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele CJ, Anwander A, Bazin P-L, et al (2017) Human cerebellar sub-millimeter diffusion imaging reveals the motor and non-motor topography of the dentate nucleus. Cereb Cortex 27:4537–4548

    Google Scholar 

  • Sternberg S (1966) High-speed scanning in human memory. Science 153:652–654

    Article  CAS  PubMed  Google Scholar 

  • Stoodley CJ (2012) The cerebellum and cognition: Evidence from functional imaging studies. Cerebellum 11:352–365

    Google Scholar 

  • Stoodley CJ (2016) The cerebellum and neurodevelopmental disorders. Cerebellum 15:34–37

    Google Scholar 

  • Stoodley CJ, Limperopoulos C (2016) Structure–function relationships in the developing cerebellum: Evidence from early-life cerebellar injury and neurodevelopmental disorders. Seminars in Fetal and Neonatal Medicine 21:356–364

    Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009a) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44:489–501

    Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009b) The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang 110:149–153

    Google Scholar 

  • Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoodley CJ, Stein JF (2013) Cerebellar function in developmental dyslexia. Cerebellum 12:267–276

    Google Scholar 

  • Stoodley CJ, Valera EM, Schmahmann JD (2010) An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol 23:65–79

    Google Scholar 

  • Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage 59(2):1560–1570

    Article  PubMed  Google Scholar 

  • Stoodley CJ, MacMore JP, Makris N, Sherman JC, Schmahmann JD (2016) Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage Clin 12:765–775

    Article  PubMed  PubMed Central  Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    Article  CAS  PubMed  Google Scholar 

  • Strigo IA, Duncan GH, Boivin M et al (2003) Differentiation of visceral and cutaneous pain in the human brain. J Neurophysiol 89:3294–3303

    Article  PubMed  Google Scholar 

  • Takahashi H, Koeda M, Oda K et al (2004) An fMRI study of differential neural response to affective pictures in schizophrenia. NeuroImage 22:1247–1254

    Article  PubMed  Google Scholar 

  • Takanashi M, Abe K, Yanagihara T et al (2003) A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum. Neuroradiology 45:149–152

    Article  CAS  PubMed  Google Scholar 

  • Tavano A, Grasso R, Gagliardi C et al (2007) Disorders of cognitive and affective development in cerebellar malformations. Brain 130:2646–2660

    Article  PubMed  Google Scholar 

  • Thickbroom GW, Byrnes ML, Mastaglia FL (2003) Dual representation of the hand in the cerebellum: activation with voluntary and passive finger movement. NeuroImage 18:670–674

    Article  PubMed  Google Scholar 

  • Thürling M, Küper M, Stefanescu R, et al (2011) Activation of the dentate nucleus in a verb generation task: A 7T MRI study. NeuroImage 57:1184–1191

    Google Scholar 

  • Tohgi H, Takahashi S, Chiba K et al (1993) Cerebellar infarction: clinical and neuroimaging analysis in 293 patients. Stroke 24:1697–1701

    Article  CAS  PubMed  Google Scholar 

  • Tomassini V, Jbabdi S, Kincses ZT et al (2011) Structural and functional bases for individual differences in motor learning. Hum Brain Mapp 32:494–508

    Article  PubMed  Google Scholar 

  • Trulsson M, Francis ST, Bowtell R et al (2010) Brain activations in response to vibrotactile tooth stimulation: a psychophysical and fMRI study. J Neurophysiol 104:2257–2265

    Article  PubMed  Google Scholar 

  • Tzvi E, Koeth F, Karabanov AN, et al (2020) Cerebellar – Premotor cortex interactions underlying visuomotor adaptation. NeuroImage 220:117142

    Google Scholar 

  • Urban PP, Marx J, Hunsche S et al (2003) Cerebellar speech representation: lesion topography in dysarthria as derived from cerebellar ischemia and functional magnetic resonance imaging. Arch Neurol 60:965–972

    Article  PubMed  Google Scholar 

  • Van der Zwaag W, Kusters R, Magill A, et al (2013) Digit somatotopy in the human cerebellum: A 7T fMRI study. NeuroImage 67:354–362

    Google Scholar 

  • Van Overwalle F, Mariën P (2016) Functional connectivity between the cerebrum and cerebellum in social cognition: A multi-study analysis. NeuroImage 124:248–255

    Google Scholar 

  • Van Overwalle F, Baetens K, Marien P, Vandekerckhove M (2014) Social cognition and the cerebellum: A meta-analysis of over 350 fMRI studies. NeuroImage 86:554–572

    Google Scholar 

  • Van Overwalle F, Manto M, Cattaneo Z, et al (2020) Consensus Paper: Cerebellum and Social Cognition. Cerebellum 19:833–868

    Google Scholar 

  • Verly M, Verhoeven J, Zink I, et al (2014) Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum. NeuroImage: Clinical 4:374–382

    Google Scholar 

  • Vingerhoets G, Lange FD, Vandemaele P et al (2002) Motor imagery in mental rotation: an fMRI study. NeuroImage 17:1623–1633

    Article  PubMed  Google Scholar 

  • Weiss MM, Wolbers T, Peller M et al (2009) Rotated alphanumeric characters do not automatically activate frontoparietal areas subserving mental rotation. NeuroImage 44:1063–1073

    Article  PubMed  Google Scholar 

  • Wildgruber D, Riecker A, Hertrich I et al (2005) Identification of emotional intonation evaluated by fMRI. NeuroImage 24:1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Woolsey CN (1952) Summary of the papers on the cerebellum. Res Publ Assoc Res Nerv Ment Dis 30:334–336

    Google Scholar 

  • Xue A, Kong R, Yang Q, et al (2021) The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. Journal of Neurophysiology 125:358–384

    Google Scholar 

  • Yeo BT, Krienen FM, Sepulcre J, et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology 106:1125–1165

    Google Scholar 

  • Zacks JM, Ollinger JM, Sheridan MA et al (2002) A parametric study of mental spatial transformations of bodies. NeuroImage 16:857–872

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Stoodley .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stoodley, C.J., Desmond, J.E., Guell, X., Schmahmann, J.D. (2021). Functional Topography of the Human Cerebellum Revealed by Functional Neuroimaging Studies. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_30-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_30-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics