Skip to main content

Co-evolution of the Shrimp Hippolyte inermis and the Diatoms Cocconeis spp. in Posidonia oceanica: Sexual Adaptations Explained by Ecological Fitting

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Microalgae influence the life of grazers in such stable ecosystems as Posidonia oceanica meadows. Competition and co-existence require adaptations for both organisms: algae produce metabolites able to reduce the grazing activity, and invertebrate react to the chemical weapons of algae, for feeding on their thalli. Several diatoms produce wound-activated compounds and some of them have been demonstrated to trigger apoptosis and teratogenic effects in planktonic copepods. The case of Hippolyte inermis and its diatom food is different and peculiar because the shrimp transformed the effects of apoptogenic compounds produced by Cocconeis into a spring signal to obtain a higher abundance of females, so stabilizing its natural populations. As in crustacean decapods, the sex is determined by the presence/absence of a single gland (the Androgenic Gland; A.G.), in H. inermis the apoptogenic effect of secondary metabolites is limited to the destruction of the A.G. in spring, when various species of Cocconeis dominate the epiphytic layer of Posidonia leaves. This relationship, evidently co-evolved through a competitive relationship, allows the shrimp to produce a secondary reproduction burst in fall, when Cocconeis spp. are less abundant on the leaves of the plant. Co-evolutionary relationships are often viewed in light of mutual cooperation between two species. However, the peculiar case of H. inermis indicates the need to widen the concept, integrating various adaptations that may lead to different degrees of advantages for two co-evolving organisms. Shrimp’s populations are stabilized in P. oceanica meadows thanks to this very specific relationship, and they can survive a high predation pressure by fish and other invertebrates because the secondary reproductive burst in fall produces sufficient specimens for the next spring.

This is a preview of subscription content, log in via an institution.

References

  1. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740

    Article  CAS  Google Scholar 

  2. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  3. Ehrlich PR (1958) The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera: Papilionoidea). Univ Kansas Sci Bull 39:305–370

    Google Scholar 

  4. Nuismer S (2018) Introduction to coevolutionary theory. ISBN-10: 1-319-12981-1; ISBN-13: 978-1-319-12981-1

    Google Scholar 

  5. Perc M, Szolnoki A (2010) Coevolutionary games – a mini review. Biosystems 99:109–125

    Article  Google Scholar 

  6. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    Article  CAS  Google Scholar 

  7. Dethier VG (1954) Evolution of feeding preferences in phytophagous insects. Evolution 8:33–54

    Article  Google Scholar 

  8. Lubchenco J, Gaines SD (1981) A unified approach to marine plant-herbivore interactions. I. Populations and communities. Annu Rev Ecol Syst 12:405–437

    Article  Google Scholar 

  9. Cronin G, Hay ME (1996) Susceptibility to herbivores depends on recent history of both plant and animal. Ecology 77(5):1531–1537

    Article  Google Scholar 

  10. Fontana A, d’Ippolito G, Cutignano A, Romano G, Lamari N, Gallucci AM, Cimino G, Miralto A, Ianora A (2007) LOX-induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. Chembiochem 8:1810–1818. https://doi.org/10.1002/cbic.200700269

    Article  CAS  PubMed  Google Scholar 

  11. Duffy JE, Hay ME (1990) Seaweed adaptations to herbivory. BioScience 40:368–375

    Article  Google Scholar 

  12. Ban SH, Burns C, Castel J et al (1997) The paradox of diatom-copepod interactions. Mar Ecol Prog Ser 157:287–293

    Article  Google Scholar 

  13. Miralto A, Barone G, Romano G, Poulet SA, Ianora A, Russo GL, Buttino I, Mazzarella G, Laabir M, Cabrini M, Giacobbe MG (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176. https://doi.org/10.1038/46023

    Article  CAS  Google Scholar 

  14. Pohnert G (2000) Wound-activated chemical defence in unicellular planktonic algae. Angew Chem Int Ed 39:4352–4355. https://doi.org/10.1002/1521-3773(20001201)

    Article  CAS  Google Scholar 

  15. Varrella S, Romano G, Ianora A, Bentley MG, Ruocco N, Costantini M (2014) Molecular response to toxic diatom-derived aldehydes in the sea urchin Paracentrotus lividus. Mar Drugs 12(4):2089–2113. https://doi.org/10.3390/md12042089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bornancin L, Bonnard I, Mills SC, Banaigs B (2017) Chemical mediation as a structuring element in marine gastropod predator-prey interactions. Nat Prod Rep 34(6):644–676. https://doi.org/10.1039/c6np00097e

    Article  CAS  PubMed  Google Scholar 

  17. Wang JR, He WF, Guo YW (2013) Chemistry, chemoecology, and bioactivity of the South China Sea opisthobranch molluscs and their dietary organisms. J Asian Nat Prod Res 15(2): 185–197. https://doi.org/10.1080/10286020.2012.746960

    Article  CAS  PubMed  Google Scholar 

  18. Taylor RL, Caldwell GS, Olive PJW, Bentley MG (2012) The harpacticoid copepod Tisbe holothuriae is resistant to the insidious effects of polyunsaturated aldehyde-producing diatoms. J Exp Mar Biol Ecol 413:30–37. https://doi.org/10.1016/j.jembe.2011.11.024

    Article  Google Scholar 

  19. Thorsteinson AJ (1960) Host selection in phytophagous insects. Ann Rev Ent 5:193–218

    Article  Google Scholar 

  20. Stevenson RJ, Peterson CG, Kirschtel DB, King CC, Tuchman NC (1991) Density-dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom succession in streams. J Phycol 27:59–69. https://doi.org/10.1111/j.0022-3646.1991.00059.x

    Article  Google Scholar 

  21. Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  22. Pohnert G (2004) Chemical defense strategies of marine organisms. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals I. Springer, New York, Top Curr Chem 239:179–219. https://doi.org/10.1007/b95453

    Chapter  Google Scholar 

  23. Falasco E, Badino G (2011) The role of environmental factors in shaping the diatom frustule morphological plasticity and teratological forms. In: Compton JC (ed) Diatom ecology and life cycle. pp 1–36. ISBN 978-1-61761-973-3

    Google Scholar 

  24. Pohnert G, Steinke M, Tollrian R (2007) Chemical cues, defense metabolites and the shaping of pelagic interspecific interactions. Trends Ecol Evol 22:198–204. https://doi.org/10.1016/j.tree.2007.01.005

    Article  PubMed  Google Scholar 

  25. d’Ippolito G, Romano G, Caruso T, Spinella A, Cimino G, Fontana A (2003) Production of octadienal in the marine diatom Skeletonema costatum. Org Lett 5:885–887. https://doi.org/10.1021/ol034057c

    Article  CAS  Google Scholar 

  26. Nappo M, Berkov S, Codina C, Avila C, Messina P, Zupo V, Bastida J (2009) Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. J Appl Phycol 21:295–306. https://doi.org/10.1007/s10811-008-9367-8

    Article  CAS  Google Scholar 

  27. Zupo V, Maibam C (2011) Ecological role of benthic diatoms as regulators for invertebrate physiology and behaviour. In: Compton JC (ed) Diatom ecology and life cycle. pp 149–168. ISBN 978-1-61761-973-3

    Google Scholar 

  28. Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than original compounds? Funct Ecol 2:131–139

    Article  Google Scholar 

  29. Maibam C, Fink P, Romano G et al (2014) Relevance of wound-activated compounds produced by diatoms as toxins and infochemicals for benthic invertebrates. Mar Biol 161(7):1639–1652

    Article  CAS  Google Scholar 

  30. Fink P, von Elert E, Jüttner F (2006) Oxylipins from freshwater diatoms act as attractants for a benthic herbivore. Arch Hydrobiol 167:561–574. https://doi.org/10.1127/0003-9136/2006/0167-0561

    Article  CAS  Google Scholar 

  31. Leflaive J, Ten-Hage L (2009) Chemical interactions in diatoms: role of polyunsaturated aldehydes and precursors. New Phytol 184:794–805. https://doi.org/10.1111/j.1469-8137.2009.03033.x

    Article  CAS  PubMed  Google Scholar 

  32. Romano G, Russo GL, Buttino I, Ianora A, Miralto A (2003) A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos. J Exp Biol 206:3487–3494. https://doi.org/10.1242/jeb.00580

    Article  PubMed  Google Scholar 

  33. Romano G, Miralto A, Ianora A (2010) Teratogenic effects of diatom metabolites on sea urchin Paracentrotus lividus embryos. Mar Drugs 8:950–967. https://doi.org/10.3390/md8040950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fink P (2007) Ecological functions of volatile organic compounds in aquatic systems. Mar Freshw Behav Physiol 40:155–168. https://doi.org/10.1080/10236240701602218

    Article  CAS  Google Scholar 

  35. Jones RH, Flynn KJ (2015) Nutritional status and diet composition affect the value of diatoms as copepod prey. Science 307:1457–1459. https://doi.org/10.1126/science.1107767

    Article  CAS  Google Scholar 

  36. Djeghri N, Atkinson A, Fileman ES et al (2018) High prey-predator size ratios and unselective feeding in copepods: a seasonal comparison of five species with contrasting feeding modes. Prog Oceanogr 16:63–74

    Article  Google Scholar 

  37. Lepoint G, Cox AS, Dauby P, Poulicek M, Gobert S (2006) Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter. Mar Biol Res 2:355–365. https://doi.org/10.1080/17451000600962797

    Article  Google Scholar 

  38. Mazzella L, Russo GF (1989) Grazing effect of two Gibbula species (Mollusca, Archaeogastropoda) on the epiphytic community of Posidonia oceanica leaves. Aquat Bot 35:353–373. https://doi.org/10.1016/0304-3770(89)90007-7

    Article  Google Scholar 

  39. Jüttner F (1999) Allelochemical control of natural photoautotrophic biofilms. In: Keevil CW, Godfree A, Holt D, Dow C (eds) Biofilms in aquatic environment. Royal Society of Chemistry, Cambridge, UK, pp 43–50

    Google Scholar 

  40. De Stefano M, Marino D, Mazzella L (2000) Marine taxa of Cocconeis on leaves of Posidonia oceanica, including a new species and two new varieties. Eur J Phycol 35:225–242. https://doi.org/10.1080/09670260010001735831

    Article  Google Scholar 

  41. Watson SB, Ridal J (2004) Periphyton: a primary source of widespread and severe taste and odour. Water Sci Technol 49:33–39

    Article  CAS  Google Scholar 

  42. Raniello R, Iannicelli MM, Nappo M Avila C, Zupo V (2006) Production of Cocconeis neothumensis (Bacillariophyceae) biomass in batch cultures and bioreactors for biotechnological applications: light and nutrient requirements. J Appl Phycol. https://doi.org/10.1007/s10811-006-9145-4

    Article  CAS  Google Scholar 

  43. Zupo V, Alexander T, Edgar GJ (2017) Relating trophic resources to community structure: a predictive index of food availability. R Soc Open Sci 4:160515. https://doi.org/10.1098/rsos.160515

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zupo V, Messina P (2006) How do dietary diatoms cause the sex reversal of the shrimp Hippolyte inermis Leach (Crustacea, Decapoda). Mar Biol 151:907–917. https://doi.org/10.1007/s00227-006-0524-9

    Article  Google Scholar 

  45. Zariquiei Alvarez R (1968) Crustaceos Decapodos ibericos. Invest Pesq 32:1–510

    Google Scholar 

  46. Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Depth and seasonal distribution of some groups of the vagile fauna of the Posidonia oceanica leaf stratum: structural and trophic analyses. PSZNI Mar Ecol 13(1):17–39

    Article  Google Scholar 

  47. Guillen Nieto JE (1990) Guia illustrada de los crustaceos decapo- dos del litoral alicantino. Instituto del Cultura “Juan Gil-Albert” Publisher, Alicante. 316 pp

    Google Scholar 

  48. Bedini R, Canali MG, Acunto S (1997) Study of the mobile fauna of Posidonia oceanica (L.) Delile of Golfo di Follonica e Golfo di baratti. In: Ambiente Mare: Ecologia e nuove Tecnologie di Ricerca. Edizioni Regione Toscana, Collana Ricerca Scientifica e Tecnologica 12:59–78

    Google Scholar 

  49. Ianora A, Poulet SA, Miralto A (1995) A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Mar Biol 121:533–539

    Article  Google Scholar 

  50. Poulet SA, Ianora A, Miralto A, Meijer L (1994) Do diatoms arrest embryonic development in copepods? Mar Ecol Progr Ser 111:79–86

    Article  Google Scholar 

  51. Ianora A, Miralto A (2010) Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. Ecotoxicology 19: 493–511

    Article  Google Scholar 

  52. Adiyodi G, Adiyodi G (1970) Endocrine control of reproduction in decapod crustacea. Biol Rev 45:121–165

    Article  CAS  Google Scholar 

  53. Zupo V (1994) Strategies of sexual inversion in Hippolyte inermis Leach (Crustacea, Decapoda) from a Mediterranean seagrass meadow. J Exp Mar Biol Ecol 178:131–145

    Article  Google Scholar 

  54. Zupo V (2000) Effect of microalgal food on the sex reversal of Hippolyte inermis (Crustacea: Decapoda). Mar Ecol Prog Ser 201:251–259

    Article  Google Scholar 

  55. d’Udekem d’Acoz C (1996) The genus Hippolyte Leach, 1814 (Crustacea: Decapoda: Caridea: Hippolytidae) in the East Atlantic Ocean and the Mediterranean Sea, with a checklist of all species in the genus. Zool Verhand 303:1–133

    Google Scholar 

  56. Zupo V, Messina P, Buttino I, Sagi A, Avila C, Nappo M, Bastida J, Codina C, Zupo S (2007) Do benthic and planktonic diatoms produce equivalent effects in crustaceans? Mar Freshw Behav Physiol 40:1–13. https://doi.org/10.1080/10236240701592930

    Article  Google Scholar 

  57. Buia MC, Gambi MC, Zupo V (2000) Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol Mar Medit 7(2):167–190

    Google Scholar 

  58. Charniaux-Cotton H (1967) Endocrinologie et génétique de la différenciation sexuelle chez les invertébrés. C R Seances Soc Biol 16:6–9

    Google Scholar 

  59. Levy T, Manor R, Tamone SL, Aflalo ED, Sagi A (2017) Sexual differentiation during the life history of a protandric shrimp. Integr Comp Biol 57(1):E327–E327

    Google Scholar 

  60. Bortolini JL, Bauet RT (2017) Persistence of reduced androgenic glands after protandric sex change is a possible basis for simultaneous hermaphroditism in the marine shrimp Lysmata wurdemanni. Integr Comp Biol 57(1):E208

    Google Scholar 

  61. Zupo V, Messina P, Carcaterra A, Aflalo ED, Sagi A (2008) Experimental evidence of a sex reversal process in the shrimp Hippolyte inermis. Invertebr Reprod Dev 52(1–2):93–100

    Article  Google Scholar 

  62. Reverberi G (1950) La situazione sessuale di Hippolyte viridis e le condizioni che la reggono. Boll Zoologico 4:91–94

    Article  Google Scholar 

  63. Zupo V (2001) Influence of diet on sex differentiation of Hippolyte inermis Leach (Decapoda: Natantia) in the field. Hydrobiologia 449:131–140

    Article  Google Scholar 

  64. Cobos V, Diaz V, Raso G, Enrique J, Manjon-Cabeza ME (2005) Insights on the female reproductive system in Hippolyte inermis (Decapoda, Caridea): is this species really hermaphroditic? Invertebr Biol 124:310–320

    Article  Google Scholar 

  65. Charnov EL, Los-den Hartogh RL, Jones WT, van den Assem J (1981) Sex ratio evolution in a variable environment. Nature 289:27–33

    Article  CAS  Google Scholar 

  66. Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  67. Zupo V, Jüttner F, Maibam C, Butera E, Blom JF (2014) Apoptogenic metabolites in fractions of the benthic diatom Cocconeis scutellum parva. Mar Drugs 12:547–567. https://doi.org/10.3390/md12010547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Juettner F, Messina P, Patalano C et al (2010) Odour compounds of the diatom Cocconeis scutellum: effects on benthic herbivores living on Posidonia oceanica. Mar Ecol Prog Ser 400:63–73

    Article  Google Scholar 

Download references

Acknowledgments

The English text was kindly revised by Mrs. R. Messina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Zupo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zupo, V. (2020). Co-evolution of the Shrimp Hippolyte inermis and the Diatoms Cocconeis spp. in Posidonia oceanica: Sexual Adaptations Explained by Ecological Fitting. In: Mérillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-96397-6_27

Download citation

Publish with us

Policies and ethics