Skip to main content

MR Spectroscopy in Health and Disease

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders
  • 23 Accesses

Abstract

Magnetic resonance spectroscopy (MRS) enables the noninvasive quantification of up to 20 neurochemicals in selected brain regions and has found many applications in the study of the cerebellum in health and disease. The neurochemicals accessible by MRS include neuronal and glial markers, neurotransmitters, markers of cellular energetics, and antioxidants and, therefore, provide means to assess neuronal dysfunction/loss, glial activation, energy metabolism, and oxidative stress. As a result, the methodology has been applied to the study of many diseases that affect the cerebellum, including neurodegenerative diseases, cancer, metabolic disorders, alcoholism, and neuropsychiatric disorders. While MRS of the cerebellum poses challenges due to the caudal location of the structure in the brain, these have been overcome both on research and clinical scanners that operate at high and ultra-high magnetic fields, providing the potential for further applications of the technology with greater sensitivity and resolution than ever before to benefit basic and translational investigations in cerebellar disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adanyeguh IM, Henry PG, Nguyen TM et al (2015) In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7. Mov Disord 30:662–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreassen OA, Jenkins BG, Dedeoglu A et al (2001) Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J Neurochem 77:383–390

    Article  CAS  PubMed  Google Scholar 

  • Angenstein F, Hilfert L, Zuschratter W et al (2008) Morphological and metabolic changes in the cortex of mice lacking the functional presynaptic active zone protein bassoon: a combined 1H-NMR spectroscopy and histochemical study. Cereb Cortex 18:890–897

    Article  PubMed  Google Scholar 

  • Armbrust KR, Wang X, Hathorn T et al (2014) Mutant β-III spectrin causes mGluR1α mislocalization and functional deficits in a mouse model of spinocerebellar ataxia type 5. J Neurosci 34:9891–9904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker EH, Basso G, Barker PB et al (2008) Regional apparent metabolite concentrations in young adult brain measured by 1H MR spectroscopy at 3 Tesla. J Magn Reson Imaging 27:489–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Banfi S, Zoghbi HY (1994) Molecular genetics of hereditary ataxias. Baillieres Clin Neurol 3:281–295

    CAS  PubMed  Google Scholar 

  • Bartsch AJ, Homola G, Biller A et al (2007) Manifestations of early brain recovery associated with abstinence from alcoholism. Brain 130:36–47

    Article  PubMed  Google Scholar 

  • Bates TE, Strangward M, Keelan J et al (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 7:1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Bitsch A, Bruhn H, Vougioukas V et al (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bluml S, Philippart M, Schiffmann R et al (2003) Membrane phospholipids and high-energy metabolites in childhood ataxia with CNS hypomyelination. Neurology 61:648–654

    Article  CAS  PubMed  Google Scholar 

  • Boddaert N, Romano S, Funalot B et al (2008) 1H MRS spectroscopy evidence of cerebellar high lactate in mitochondrial respiratory chain deficiency. Mol Genet Metab 93:85–88

    Article  CAS  PubMed  Google Scholar 

  • Boesch SM, Schocke M, Burk K et al (2001) Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar ataxia types 2 and 6. J Magn Reson Imaging 13:553–559

    Article  CAS  PubMed  Google Scholar 

  • Boesch SM, Wolf C, Seppi K et al (2007) Differentiation of SCA2 from MSA-C using proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging 25:564–569

    Article  PubMed  Google Scholar 

  • Bossuet C, Vaufrey F, Conde F et al (2004) Up-regulation of glutamate concentration in the putamen and in the prefrontal cortex of asymptomatic SIVmac251-infected macaques without major brain involvement. J Neurochem 88:928–938

    Article  CAS  PubMed  Google Scholar 

  • Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298

    Article  CAS  PubMed  Google Scholar 

  • Brockmann K, Dechent P, Meins M et al (2003) Cerebral proton magnetic resonance spectroscopy in infantile Alexander disease. J Neurol 250:300–306

    Article  CAS  PubMed  Google Scholar 

  • Brownell AL, Jenkins BG, Elmaleh DR et al (1998) Combined PET/MRS brain studies show dynamic and long-term physiological changes in a primate model of Parkinson disease. Nat Med 4:1308–1312

    Article  CAS  PubMed  Google Scholar 

  • Bruhn H, Kruse B, Korenke GC et al (1992) Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders. J Comput Assist Tomogr 16:335–344

    Article  CAS  PubMed  Google Scholar 

  • Cecil KM, DelBello MP, Sellars MC et al (2003) Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. J Child Adolesc Psychopharmacol 13:545–555

    Article  PubMed  Google Scholar 

  • Chapa F, Cruz F, Garcia-Martin ML et al (2000) Metabolism of (1-13C) glucose and (2-13C, 2-2H3) acetate in the neuronal and glial compartments of the adult rat brain as detected by {13C, 2H} NMR spectroscopy. Neurochem Int 37:217–228

    Article  CAS  PubMed  Google Scholar 

  • Chassain C, Bielicki G, Durand E et al (2008) Metabolic changes detected by proton magnetic resonance spectroscopy in vivo and in vitro in a murin model of Parkinson's disease, the MPTP-intoxicated mouse. J Neurochem 105:874–882

    Article  CAS  PubMed  Google Scholar 

  • Choi JK, Dedeoglu A, Jenkins BG (2007) Application of MRS to mouse models of neurodegenerative illness. NMR Biomed 20:216–237

    Article  PubMed  Google Scholar 

  • Choi JK, Kustermann E, Dedeoglu A et al (2009) Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. Eur J Neurosci 30:2143–2150

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi IY, Lee SP, Denney D et al (2011) Lower levels of glutathione in the brains of secondary progressive multiple sclerosis patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Mult Scler 17:289–296

    Article  CAS  PubMed  Google Scholar 

  • Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276

    Article  CAS  PubMed  Google Scholar 

  • Costa MO, Lacerda MT, Garcia Otaduy MC et al (2002) Proton magnetic resonance spectroscopy: normal findings in the cerebellar hemisphere in childhood. Pediatr Radiol 32:787–792

    Article  PubMed  Google Scholar 

  • Davie CA, Barker GJ, Webb S et al (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118(Pt 6):1583–1592

    Article  PubMed  Google Scholar 

  • Davies NP, Wilson M, Harris LM et al (2008) Identification and characterisation of childhood cerebellar tumours by in vivo proton MRS. NMR Biomed 21:908–918

    Article  CAS  PubMed  Google Scholar 

  • De Stefano N, Dotti MT, Mortilla M et al (2001) Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthomatosis. Brain 124:121–131

    Article  PubMed  Google Scholar 

  • Dedeoglu A, Choi JK, Cormier K et al (2004) Magnetic resonance spectroscopic analysis of Alzheimer's disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 1012:60–65

    Article  CAS  PubMed  Google Scholar 

  • Deelchand DK, Adanyeguh IM, Emir UE et al (2015) Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single voxel MRS at 3 T. Magn Reson Med 73:1718–1725

    Article  PubMed  Google Scholar 

  • Deelchand DK, Kantarci K, Öz G (2018) Improved localization, spectral quality, and repeatability with advanced MRS methodology in the clinical setting. Magn Reson Med 79:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Deelchand DK, Joers JM, Ravishankar A et al (2019) Sensitivity of volumetric magnetic resonance imaging and magnetic resonance spectroscopy to progression of spinocerebellar ataxia type 1. Mov Disord Clin Pract 6:549–558

    Article  PubMed  PubMed Central  Google Scholar 

  • Deicken RF, Feiwell R, Schuff N et al (2001) Evidence for altered cerebellar vermis neuronal integrity in schizophrenia. Psychiatry Res 107:125–134

    Article  CAS  PubMed  Google Scholar 

  • DeKosky ST, Marek K (2003) Looking backward to move forward: early detection of neurodegenerative disorders. Science 302:830–834

    Article  CAS  PubMed  Google Scholar 

  • Demougeot C, Garnier P, Mossiat C et al (2001) N-Acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 77:408–415

    Article  CAS  PubMed  Google Scholar 

  • DeVito TJ, Drost DJ, Neufeld RW et al (2007) Evidence for cortical dysfunction in autism: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 61:465–473

    Article  PubMed  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  CAS  PubMed  Google Scholar 

  • Duarte JM, Lei H, Mlynarik V et al (2012) The neurochemical profile quantified by in vivo 1H NMR spectroscopy. NeuroImage 61:342–362

    Article  CAS  PubMed  Google Scholar 

  • Eluri R, Paul C, Roemer R et al (1998) Single-voxel proton magnetic resonance spectroscopy of the pons and cerebellum in patients with schizophrenia: a preliminary study. Psychiat Res Neuroimag 84:17–26

    Article  CAS  Google Scholar 

  • Emir UE, Raatz S, McPherson S et al (2011) Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain. NMR Biomed 24:888–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emir UE, Tuite PJ, Öz G (2012a) Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. PLoS One 7:e30918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emir UE, Auerbach EJ, Moortele PF et al (2012b) Regional neurochemical profiles in the human brain measured by 1H MRS at 7 T using local B1 shimming. NMR Biomed 25:152–160

    Article  CAS  PubMed  Google Scholar 

  • Emir UE, Brent Clark H, Vollmers ML et al (2013) Non-invasive detection of neurochemical changes prior to overt pathology in a mouse model of spinocerebellar ataxia type 1. J Neurochem 127:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ende G, Hubrich P, Walter S et al (2005) Further evidence for altered cerebellar neuronal integrity in schizophrenia. Am J Psychiatry 162:790–792

    Article  PubMed  Google Scholar 

  • Ernst T, Kreis R, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson 102:1–8

    Article  CAS  Google Scholar 

  • Fagerlund A, Heikkinen S, Autti-Ramo I et al (2006) Brain metabolic alterations in adolescents and young adults with fetal alcohol spectrum disorders. Alcohol Clin Exp Res 30:2097–2104

    Article  CAS  PubMed  Google Scholar 

  • Fisher SK, Novak JE, Agranoff BW (2002) Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem 82:736–754

    Article  CAS  PubMed  Google Scholar 

  • Frahm J, Bruhn H, Gyngell ML et al (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 11:47–63

    Article  CAS  PubMed  Google Scholar 

  • Fulham MJ, Dietz MJ, Duyn JH et al (1994) Transsynaptic reduction in N-acetyl-aspartate in cerebellar diaschisis: a proton MR spectroscopic imaging study. J Comput Assist Tomogr 18:697–704

    Article  CAS  PubMed  Google Scholar 

  • Galanaud D, Haik S, Linguraru MG et al (2010) Combined diffusion imaging and MR spectroscopy in the diagnosis of human prion diseases. AJNR Am J Neuroradiol 31:1311–1318

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruetter R, Ugurbil K, Seaquist ER (1998) Steady-state cerebral glucose concentrations and transport in the human brain. J Neurochem 70:397–408

    Article  CAS  PubMed  Google Scholar 

  • Gruetter R, Adriany G, Choi IY et al (2003) Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 16:313–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrini L, Belli G, Cellerini M et al (2002) Proton MR spectroscopy of cerebellitis. Magn Reson Imaging 20:619–622

    Article  PubMed  Google Scholar 

  • Guerrini L, Lolli F, Ginestroni A et al (2004) Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain 127:1785–1795

    Article  CAS  PubMed  Google Scholar 

  • Guerrini L, Belli G, Mazzoni L et al (2009) Impact of cerebrospinal fluid contamination on brain metabolites evaluation with 1H-MR spectroscopy: a single voxel study of the cerebellar vermis in patients with degenerative ataxias. J Magn Reson Imaging 30:11–17

    Article  PubMed  Google Scholar 

  • Gybina AA, Tkáč I, Prohaska JR (2009) Copper deficiency alters the neurochemical profile of developing rat brain. Nutr Neurosci 12:114–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberg AK, Qu H, Sonnewald U (2009) Acute changes in intermediary metabolism in cerebellum and contralateral hemisphere following middle cerebral artery occlusion in rat. J Neurochem 109(Suppl 1):174–181

    Article  PubMed  CAS  Google Scholar 

  • Harding AE (1982) The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the ‘the Drew family of Walworth’. Brain 105:1–28

    Article  CAS  PubMed  Google Scholar 

  • Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Harno H, Heikkinen S, Kaunisto MA et al (2005) Decreased cerebellar total creatine in episodic ataxia type 2: a 1H MRS study. Neurology 64:542–544

    Article  CAS  PubMed  Google Scholar 

  • Harper C (2009) The neuropathology of alcohol-related brain damage. Alcohol Alcohol 44:136–140

    Article  CAS  PubMed  Google Scholar 

  • Harris LM, Davies N, Macpherson L et al (2007) The use of short-echo-time 1H MRS for childhood cerebellar tumours prior to histopathological diagnosis. Pediatr Radiol 37:1101–1109

    Article  PubMed  Google Scholar 

  • Heikkila O, Makimattila S, Timonen M et al (2010) Cerebellar glucose during fasting and acute hyperglycemia in nondiabetic men and in men with type 1 diabetes. Cerebellum 9:336–344

    Article  PubMed  Google Scholar 

  • Hekmatyar SK, Wilson M, Jerome N et al (2010) 1H nuclear magnetic resonance spectroscopy characterisation of metabolic phenotypes in the medulloblastoma of the SMO transgenic mice. Br J Cancer 103:1297–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henchcliffe C, Shungu DC, Mao X et al (2008) Multinuclear magnetic resonance spectroscopy for in vivo assessment of mitochondrial dysfunction in Parkinson's disease. Ann N Y Acad Sci 1147:206–220

    Article  CAS  PubMed  Google Scholar 

  • Hennig J, Pfister H, Ernst T et al (1992) Direct absolute quantification of metabolites in the human brain with in vivo localized proton spectroscopy. NMR Biomed 5:193–199

    Article  CAS  PubMed  Google Scholar 

  • Hetherington HP, Pan JW, Mason GF et al (1996) Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 36:21–29

    Article  CAS  PubMed  Google Scholar 

  • Hetherington HP, Spencer DD, Vaughan JT et al (2001) Quantitative 31P spectroscopic imaging of human brain at 4 Tesla: assessment of gray and white matter differences of phosphocreatine and ATP. Magn Reson Med 45:46–52

    Article  CAS  PubMed  Google Scholar 

  • Iltis I, Hutter D, Bushara KO et al (2010) 1H MR spectroscopy in Friedreich's ataxia and ataxia with oculomotor apraxia type 2. Brain Res 1358:200–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inglese M, Nusbaum AO, Pastores GM et al (2005) MR imaging and proton spectroscopy of neuronal injury in late-onset GM2 gangliosidosis. AJNR Am J Neuroradiol 26:2037–2042

    PubMed  PubMed Central  Google Scholar 

  • Jacobs MA, Horska A, van Zijl PC et al (2001) Quantitative proton MR spectroscopic imaging of normal human cerebellum and brain stem. Magn Reson Med 46:699–705

    Article  CAS  PubMed  Google Scholar 

  • Jenkins BG, Kraft E (1999) Magnetic resonance spectroscopy in toxic encephalopathy and neurodegeneration. Curr Opin Neurol 12:753–760

    Article  CAS  PubMed  Google Scholar 

  • Jenkins BG, Klivenyi P, Kustermann E et al (2000) Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington's disease mice. J Neurochem 74:2108–2119

    Article  CAS  PubMed  Google Scholar 

  • Jenkins BG, Andreassen OA, Dedeoglu A et al (2005) Effects of CAG repeat length, HTT protein length and protein context on cerebral metabolism measured using magnetic resonance spectroscopy in transgenic mouse models of Huntington’s disease. J Neurochem 95:553–562

    Article  CAS  PubMed  Google Scholar 

  • Joers JM, Deelchand DK, Lyu T et al (2018) Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Ann Neurol 83:816–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaldis P, Hemmer W, Zanolla E et al (1996) ‘Hot spots’ of creatine kinase localization in brain: cerebellum, hippocampus and choroid plexus. Dev Neurosci 18:542–554

    Article  CAS  PubMed  Google Scholar 

  • Kalra S, Cashman NR, Genge A et al (1998) Recovery of N-acetylaspartate in corticomotor neurons of patients with ALS after riluzole therapy. Neuroreport 9:1757–1761

    Article  CAS  PubMed  Google Scholar 

  • Kan HE, Meeuwissen E, van Asten JJ et al (2007) Creatine uptake in brain and skeletal muscle of mice lacking guanidinoacetate methyltransferase assessed by magnetic resonance spectroscopy. J Appl Physiol 102:2121–2127

    Article  CAS  PubMed  Google Scholar 

  • Kantarci K, Petersen RC, Boeve BF et al (2004) 1H MR spectroscopy in common dementias. Neurology 63:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Kantarci K, Knopman DS, Dickson DW et al (2008) Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 248:210–220

    Article  PubMed  Google Scholar 

  • Kim JP, Lentz MR, Westmoreland SV et al (2005) Relationships between astrogliosis and 1H MR spectroscopic measures of brain choline/creatine and myo-inositol/creatine in a primate model. AJNR Am J Neuroradiol 26:752–759

    PubMed  PubMed Central  Google Scholar 

  • Kish SJ, Rajput A, Gilbert J et al (1986) Elevated gamma-aminobutyric acid level in striatal but not extrastriatal brain regions in Parkinson's disease: correlation with striatal dopamine loss. Ann Neurol 20:26–31

    Article  CAS  PubMed  Google Scholar 

  • Klockgether T, Dichgans J (1997) The genetic basis of hereditary ataxia. Prog Brain Res 114:569–576

    Article  CAS  PubMed  Google Scholar 

  • Kofke WA, Hawkins RA, Davis DW et al (1987) Comparison of the effects of volatile anesthetics on brain glucose metabolism in rats. Anesthesiology 66:810–813

    Article  CAS  PubMed  Google Scholar 

  • Konaka K, Kaido M, Okuda Y et al (2000) Proton magnetic resonance spectroscopy of a patient with Gerstmann-Straussler-Scheinker disease. Neuroradiology 42:662–665

    Article  CAS  PubMed  Google Scholar 

  • Kreis R, Wingeier K, Vermathen P et al (2011) Brain metabolite composition in relation to cognitive function and dystrophin mutations in boys with Duchenne muscular dystrophy. NMR Biomed 24:253–262

    Article  CAS  PubMed  Google Scholar 

  • Kruse T, Reiber H, Neuhoff V (1985) Amino acid transport across the human blood-CSF barrier. An evaluation graph for amino acid concentrations in cerebrospinal fluid. J Neurol Sci 70:129–138

    Article  CAS  PubMed  Google Scholar 

  • Magnitsky S, Vite CH, Delikatny EJ et al (2010) Magnetic resonance spectroscopy of the occipital cortex and the cerebellar vermis distinguishes individual cats affected with alpha-mannosidosis from normal cats. NMR Biomed 23:74–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marjanska M, Curran GL, Wengenack TM et al (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 102:11906–11910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascalchi M, Tosetti M, Plasmati R et al (1998) Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Ann Neurol 43:244–252

    Article  CAS  PubMed  Google Scholar 

  • Mascalchi M, Brugnoli R, Guerrini L et al (2002a) Single-voxel long TE 1H-MR spectroscopy of the normal brainstem and cerebellum. J Magn Reson Imaging 16:532–537

    Article  PubMed  Google Scholar 

  • Mascalchi M, Cosottini M, Lolli F et al (2002b) Proton MR spectroscopy of the cerebellum and pons in patients with degenerative ataxia. Radiology 223:371–378

    Article  PubMed  Google Scholar 

  • Meisingset TW, Risa O, Brenner M et al (2010) Alteration of glial-neuronal metabolic interactions in a mouse model of Alexander disease. Glia 58:1228–1234

    Article  PubMed  PubMed Central  Google Scholar 

  • Mekle R, Mlynarik V, Gambarota G et al (2009) MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn Reson Med 61:1279–1285

    Article  CAS  PubMed  Google Scholar 

  • Metzger GJ, Snyder C, Akgun C et al (2008) Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements. Magn Reson Med 59:396–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaelis T, Merboldt KD, Bruhn H et al (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187:219–227

    Article  CAS  PubMed  Google Scholar 

  • Mueller SG, Trabesinger AH, Boesiger P et al (2001) Brain glutathione levels in patients with epilepsy measured by in vivo 1H-MRS. Neurology 57:1422–1427

    Article  CAS  PubMed  Google Scholar 

  • Muthukumaraswamy SD, Edden RA, Jones DK et al (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci U S A 106:8356–8361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada Y (1992) The distribution and function of gamma-aminobutyric acid (GABA) in the superior colliculus. Prog Brain Res 90:249–262

    Article  CAS  PubMed  Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392

    Article  CAS  PubMed  Google Scholar 

  • Öz G, Tkáč I (2011) Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn Reson Med 65:901–910

    Article  PubMed  CAS  Google Scholar 

  • Öz G, Tkáč I, Charnas LR et al (2005) Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology 64:434–441

    Article  PubMed  Google Scholar 

  • Öz G, Hutter D, Tkáč I et al (2010a) Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord 25:1253–1261

    Article  PubMed  PubMed Central  Google Scholar 

  • Öz G, Nelson CD, Koski DM et al (2010b) Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 30:3831–3838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Öz G, Iltis I, Hutter D et al (2011a) Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. Cerebellum 10:208–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Öz G, Vollmers ML, Nelson CD et al (2011b) In vivo monitoring of recovery from neurodegeneration in conditional transgenic SCA1 mice. Exp Neurol 232:290–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Öz G, Okar DA, Henry PG (2012) Glutamate-glutamine cycle and anaplerosis. In: Choi IY, Gruetter R (eds) Advances in neurobiology. Springer, New York, pp 921–946

    Google Scholar 

  • Öz G, Alger JR, Barker PB et al (2014) Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270:658–679

    Article  PubMed  Google Scholar 

  • Öz G, Kittelson E, Demirgoz D et al (2015) Assessing recovery from neurodegeneration in spinocerebellar ataxia 1: comparison of in vivo magnetic resonance spectroscopy with motor testing, gene expression and histology. Neurobiol Dis 74:158–166

    Article  PubMed  CAS  Google Scholar 

  • Palmi M, Brooke S, Smith AD et al (1991) GABA-like immunoreactivity in different cellular populations of cerebellar cortex of rats before and after treatment with amino-oxyacetic acid. Brain Res 543:277–286

    Article  CAS  PubMed  Google Scholar 

  • Panigrahy A, Krieger MD, Gonzalez-Gomez I et al (2006) Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol 27:560–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parks MH, Dawant BM, Riddle WR et al (2002) Longitudinal brain metabolic characterization of chronic alcoholics with proton magnetic resonance spectroscopy. Alcohol Clin Exp Res 26:1368–1380

    Article  CAS  PubMed  Google Scholar 

  • Peet AC, Davies NP, Ridley L et al (2007) Magnetic resonance spectroscopy suggests key differences in the metastatic behaviour of medulloblastoma. Eur J Cancer 43:1037–1044

    Article  PubMed  Google Scholar 

  • Perry TL, Kish SJ, Hansen S et al (1981) Neurotransmitter amino acids in dominantly inherited cerebellar disorders. Neurology 31:237–242

    Article  CAS  PubMed  Google Scholar 

  • Petroff OA, Pleban LA, Spencer DD (1995) Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of the epileptic human brain. Magn Reson Imaging 13:1197–1211

    Article  CAS  PubMed  Google Scholar 

  • Pfeuffer J, Tkáč I, Provencher SW et al (1999) Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson 141:104–120

    Article  CAS  PubMed  Google Scholar 

  • Pouwels PJ, Frahm J (1998) Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med 39:53–60

    Article  CAS  PubMed  Google Scholar 

  • Pouwels PJ, Kruse B, Korenke GC et al (1998) Quantitative proton magnetic resonance spectroscopy of childhood adrenoleukodystrophy. Neuropediatrics 29:254–264

    Article  CAS  PubMed  Google Scholar 

  • Pouwels PJ, Brockmann K, Kruse B et al (1999) Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 46:474–485

    Article  CAS  PubMed  Google Scholar 

  • Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  CAS  PubMed  Google Scholar 

  • Rae C, Scott RB, Thompson CH et al (1998) Brain biochemistry in Duchenne muscular dystrophy: a 1H magnetic resonance and neuropsychological study. J Neurol Sci 160:148–157

    Article  CAS  PubMed  Google Scholar 

  • Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23:209–216

    Article  CAS  PubMed  Google Scholar 

  • Sappey-Marinier D, Vighetto A, Peyron R et al (1999) Phosphorus and proton magnetic resonance spectroscopy in episodic ataxia type 2. Ann Neurol 46:256–259

    Article  CAS  PubMed  Google Scholar 

  • Schöls L, Bauer P, Schmidt T et al (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3:291–304

    Article  PubMed  Google Scholar 

  • Schuhmann MU, Stiller D, Skardelly M et al (2003) Metabolic changes in the vicinity of brain contusions: a proton magnetic resonance spectroscopy and histology study. J Neurotrauma 20:725–743

    Article  PubMed  Google Scholar 

  • Stockler S, Holzbach U, Hanefeld F et al (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 36:409–413

    Article  CAS  PubMed  Google Scholar 

  • Storm-Mathisen J, Danbolt NC, Rothe F et al (1992) Ultrastructural immunocytochemical observations on the localization, metabolism and transport of glutamate in normal and ischemic brain tissue. Prog Brain Res 94:225–241

    Article  CAS  PubMed  Google Scholar 

  • Swanson RA, Sagar SM, Sharp FR (1989) Regional brain glycogen stores and metabolism during complete global ischaemia. Neurol Res 11:24–28

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi G, Bertolino A, Righini A et al (1995) Brain regional distribution pattern of metabolite signal intensities in young adults by proton magnetic resonance spectroscopic imaging. Neurology 45:1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi G, Bertolino A, Massaquoi SG et al (1996) Proton magnetic resonance spectroscopic imaging in patients with cerebellar degeneration. Ann Neurol 39:71–78

    Article  CAS  PubMed  Google Scholar 

  • Terakawa H, Abe K, Watanabe Y et al (1999) Proton magnetic resonance spectroscopy (1H MRS) in patients with sporadic cerebellar degeneration. J Neuroimaging 9:72–77

    Article  CAS  PubMed  Google Scholar 

  • Terpstra M, Marjanska M, Henry PG et al (2006) Detection of an antioxidant profile in the human brain in vivo via double editing with MEGA-PRESS. Magn Reson Med 56:1192–1199

    Article  CAS  PubMed  Google Scholar 

  • Terpstra M, Cheong I, Lyu T et al (2016) Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T. Magn Reson Med 76:1083–1091

    Article  PubMed  Google Scholar 

  • Tibbo P, Hanstock CC, Asghar S et al (2000) Proton magnetic resonance spectroscopy (1H-MRS) of the cerebellum in men with schizophrenia. J Psychiatry Neurosci 25:509–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tkáč I, Keene CD, Pfeuffer J et al (2001) Metabolic changes in quinolinic acid-lesioned rat striatum detected non-invasively by in vivo 1H NMR spectroscopy. J Neurosci Res 66:891–898

    Article  PubMed  Google Scholar 

  • Tkáč I, Henry PG, Andersen P et al (2004) Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T. Magn Reson Med 52:478–484

    Article  PubMed  CAS  Google Scholar 

  • Tkáč I, Dubinsky JM, Keene CD et al (2007) Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo 1H NMR spectroscopy. J Neurochem 100:1397–1406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tkáč I, Öz G, Adriany G et al (2009) In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn Reson Med 62:868–879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urenjak J, Williams SR, Gadian DG et al (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urquhart N, Perry TL, Hansen S et al (1975) GABA content and glutamic acid decarboxylase activity in brain of Huntington’s chorea patients and control subjects. J Neurochem 24:1071–1075

    Article  CAS  PubMed  Google Scholar 

  • Valette J, Guillermier M, Besret L et al (2007) Isoflurane strongly affects the diffusion of intracellular metabolites, as shown by 1H nuclear magnetic resonance spectroscopy of the monkey brain. J Cereb Blood Flow Metab 27:588–596

    Article  CAS  PubMed  Google Scholar 

  • Van de Moortele PF, Akgun C, Adriany G et al (2005) B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518

    Article  PubMed  Google Scholar 

  • van Gelder NM (1989) Brain taurine content as a function of cerebral metabolic rate: osmotic regulation of glucose derived water production. Neurochem Res 14:495–497

    Article  PubMed  Google Scholar 

  • Viau M, Marchand L, Bard C et al (2005) 1H magnetic resonance spectroscopy of autosomal ataxias. Brain Res 1049:191–202

    Article  CAS  PubMed  Google Scholar 

  • Vion-Dury J, Nicoli F, Salvan AM et al (1995) Reversal of brain metabolic alterations with zidovudine detected by proton localised magnetic resonance spectroscopy. Lancet 345:60–61

    Article  CAS  PubMed  Google Scholar 

  • Vrenken H, Barkhof F, Uitdehaag BM et al (2005) MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 53:256–266

    Article  CAS  PubMed  Google Scholar 

  • Wilichowski E, Pouwels PJ, Frahm J et al (1999) Quantitative proton magnetic resonance spectroscopy of cerebral metabolic disturbances in patients with MELAS. Neuropediatrics 30:256–263

    Article  CAS  PubMed  Google Scholar 

  • Wilken B, Helms G, Christen HJ et al (1996) Localized proton magnetic resonance spectroscopy of a cerebellar tumor in a two-year-old child. Childs Nerv Syst 12:626–629

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Prentice H (2010) Role of taurine in the central nervous system. J Biomed Sci 17(Suppl 1):S1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The preparation of this manuscript was supported by the National Institutes of Health grants R01 NS070815 and R01 NS080816. The Center for MR Research is supported by National Center for Research Resources (NCRR) biotechnology research resource grant P41 EB015894 and Neuroscience Center Core Blueprint Award P30 NS076408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülin Öz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Öz, G. (2021). MR Spectroscopy in Health and Disease. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_29-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_29-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics