Skip to main content

Development of Glutamatergic and GABAergic Synapses

  • Living reference work entry
  • First Online:
Book cover Handbook of the Cerebellum and Cerebellar Disorders

Abstract

More than a century ago, Santiago Ramón y Cajal based on the cerebellum his initial description of neurons labeled with the silver impregnation method, obtaining evidence in favor of the neuron doctrine. It is perhaps less known that Ramón y Cajal also made an accurate description of cerebellar development, laying the foundation for successive studies of cell migration, neuronal differentiation, and synaptogenesis. Building on this work, subsequent analyses of cerebellar development have greatly increased the understanding of cellular and molecular events that regulate the assembly of synaptic circuits in the central nervous system. What makes the cerebellum a particularly useful model system is its delayed course of development, largely extending into postnatal life. This chapter describes the current state of knowledge relating to cerebellar synapse development, highlighting recent studies on the molecular and activity-dependent mechanisms that control the spatial specificity of synaptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altman J (1972a) Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol 145:353–398

    Article  CAS  PubMed  Google Scholar 

  • Altman J (1972b) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–464

    Article  CAS  PubMed  Google Scholar 

  • Altman J (1972c) Postnatal development of the cerebellar cortex in the rat. III. Maturation of the components of the granular layer. J Comp Neurol 145:465–514

    Article  CAS  PubMed  Google Scholar 

  • Ango F, di Cristo G, Higashiyama H et al (2004) Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at Purkinje axon initial segment. Cell 119:257–272

    Article  CAS  PubMed  Google Scholar 

  • Ango F, Wu C, Van der Want JJ et al (2008) Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites. PLoS Biol 6:e103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311

    Article  CAS  PubMed  Google Scholar 

  • Barski JJ, Dethleffsen K, Meyer M (2000) Cre recombinase expression in cerebellar Purkinje cells. Genesis 28:93–98

    Article  CAS  PubMed  Google Scholar 

  • Briatore F, Patrizi A, Viltono L et al (2010) Quantitative organization of GABAergic synapses in the molecular layer of the mouse cerebellar cortex. PLoS One 5:e12119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brickley SG, Cull-Candy SG, Farrant M (1999) Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J Neurosci 19:2960–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buttermore ED, Piochon C, Wallace ML et al (2012) Pinceau organization in the cerebellum requires distinct functions of neurofascin in Purkinje and basket neurons during postnatal development. J Neurosci 32:4724–4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cathala L, Holderith NB, Nusser Z et al (2005) Changes in synaptic structure underlie the developmental speeding of AMPA receptor-mediated EPSCs. Nat Neurosci 8:1310–1318

    Article  CAS  PubMed  Google Scholar 

  • Celio M (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Article  CAS  PubMed  Google Scholar 

  • Cesa R, Strata P (2009) Axonal competition in the synaptic wiring of the cerebellar cortex during development and in the mature cerebellum. Neuroscience 162:624–632

    Article  CAS  PubMed  Google Scholar 

  • Chan-Palay V (1971) The recurrent collaterals of Purkinje cell axons: a correlated study of the rat’s cerebellar cortex with electron microscopy and the Golgi method. Z Anat Entwickl-Gesch 134:200–234

    Article  CAS  Google Scholar 

  • Chen S, Hillman DE (1993) Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol 22:81–91

    Article  CAS  PubMed  Google Scholar 

  • Chen AI, Nguyen CN, Copenhagen DR et al (2011) TrkB (tropomyosin-related kinase B) controls the assembly and maintenance of GABAergic synapses in the cerebellar cortex. J Neurosci 31:2769–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen AI, Zang K, Masliah E et al (2016) Glutamatergic axon-derived BDNF controls GABAergic synaptic differentiation in the cerebellum. Sci Rep 6:20201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choo M, Miyazaki T, Yamazaki M et al (2017) Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun 8:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coutinho V, Mutoh J, Knöpfel T (2004) Functional topology of the mossy fibre-granule cell-Purkinje cell system revealed by imaging of intrinsic fluorescence in mouse cerebellum. Eur J Neurosci 20:740–748

    Article  CAS  PubMed  Google Scholar 

  • Crepel F, Mariani J, Delhaye-Bouchaud N (1976) Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol 7:567–578

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo E (2008) The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Front Neurosci 2:35–46

    Article  PubMed  PubMed Central  Google Scholar 

  • De Schutter E, Vos B, Maex R (2000) The function of cerebellar Golgi cells revisited. Prog Brain Res 124:81–93

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Berrebi AS (1995) Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7:2322–2333

    Article  PubMed  Google Scholar 

  • Dieudonné S, Dumoulin A (2000) Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 20:1837–1848

    Article  PubMed  PubMed Central  Google Scholar 

  • Dugué GP, Dumoulin A, Triller A et al (2005) Target-dependent use of co-released inhibitory transmitters at central synapses. J Neurosci 25:6490–6498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dumoulin A, Triller A, Dieudonné S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21:6045–6057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin

    Book  Google Scholar 

  • Eisenman LM, Schalekamp MP, Voogd J (1991) Development of the cerebellar cortical efferent projection: an in-vitro anterograde tracing study in rat brain slices. Dev Brain Res 60:261–266

    Article  CAS  Google Scholar 

  • Eyre MD, Nusser Z (2016) Only a minority of the inhibitory inputs to cerebellar golgi cells originates from local GABAergic cells. eNeuro 3(2):317–334

    Google Scholar 

  • Farrant M, Brickley SG (2003) Properties of GABAA receptor-mediated transmission at newly formed Golgi-granule cell synapses in the cerebellum. Neuropharmacology 44:181–189

    Article  CAS  PubMed  Google Scholar 

  • Feldblum S, Erlander MG, Tobin AJ (1993) Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J Neurosci Res 34:689–706

    Article  CAS  PubMed  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  CAS  PubMed  Google Scholar 

  • Galliano E, Mazzarello P, D’Angelo E (2010) Discovery and rediscoveries of Golgi cells. J Physiol 588:3639–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garin N, Escher G (2001) The development of inhibitory synaptic specializations in the mouse deep cerebellar nuclei. Neuroscience 105:431–441

    Article  CAS  PubMed  Google Scholar 

  • Geurts FJ, De Schutter E, Dieudonné S (2003) Unraveling the cerebellar cortex: cytology and cellular physiology of large-sized interneurons in the granular layer. Cerebellum 2:290–299

    Article  PubMed  Google Scholar 

  • Greif KF, Erlander MG, Tillakaratne NJ et al (1991) Postnatal expression of glutamate decarboxylases in developing rat cerebellum. Neurochem Res 16:235–242

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Witter L, Rudolph S et al (2016) Purkinje cells directly inhibit granule cells in specialized regions of the cerebellar cortex. Neuron 91:1330–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100:525–535

    Article  CAS  PubMed  Google Scholar 

  • Hámori J, Somogyi J (1983) Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol 220:367–377

    Article  Google Scholar 

  • Harvey RJ, Napper RM (1991) Quantitative studies on the mammalian cerebellum. Prog Neurobiol 36:437–463

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Hibi M (2012) Development and evolution of cerebellar neural circuits. Develop Growth Differ 54:373–389

    Article  CAS  Google Scholar 

  • Hashimoto K, Ichikawa R, Kitamura K et al (2009) Translocation of a “winner” climbing fiber to the Purkinje cell dendrite and subsequent elimination of “losers” from the soma in developing cerebellum. Neuron 63:106–118

    Article  CAS  PubMed  Google Scholar 

  • Heckroth JA (1992) Development of glutamic acid decarboxylase-immunoreactive elements in the cerebellar cortex of normal and lurcher mutant mice. J Comp Neurol 315:85–97

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Pang Z, Bao D et al (2005) Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci 8:1534–1541

    Article  CAS  PubMed  Google Scholar 

  • Hirono M, Saitow F, Kudo M et al (2012) Cerebellar globular cells receive monoaminergic excitation and monosynaptic inhibition from Purkinje cells. PLoS One 7:e29663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hull C, Regehr WG (2012) Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron 73:149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa R, Miyazaki T, Kano M et al (2002) Distal extension of climbing fiber territory and multiple innervation caused by aberrant wiring to adjacent spiny branchlets in cerebellar Purkinje cells lacking glutamate receptor delta 2. J Neurosci 22:8487–8503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa R, Yamasaki M, Miyazaki T (2011) Developmental switching of perisomatic innervation from climbing fibers to basket cell fibers in cerebellar Purkinje cells. J Neurosci 31:16916–16927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa R, Hashimoto K, Miyazaki T (2016) Territories of heterologous inputs onto Purkinje cell dendrites are segregated by mGluR1-dependent parallel fiber synapse elimination. Proc Natl Acad Sci U S A 113:2282–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  • Ito S, Takeichi M (2009) Dendrites of cerebellar granule cells correctly recognize their target axons for synaptogenesis in vitro. Proc Natl Acad Sci U S A 106:12782–12787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito-Ishida A, Miyazaki T, Miura E et al (2012) Presynaptically released Cbln1 induces dynamic axonal structural changes by interacting with GluD2 during cerebellar synapse formation. Neuron 76:549–564

    Article  CAS  PubMed  Google Scholar 

  • Kakegawa W, Mitakidis N, Miura E et al (2015) Anterograde C1ql1 signaling is required in order to determine and maintain a single-winning climbing fiber in the mouse cerebellum. Neuron 85:316–329

    Article  CAS  PubMed  Google Scholar 

  • Kalinovsky A, Boukhtouche F, Blazeski R et al (2011) Development of Axon-Target Specificity of Ponto-Cerebellar Afferents. PLoS Biol 9(2):e1001013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda M, Farrant M, Cull-Candy SG (1995) Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J Physiol 485:419–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano M, Hashimoto K (2009) Synapse elimination in the central nervous system. Curr Opin Neurobiol 19:154–161

    Article  CAS  PubMed  Google Scholar 

  • Kano M, Nakayama H, Hashimoto K et al (2013) Calcium-dependent regulation of climbing fibre synapse elimination during postnatal cerebellar development. J Physiol 591:3151–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwabuchi N, Ikeda K, Araki K et al (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81:245–252

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Kim N, Kim KW et al (2013) Three-dimensional imaging of cerebellar mossy fiber rosettes by ion-abrasion scanning electron microscopy. Microsc Microanal 19(Suppl 5):172–177

    Article  CAS  PubMed  Google Scholar 

  • Kita Y, Tanaka K, Murakami F (2014) Specific Labeling of Climbing Fibers Shows Early Synaptic Interactions with Immature Purkinje Cells in the Prenatal Cerebellum. Dev Neurobiol 75:927–934

    Article  PubMed  CAS  Google Scholar 

  • Kurihara H, Hashimoto K, Kano M et al (1997) Impaired parallel fiber→Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor delta2 subunit. J Neurosci 17:9613–9623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwako K, Nishimoto Y, Kawase S et al (2014) Cadherin-7 regulates mossy fiber connectivity in the cerebellum. Cell Rep 9:311–323

    Article  CAS  PubMed  Google Scholar 

  • Lainé J, Axelrad H (2002) Extending the cerebellar Lugaro cell class. Neuroscience 115:363–374

    Article  PubMed  Google Scholar 

  • Landsend AS, Amiry-Moghaddam M, Matsubara A et al (1997) Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17:834–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larramendi LMH (1969) Analysis of synaptogenesis in the cerebellum of the mouse. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. American Medical Association, Chicago

    Google Scholar 

  • Larramendi LMH, Lemkey-Johnston NJ (1970) The distribution of recurrent Purkinje collateral synapses in the mouse cerebellar cortex: An electron microscopic study. J Comp Neurol 138:451–482

    Article  CAS  PubMed  Google Scholar 

  • Lichtman JW, Smith SJ (2008) Seeing circuits assemble. Neuron 60:441–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinás RR, Walton KD, Lang EJ (2004) Cerebellum. In: Shepherd GM (ed) The synaptic organization of the brain. Oxford University Press, New York

    Google Scholar 

  • Lu H, Yang B, Jaeger D (2016) Cerebellar nuclei neurons show only small excitatory responses to optogenetic olivary stimulation in transgenic mice: in vivo and in vitro studies. Front Neural Circuits 10:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manzini MC, Ward MS, Zhang Q et al (2006) The stop signal revised: immature cerebellar granule neurons in the external germinal layer arrest pontine mossy fiber growth. J Neurosci 26:6040–6051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason CA, Gregory E (1984) Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons. J Neurosci 4:1715–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda K, Miura E, Miyazaki T et al (2010) Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science 328:363–368

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin BJ, Wood JG, Saito K (1975) The fine structural localization of glutamate decarboxylase in developing axonal processes and presynaptic terminals of rodent cerebellum. Brain Res 85:355–371

    Article  CAS  PubMed  Google Scholar 

  • Meinecke DL, Rakic P (1990) Developmental expression of GABA and subunits of the GABAA receptor complex in an inhibitory synaptic circuit in the rat cerebellum. Brain Res Dev Brain Res 55:73–86

    Article  CAS  PubMed  Google Scholar 

  • Mikuni T, Uesaka N, Okuno H et al (2013) Arc/Arg3.1 is a postsynaptic mediator of activity-dependent synapse elimination in the developing cerebellum. Neuron 78:1024–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18:12–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki T, Fukaya M, Shimizu H et al (2003) Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur J Neurosci 17:2563–2572

    Article  PubMed  Google Scholar 

  • Miyazaki T, Yamasaki M, Takeuchi T et al (2010) Ablation of Glutamate receptor GluRδ2 in adult Purkinje cells causes multiple innervation of climbing fibers by inducing aberrant invasion to parallel fiber innervation territory. J Neurosci 30:15196–15209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morara S, van der Want JJ, de Weerd H et al (2001) Ultrastructural analysis of climbing fiber-Purkinje cell synaptogenesis in the rat cerebellum. Neuroscience 108:655–671

    Article  CAS  PubMed  Google Scholar 

  • Mugnaini E, Sekerková G, Martina M (2011) The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res Rev 66:220–245

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najac M, Raman IM (2017) Synaptic excitation by climbing fibre collaterals in the cerebellar nuclei of juvenile and adult mice. J Physiol 595:6703–6718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450:342–353

    Article  CAS  PubMed  Google Scholar 

  • Palay S, Chan-Palay V (1974) Cerebellar cortex: cytology and organization. Springer, Berlin

    Book  Google Scholar 

  • Palkovits M, Mezey E, Hámori J et al (1977) Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Exp Brain Res 28:189–209

    CAS  PubMed  Google Scholar 

  • Patrizi A, Scelfo B, Viltono L et al (2008) Synapse formation and clustering of neuroligin-2 in the absence of GABAA receptors. Proc Natl Acad Sci U S A 105:13151–13156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petreanu L, Huber D, Sobczyk A et al (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668

    Article  CAS  PubMed  Google Scholar 

  • Pouzat C, Hestrin S (1997) Developmental regulation of basket/stellate cell→Purkinje cell synapses in the cerebellum. J Neurosci 17:9104–9112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pregno G, Frola E, Graziano S et al (2013) Differential regulation of neurexin at glutamatergic and GABAergic synapses. Front Cell Neurosci 7:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi-Balaei M, Afsharinezhad P, Bailey K et al (2015) Embryonic stages in cerebellar afferent development. Cerebellum & Ataxias 2:7

    Article  Google Scholar 

  • Ramón y Cajal S (1890) Sobre ciertos elementos bipolares del cerebelo joven y algunos detalles mas acerca del crecimiento y evolución de las fibras cerebelosas. Gaceta Sanitaria, Barcelona, 10 Febrero, pp 1–20

    Google Scholar 

  • Ramón y Cajal S (1911) Histologie du système nerveux de l’homme et des vertébrés. Maloine, Paris

    Google Scholar 

  • Rico B, Xu B, Reichardt LF (2002) TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat Neurosci 5:225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robain O, Bideau I, Farkas E (1981) Developmental changes of synapses in the cerebellar cortex of the rat. A quantitative analysis. Brain Res 206:1–8

    Article  CAS  PubMed  Google Scholar 

  • Rosina A, Morara S, Provini L (1999) GAT-1 developmental expression in the rat cerebellar cortex: basket and pinceau formation. Neuroreport 10:1613–1618

    Article  CAS  PubMed  Google Scholar 

  • Sahin M, Hockfield S (1990) Molecular identification of the Lugaro cell in the cat cerebellar cortex. J Comp Neurol 301:575–584

    Article  CAS  PubMed  Google Scholar 

  • Sassoè-Pognetto M, Patrizi A (2017) The Purkinje cell as a model of synaptogenesis and synaptic specificity. Brain Res Bull 129:12–17

    Article  PubMed  CAS  Google Scholar 

  • Schild RF (1970) On the inferior olive of the albino rat. J Comp Neurol 140:255–260

    Article  CAS  PubMed  Google Scholar 

  • Schilling K, Oberdick J (2009) The treasury of the commons: making use of public gene expression resources to better characterize the molecular diversity of inhibitory interneurons in the cerebellar cortex. Cerebellum 8:477–489

    Article  CAS  PubMed  Google Scholar 

  • Schilling K, Oberdick J, Rossi F et al (2008) Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol 130:601–615

    Article  CAS  PubMed  Google Scholar 

  • Selimi F, Cristea IM, Heller E et al (2009) Proteomic studies of a single CNS synapse type: the parallel fiber/Purkinje cell synapse. PLoS Biol 7:e83

    Article  PubMed  CAS  Google Scholar 

  • Shimono T, Nosaka S, Sasaki K (1976) Electrophysiological study on the postnatal development of neuronal mechanisms in the rat cerebellar cortex. Brain Res 108:279–294

    Article  CAS  PubMed  Google Scholar 

  • Sigoillot SM, Iyer K, Binda F et al (2015) The secreted protein C1QL1 and its receptor BAI3 control the synaptic connectivity of excitatory inputs converging on cerebellar Purkinje cells. Cell Rep 10:820–832

    Article  CAS  PubMed  Google Scholar 

  • Simat M, Ambrosetti L, Lardi-Studler B et al (2007a) GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in mouse cerebellum. Eur J Neurosci 26:2239–2256

    Article  PubMed  Google Scholar 

  • Simat M, Parpan F, Fritschy JM (2007b) Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 500:71–83

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C (1990) Cerebellar synaptogenesis: what can we learn from mutant mice. J Exp Biol 153:225–249

    CAS  PubMed  Google Scholar 

  • Sotelo C (2008) Development of “Pinceaux” formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells. J Comp Neurol 506:240–262

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Hisatsune C, Le TD et al (2013) Type 1 inositol trisphosphate receptor regulates cerebellar circuits by maintaining the spine morphology of Purkinje cells in adult mice. J Neurosci 33:12186–12196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10:735–742

    Article  CAS  PubMed  Google Scholar 

  • Takayama C, Inoue Y (2004) GABAergic signaling in the developing cerebellum. Anat Sci Int 79:124–136

    Article  CAS  PubMed  Google Scholar 

  • Takayama C, Inoue Y (2005) Developmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex. Dev Brain Res 158:41–49

    Article  CAS  Google Scholar 

  • Takeda T, Maekawa K (1989) Transient direct connection of vestibular mossy fibers to the vestibulocerebellar Purkinje cells in early postnatal development of kittens. Neuroscience 32:99–111

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Miyazaki T, Watanabe M et al (2005) Control of synaptic connection by glutamate receptor delta2 in the adult cerebellum. J Neurosci 25:2146–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telley L, Cadilhac C, Cioni JM et al (2016) Dual Function of NRP1 in Axon Guidance and Subcellular Target Recognition in Cerebellum. Neuron 91:1276–1291

    Article  CAS  PubMed  Google Scholar 

  • Teune TM, van der Burg J, de Zeeuw CI et al (1998) Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 392:164–178

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Kakizawa S, Yamasaki M et al (2007) Regulation of long-term depression and climbing fiber territory by glutamate receptor delta2 at parallel fiber synapses through its C-terminal domain in cerebellar Purkinje cells. J Neurosci 27:12096–12108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura T, Lee SJ, Yasumura M et al (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141:1068–1079

    Article  CAS  PubMed  Google Scholar 

  • Uesaka N, Uchigashima M, Mikuni T et al (2014) Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science 344:1020–1023

    Article  CAS  PubMed  Google Scholar 

  • Umemori H, Linhoff MW, Ornitz DM et al (2004) FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118:257–270

    Article  CAS  PubMed  Google Scholar 

  • Vicini S, Ortinski P (2004) Genetic manipulations of GABAA receptor in mice make inhibition exciting. Pharmacol Ther 103:109–120

    Article  CAS  PubMed  Google Scholar 

  • Viltono L, Patrizi A, Fritschy JM et al (2008) Synaptogenesis in the cerebellar cortex: differential regulation of gephyrin and GABAA receptors at somatic and dendritic synapses of Purkinje cells. J Comp Neurol 508:579–591

    Article  PubMed  Google Scholar 

  • Voogd J (2004) Cerebellum. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2:484–491

    Article  CAS  PubMed  Google Scholar 

  • Wassef M, Sotelo C (1984) Asynchrony in the expression of guanosine 3′:5′-phosphate-dependent protein kinase by clusters of Purkinje cells during the perinatal development of rat cerebellum. Neuroscience 13:1217–1241

    Article  CAS  PubMed  Google Scholar 

  • Wassef M, Simons J, Tappaz ML et al (1986) Non-Purkinje cell GABAergic innervation of the deep cerebellar nuclei: a quantitative immunocytochemical study in C57BL and in Purkinje cell degeneration mutant mice. Brain Res 399:125–135

    Article  CAS  PubMed  Google Scholar 

  • Watanabe D, Nakanishi S (2003) mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses. Neuron 39:821–829

    Article  CAS  PubMed  Google Scholar 

  • Watanabe D, Inokawa H, Hashimoto K et al (1998) Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell 95:17–27

    Article  CAS  PubMed  Google Scholar 

  • Watt AJ, Cuntz H, Mori M et al (2009) Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nat Neurosci 12:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witter L, Rudolph S, Pressler RT et al (2016) Purkinje cell collaterals enable output signals from the cerebellar cortex to feed back to purkinje cells and interneurons. Neuron 91:312–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff P, Goetz T, Leppä E et al (2007) From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat Neurosci 10:923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff P, Schonewille M, Renzi M et al (2009) Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci 12:1042–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan XX, Ribak CE (1998) Developmental expression of gamma-aminobutyric acid transporters (GAT-1 and GAT-3) in the rat cerebellum: evidence for a transient presence of GAT-1 in Purkinje cells. Dev Brain Res 111:253–269

    Article  CAS  Google Scholar 

  • Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34

    Article  CAS  PubMed  Google Scholar 

  • Yuzaki M (2003) The delta2 glutamate receptor: ten years later. Neurosci Res 46:11–22

    Article  CAS  PubMed  Google Scholar 

  • Yuzaki M (2010) Synapse formation and maintenance by C1q family proteins: a new class of secreted synapse organizers. Eur J Neurosci 32:191–197

    Article  PubMed  Google Scholar 

  • Zhao HM, Wenthold RJ, Petralia RS (1998) Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. J Neurosci 18:5517–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonta B, Desmazieres A, Rinaldi A (2011) A critical role for Neurofascin in regulating action potential initiation through maintenance of the axon initial segment. Neuron 69:945–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Sassoè-Pognetto .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sassoè-Pognetto, M., Patrizi, A. (2019). Development of Glutamatergic and GABAergic Synapses. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_12-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_12-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics