Skip to main content

Interactions of Trichoderma with Plants, Insects, and Plant Pathogen Microorganisms: Chemical and Molecular Bases

  • Reference work entry
  • First Online:
Co-Evolution of Secondary Metabolites

Abstract

Trichoderma spp. are free-living fungi common in soils from different ecosystems, but can also establish endophytic associations with plants, roots, and seeds. Trichoderma are economically important due to their production of secondary metabolites of great interest in medicine, biotechnology, and agriculture. Fungal metabolites comprise nonvolatile and volatile compounds that include alcohols, aldehydes, organic acids, esters, hydrocarbonated compounds, ketones, and nitrogen- and sulfur-containing metabolites as the cyclic molecules indole-3-acetic acid and gliovirin, respectively. Fungal metabolites have been identified as natural products, and consequently, some compounds of interest have been obtained by chemical syntheses. In a natural scenario, a number of Trichoderma secondary metabolites have key roles regulating plant growth and development or affecting the proliferation of plant pathogenic microorganisms in the soil due to their production of antibiotics or siderophores. In this work, we consider the chemical basis for how Trichoderma spp. exert directly or indirectly beneficial effects on plants and control plant pathogenic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016) Secondary metabolism in Trichoderma-Chemistry meets genomics. Fungal Biol Rev 30:74–90. https://doi.org/10.1016/j.fbr.2016.05.001

    Article  Google Scholar 

  2. Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194. https://doi.org/10.1094/PHYTO-96-0190

    Article  CAS  PubMed  Google Scholar 

  3. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40. https://doi.org/10.1186/gb-2011-12-4-r40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799. https://doi.org/10.1007/s00253-010-2632-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129. https://doi.org/10.1146/annurev-phyto-082712-102353

    Article  CAS  PubMed  Google Scholar 

  6. Crutcher FK, Parich A, Schuhmacher R, Mukherjee PS, Zeilinger S, Kenerley CM (2013) A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genet Biol 56:67–77. https://doi.org/10.1016/j.fgb.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  7. Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92. https://doi.org/10.1093/femsec/fiw036

    Article  Google Scholar 

  8. Carreras-Villaseñor N, Sánchez-Arreguín JA, Herrera-Estrella AH (2012) Trichoderma: sensing the environment for survival and dispersal. Microbiology 158:3–16. https://doi.org/10.1099/mic.0.052688-0

    Article  CAS  PubMed  Google Scholar 

  9. Lamdan NL, Shalaby S, Ziv T, Kenerley CM, Horwitz BA (2015) Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Mol Cell Proteomics 14:1054–1063. https://doi.org/10.1074/mcp.M114.046607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10. https://doi.org/10.1016/j.soilbio.2007.07.002

    Article  CAS  Google Scholar 

  11. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus enhances biomass production and promotes lateral root growth through an auxin dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592. https://doi.org/10.1104/pp.108.130369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Velázquez-Robledo R, Contreras-Cornejo HA, Macías-Rodríguez L, Hernàndez-Morales A, Aguirre J, Casas-Flores S, López-Bucio J, Herrera-Estrella A (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism, and induction of plant defense responses. Mol Plant-Microbe Interact 24:1459–1471. https://doi.org/10.1094/MPMI-02-11-0045

    Article  CAS  PubMed  Google Scholar 

  13. Müller A, Faubert P, Hagen M, Zu Castell W, Polle A, Schnitzler JP, Rosenkranz M (2013) Volatile profiles of fungi-chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33. https://doi.org/10.1016/j.fgb.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  14. Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma-a genomic perspective. Microbiology 158:35–45. https://doi.org/10.1099/mic.0.053629-0

    Article  CAS  PubMed  Google Scholar 

  15. Zachow C, Berg C, Müller H, Monk J, Berg G (2016) Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens. J Biotechnol 235:162–170. https://doi.org/10.1016/j.jbiotec.2016.03.049

    Article  CAS  PubMed  Google Scholar 

  16. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Article  CAS  Google Scholar 

  17. Ramírez-Valdespino CA, Porras-Troncoso MD, Corrales-Escobosa AR, Wrobel K, Martínez-Hernández P, Olmedo-Monfil V (2018) Functional characterization of TvCyt2, a member of the p450 monooxygenases from Trichoderma virens relevant during the association with plants and mycoparasitism. Mol Plant-Microbe Interact 31:289–298. https://doi.org/10.1094/MPMI-01-17-0015-R

    Article  PubMed  Google Scholar 

  18. Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163. https://doi.org/10.1104/pp.108.123810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Contreras-Cornejo HA, Macías-Rodríguez LI, Alfaro-Cuevas R, López-Bucio J (2014) Trichoderma improves growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production and Na+ elimination through root exudates. Mol Plant-Microbe Interact 27:503–514. https://doi.org/10.1094/MPMI-09-13-0265-R

    Article  CAS  PubMed  Google Scholar 

  20. Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2014) Enhanced plant immunity using Trichoderma. In: Gupta VK (ed) Biotechnology and biology of Trichoderma. Elsevier, Oxford, pp 495–504

    Chapter  Google Scholar 

  21. Fiorini L, Guglielminetti L, Mariotti L, Curadi M, Picciarelli P, Scartazza A, Sarrocco S, Vannacci G (2016) Trichoderma harzianum T6776 modulates a complex metabolic network to stimulate tomato cv. Micro-Tom growth. Plant Soil 400:351–366. https://doi.org/10.1007/s11104-015-2736-6

    Article  CAS  Google Scholar 

  22. Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952. https://doi.org/10.1002/pmic.200700173

    Article  CAS  PubMed  Google Scholar 

  23. Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563. https://doi.org/10.4161/psb.6.10.17443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martínez-Medina A, Roldán A, Albacete A, Pascual JA (2011) The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry 72:223–229. https://doi.org/10.1016/j.phytochem.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  25. Martínez-Medina A, Del Mar Alguacil M, Pascual JA, Van Wees SC (2014) Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 40:804–815. https://doi.org/10.1007/s10886-014-0478-1

    Article  CAS  PubMed  Google Scholar 

  26. Lombardi N, Vitale S, Turrà D, Reverberi M, Fanelli C, Vinale F, Marra R, Ruocco M, Pascale A, d’Errico G, Woo SL, Lorito M (2018) Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. Mol Plant-Microbe Interact 31:982. https://doi.org/10.1094/MPMI-12-17-0310-R

    Article  CAS  PubMed  Google Scholar 

  27. Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808. https://doi.org/10.1104/pp.109.141291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Macías-Rodríguez L, Guzmán-Gómez A, García-Juárez P, Contreras-Cornejo HA (2018) Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiy137

  29. Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol Plant-Microbe Interact 22:1021–1031. https://doi.org/10.1094/MPMI-22-8-1021

    Article  CAS  PubMed  Google Scholar 

  30. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759. https://doi.org/10.1038/nrmicro2637

    Article  CAS  PubMed  Google Scholar 

  31. Mendoza-Mendoza A, Zaid R, Lawry R, Hermosa R, Monte E, Horwitz BA, Mukherjee PK (2018) Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biol Rev 32:62–85. https://doi.org/10.1016/j.fbr.2017.12.001

    Article  Google Scholar 

  32. Nogueira-Lopez G, Greenwood DR, Middleditch M, Winefield C, Eaton C, Steyaert JM, Mendoza-Mendoza A (2018) The apoplastic secretome of Trichoderma virens during interaction with maize roots shows an inhibition of plant defence and scavenging oxidative stress secreted proteins. Front Plant Sci 9:409. https://doi.org/10.3389/fpls.2018.00409

    Article  PubMed  PubMed Central  Google Scholar 

  33. Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ (2013) Deciphering the hormonal signaling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206. https://doi.org/10.3389/fpls.2013.00206

    Article  PubMed  PubMed Central  Google Scholar 

  34. Martínez-Medina A, Van Wees SCM, Pieterse CMJ (2017) Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ 40:2691–2705. https://doi.org/10.1111/pce.13016

    Article  CAS  PubMed  Google Scholar 

  35. Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9(3):e1003221. https://doi.org/10.1371/journal.ppat.1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB (2018) Trichoderma asperellum T42 reprograms tobacco for enhanced nitrogen utilization efficiency and plant growth when fed with N nutrients. Front Plant Sci 9:163. https://doi.org/10.3389/fpls.2018.00163

    Article  PubMed  PubMed Central  Google Scholar 

  37. Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresour Technol 100:6250–6257. https://doi.org/10.1016/j.biortech.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  38. Splivallo R, Fischer U, Göbel C, Fewsner I, Petr K (2009) Truffles regulate root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2019. https://doi.org/10.1104/pp.109.141325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Woodward AW Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735. https://doi.org/10.1093/aob/mci083

    Article  CAS  PubMed  Google Scholar 

  40. Chung KR, Shilts T, Esturk U, Timmer LW, Ueng P (2003) Indole derivatives produced by the fungus Colletotrichum acutum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett 226:23–30. https://doi.org/10.1016/S0378-1097(03)00605-0

    Article  CAS  PubMed  Google Scholar 

  41. Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26. https://doi.org/10.1007/s10658-011-9782-6

    Article  CAS  Google Scholar 

  42. Frankenberger WT, Poth M (1987) Biosynthesis of indole-3-acetic acid by the pine ectomycorrhizal fungus Pisolithus tinctorius. Appl Environ Microbiol 53:2908–2913

    Article  CAS  Google Scholar 

  43. López-Coria M, Hernández-Mendoza JL, Sánchez-Nieto S (2016) Trichoderma asperellum induces maize seedling growth by activating the plasma membrane H+-ATPase. Mol Plant-Microbe Interact 29:797–806. https://doi.org/10.1094/MPMI-07-16-0138-R

    Article  CAS  PubMed  Google Scholar 

  44. Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara-García AA, López-Bucio J (2015) Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Mol Plant-Microbe Interact 28:701–710. https://doi.org/10.1094/MPMI-01-15-0005-R

    Article  CAS  PubMed  Google Scholar 

  45. Contreras-Cornejo HA, Macías-Rodríguez L, Garnica-Vergara A, López-Bucio J (2015) Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism. J Plant Growth Regul 34:425. https://doi.org/10.1007/s00344-014-9471-8

    Article  CAS  Google Scholar 

  46. Serrano-Carreon L, Hathout Y, Bensoussan M, Belin JM (1993) Production of 6-pentyl-α-pyrone by Trichoderma harzianum from 18:n fatty acid methyl esters. Biotechnol Lett 14:1019–1024. https://doi.org/10.1007/BF01021051

    Article  Google Scholar 

  47. Cutler HG, Jacyno JM, Phillips RS, vonTersch RL, Cole PD, Montemurro N (1991) Cyclonerodiol from a novel source, Trichoderma koningii: plant growth regulatory activity. Agric Biol Chem 55:243–244. https://doi.org/10.1080/00021369.1991.10870569

    Article  CAS  Google Scholar 

  48. Sawa R, Mori Y, Iinuma H, Naganawa H, Hamada M, Yoshida S, Furutani H, Kajimura Y, Fuwa T, Takeuchi T (1994) Harzianic acid, a new antimicrobial antibiotic from a fungus. J Antibiot 47:731–732. https://doi.org/10.7164/antibiotics.47.731

    Article  CAS  PubMed  Google Scholar 

  49. Kawada M, Yoshimoto Y, Kumagai H, Someno T, Momose I, Kawamura N, Isshiki K, Ikeda D (2004) PP2A inhibitors, harzianic acid and related compounds produced by fungal strain F-1531. J Antibiot 57:235–237. https://doi.org/10.7164/antibiotics.57.235

    Article  CAS  PubMed  Google Scholar 

  50. Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035. https://doi.org/10.1021/np900548p

    Article  CAS  PubMed  Google Scholar 

  51. Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127–139. https://doi.org/10.2174/1874437001408010127

    Article  Google Scholar 

  52. Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A (2003) Phytotoxicity of the tetramic acid metabolite trichosetin. Phytochemistry 62:715–721. https://doi.org/10.1016/S0031-9422(02)00629-5

    Article  CAS  PubMed  Google Scholar 

  53. Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2007) Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J Gen Plant Pathol 73:35–37. https://doi.org/10.1007/s10327-006-0314-8

    Article  CAS  Google Scholar 

  54. Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chaverri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2008) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptabiotics, and mycotoxins. Mycol Prog 7:177–219. https://doi.org/10.1007/s11557-008-0563-3

    Article  Google Scholar 

  55. Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG, Hermosa R, Monte E, Gutiérrez S (2013) Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol 53:22–33. https://doi.org/10.1016/j.fgb.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  56. Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Hermosa R, Monte E, Gutiérrez S (2012) Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl Environ Microbiol 78:4856–4868. https://doi.org/10.1128/AEM.00385-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Malmierca MG, McCormick SP, Cardoza RE, Monte E, Alexander NJ, Gutiérrez S (2015) Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression. Mol Plant-Microbe Interact 28:1181–1197. https://doi.org/10.1094/MPMI-06-15-0127-R

    Article  CAS  PubMed  Google Scholar 

  58. Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19:838–853

    Article  Google Scholar 

  59. Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889. https://doi.org/10.1104/pp.107.103689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vargas WA, Djonović S, Sukno SA, Kenerley CM (2008) Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J Biol Chem 283:19804–19815. https://doi.org/10.1074/jbc.M802724200

    Article  CAS  PubMed  Google Scholar 

  61. Cheng CH, Shen BN, Shang QW, Liu LYD, Peng KC, Chen YH, Chen FF, Hu SF, Wang YT, Wang HC, Wu HY, Lo CT, Lin SS (2018) Gene-to-gene network analysis of the mediation of plant innate immunity by the eliciting plant response-like 1 (Epl1) elicitor of Trichoderma formosa. Mol Plant-Microbe Interact 31:683. https://doi.org/10.1094/MPMI-01-18-0002-TA

    Article  CAS  PubMed  Google Scholar 

  62. Ruocco M, Lanzuise S, Lombardi N, Woo SL, Vinale F, Marra R, Varlese R, Manganiello G, Pascale A, Scala V, Turrà D, Scala F, Lorito M (2015) Multiple roles and effects of a novel Trichoderma hydrophobin. Mol Plant-Microbe Interact 28:167–179. https://doi.org/10.1094/MPMI-07-14-0194-R

    Article  CAS  PubMed  Google Scholar 

  63. Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, François Pouchus Y, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554. https://doi.org/10.1074/jbc.M110.159723

    Article  CAS  PubMed  Google Scholar 

  64. Brewer D, Mason FG, Taylor A (1987) The production of alamethicins by Trichoderma spp. Can J Microbiol 33:619–625. https://doi.org/10.1139/m87-108

    Article  CAS  PubMed  Google Scholar 

  65. Fujita T, Wada S, Iida A, Nishimura T, Kanai M, Toyama N (1994) Fungal metabolites. XIII. Isolation and structural elucidation of new peptaibols, trichodecenins-I and II, from Trichoderma viride. Chem Pharm Bull (Tokyo) 42:489–494. https://doi.org/10.1248/cpb.42.489

    Article  CAS  Google Scholar 

  66. Oh SU, Lee SJ, Kim JH, Yoo ID (2000) Structural elucidation of new antibiotic peptides, atroviridins A, B and C from Trichoderma atroviride. Tetrahedron Lett 41:61–64. https://doi.org/10.1016/S0040-4039(99)02000-6

    Article  CAS  Google Scholar 

  67. Krause C, Kirschbaumbaum J, Jung G, Brueckner H (2006) Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride. J Pept Sci 12:321–327. https://doi.org/10.1002/psc.728

    Article  CAS  PubMed  Google Scholar 

  68. Mohamed-Benkada M, Montagu M, Biard JF, Mondeguer F, Verite P, Dalgalarrondo M, Bissett J, Pouchus YF (2006) New short peptaibols from a marine Trichoderma strain. Rapid Commun Mass Spectrom 20:1176–1180. https://doi.org/10.1002/rcm.2430

    Article  CAS  PubMed  Google Scholar 

  69. Degenkolb T, Grafenhan T, Nirenberg HI, Gams W, Bruckner H (2006) Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J Agric Food Chem 54:7047–7061. https://doi.org/10.1021/jf060788q

    Article  CAS  PubMed  Google Scholar 

  70. Auvin-Guette C, Rebuffat S, Prigent Y, Bodo B (1992) Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum. J Am Chem Soc 114:2170–2174. https://doi.org/10.1021/ja00032a035

    Article  CAS  Google Scholar 

  71. Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746. https://doi.org/10.1111/J.1364-3703.2007.00430.X

    Article  CAS  PubMed  Google Scholar 

  72. Zook M, Hammerschmidt R (1997) Origin of the thiazole ring of camalexin, a phytoalexin from Arabidopsis thaliana. Plant Physiol 113:463–468. https://doi.org/10.1104/pp.113.2.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Devys M, Barbier M (1991) Indole-3-carboxaldehyde in the cabbage Brassica oleracea: a systematic determination. Phytochemistry 30:389–391. https://doi.org/10.1016/0031-9422(91)83690-M

    Article  CAS  Google Scholar 

  74. Scheler C, Durner J, Astier J (2013) Nitric oxide and reactive oxygen species in plant biotic interactions. Curr Opin Plant Biol 16:534–539. https://doi.org/10.1016/j.pbi.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  75. Gupta KJ, Mur LAJ, Brotman Y (2014) Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. Mol Plant-Microbe Interact 27:307–314. https://doi.org/10.1094/MPMI-06-13-0160-R

    Article  CAS  PubMed  Google Scholar 

  76. Mastouri F, Björkman T, Harman GE (2012) Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant-Microbe Interact 25:1264–1271. https://doi.org/10.1094/MPMI-09-11-0240

    Article  CAS  PubMed  Google Scholar 

  77. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56. https://doi.org/10.1038/nrmicro797

    Article  CAS  PubMed  Google Scholar 

  78. Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153. https://doi.org/10.1094/PHYTO.2004.94.2.147

    Article  PubMed  Google Scholar 

  79. Harman GE (2000) Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease 84:377–393. https://doi.org/10.1094/PDIS.2000.84.4.377

    Article  CAS  PubMed  Google Scholar 

  80. Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interact 24:336–351. https://doi.org/10.1094/MPMI-09-10-0221

    Article  CAS  PubMed  Google Scholar 

  81. Vinale F, Arjona Girona I, Nigro M, Mazzei P, Piccolo A, Ruocco M, Woo S, Ruano Rosa R, López Herrera C, Lorito M (2011) Cerinolactone, a hydroxyl-lactone derivative from Trichoderma cerinum. J Nat Prod 75:103–106. https://doi.org/10.1021/np200577t

    Article  CAS  PubMed  Google Scholar 

  82. Omann MR, Lehner S, Escobar-Rodríguez C, Brunner K, Zeilinger S (2012) The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology 158:107–118. https://doi.org/10.1099/mic.0.052035-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin YR, Lo CT, Li SY, Peng KC (2012) Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. J Agric Food Chem 60:2123–2128. https://doi.org/10.1021/jf202773y

    Article  CAS  PubMed  Google Scholar 

  84. Miyadera H, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Tomoda H, Miyoshi H, Osanai A, Kita K, Omura S (2003) Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc Natl Acad Sci USA 100:473–477. https://doi.org/10.1073/pnas.0237315100

    Article  CAS  PubMed  Google Scholar 

  85. Seidl V, Song L, Lindquistv E, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, Martínez P, Sun J, Grigoriev I, Herrera-Estrella A, Baker SE, Kubicek CP (2009) Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics 10:567. https://doi.org/10.1186/1471-2164-10-567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  87. Lehner SM, Atanasova L, Neumann NK, Krska R, Lemmens M, Druzhinina IS, Schuhmacher R (2013) Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp. Appl Environ Microbiol 79:18–31. https://doi.org/10.1128/AEM.02339-12

    Article  Google Scholar 

  88. Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions, and applications. Mycol Res 106:1123–1142. https://doi.org/10.1017/S0953756202006548

    Article  CAS  Google Scholar 

  89. Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti EL, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Woo SL, Lorito M (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347:123–129. https://doi.org/10.1111/1574-6968.12231

    Article  CAS  PubMed  Google Scholar 

  90. Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Taylor and Francis, London, pp 139–191

    Google Scholar 

  91. Scarselletti R, Faull JL (1994) In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209. https://doi.org/10.1016/S0953-7562(09)80206-2

    Article  CAS  Google Scholar 

  92. Cooney JM, Lauren DR, Di Menna ME (2001) Impact of competitive fungi on trichothecene production by Fusarium graminearum. J Agric Food Chem 49:522–526. https://doi.org/10.1021/jf0006372

    Article  CAS  PubMed  Google Scholar 

  93. Itoh Y, Kodama K, Furuya K, Takahashi S, Haneishi T, Takiguchi Y, Arai M (1980) A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J Antibiot 33:468–473. https://doi.org/10.7164/antibiotics.33.468

    Article  CAS  PubMed  Google Scholar 

  94. Almassi F, Ghisalberti EL, Narbey MJ, Sivasithamparam K (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54:396–402. https://doi.org/10.1021/np50074a008

    Article  CAS  Google Scholar 

  95. Agarwal SK, Singh SS, Verma S, Kumar S (2000) Antifungal activity of anthraquinone derivatives from Rheum emodi. J Ethnopharmacol 72:43–46. https://doi.org/10.1016/S0378-8741(00)00195-1

    Article  CAS  PubMed  Google Scholar 

  96. Coats JH, Meyer CE, Pyke TR (1971) Antibiotic dermadin. US Patent 3,627,882, 14 Dec 1971

    Google Scholar 

  97. Chukwujekwu JC, Coombes PH, Mulholland DA, van Staden J (2006) Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis. S Afr J Bot 72:295–297. https://doi.org/10.1016/j.sajb.2005.08.003

    Article  CAS  Google Scholar 

  98. Brian PW (1944) Production of gliotoxin by Trichoderma viride. Nature 154:667–668

    Article  CAS  Google Scholar 

  99. Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324. https://doi.org/10.1139/m83-053

    Article  CAS  Google Scholar 

  100. Berg A, Wangun HVK, Nkengfack AE, Schlegel B (2004) Lignoren, a new sesquiterpenoid metabolite from Trichoderma lignorum HKI 0257. J Basic Microbiol 44:317–319. https://doi.org/10.1002/jobm.200410383

    Article  CAS  PubMed  Google Scholar 

  101. Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148. https://doi.org/10.1111/j.1472-765X.2006.01939.x

    Article  CAS  PubMed  Google Scholar 

  102. Marfori EC, Kajiyama S, Fusaki E, Kobayashi A (2003) Phytotoxicity of the tetramic acid metabolite trichosetin. Phytochemistry 62:715–721. https://doi.org/10.1016/S0031-9422(02)00629-5

    Article  CAS  PubMed  Google Scholar 

  103. Yamano T, Hemmi S, Yamamoto I, Tsubaki K (1970) Trichoviridin, a new antibiotic. Jpn. Tokkyo Koho, JP Patent 45015435, 29 May 1970

    Google Scholar 

  104. Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot 28:161–162. https://doi.org/10.7164/antibiotics.28.161

    Article  CAS  PubMed  Google Scholar 

  105. Nobuhara M, Tazima H, Shudo K, Itai A, Okamoto T, Iitaka Y (1976) A fungal metabolite, novel isocyano epoxide. Chem Pharm Bull 24:832–834. https://doi.org/10.1248/cpb.24.832

    Article  CAS  Google Scholar 

  106. Kramer R, Abraham WR (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37. https://doi.org/10.1007/s11101-011-9216-2

    Article  CAS  Google Scholar 

  107. Yoshikuni Y, Martin VJ, Ferrin TE, Keasling JD (2006) Engineering cotton (+)-delta-cadinene synthase to an altered function: germacrene D-4-ol synthase. Chem Biol 13:91–98. https://doi.org/10.1016/j.chembiol.2005.10.016

    Article  CAS  PubMed  Google Scholar 

  108. Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291. https://doi.org/10.1038/nchembio.158

    Article  CAS  PubMed  Google Scholar 

  109. Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193

    Article  CAS  Google Scholar 

  110. Contreras-Cornejo HA, Macías-Rodríguez LI, Herrera-Estrella A, López-Bucio J (2014) The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant Soil 379:261–274. https://doi.org/10.1007/s11104-014-2069-x

    Article  CAS  Google Scholar 

  111. Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26. https://doi.org/10.1016/j.funeco.2012.09.005

    Article  Google Scholar 

  112. Schnürer J, Olsson J, Börjesson T (1999) Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol 27:209–217. https://doi.org/10.1006/fgbi.1999.1139

    Article  PubMed  Google Scholar 

  113. Combet E, Henderson J, Eastwood DC, Burton KS (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326. https://doi.org/10.1007/S10267-006-0318-4

    Article  CAS  Google Scholar 

  114. Splivallo R, Valdez N, Kirchhoff N, Ona MC, Schmidt JP, Feussner I, Karlovsky P (2012) Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytol 194:823–835. https://doi.org/10.1111/j.1469-8137.2012.04077.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2018) The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl Soil Ecol 124:45–53. https://doi.org/10.1016/j.apsoil.2017.10.004

    Article  Google Scholar 

  116. Contreras-Cornejo HA, del-Val E, Macías-Rodríguez L, Alarcón A, González-Esquivel CE, Larsen J (2018) Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy Campoletis sonorensis. Soil Biol Biochem 122:196–202. https://doi.org/10.1016/j.soilbio.2018.04.013

    Article  CAS  Google Scholar 

  117. Ganassi S, Grazioso P, De Cristofaro A, Fiorentini F, Sabatini MA, Evidente A, Altomare C (2016) Long chain alcohols produced by Trichoderma citrinoviride have phagodeterrent activity against the bird cherry-oat aphid Rhopalosiphum padi. Front Microbiol 7:297. https://doi.org/10.3389/fmicb.2016.00297

    Article  PubMed  PubMed Central  Google Scholar 

  118. Battaglia D, Bossi S, Cascone P, Digilio MC, Duran Prieto J, Fanti P, Guerrieri E, Iodice L, Lingua G, Lorito M, Maffei ME, Massa N, Ruocco M, Sasso R, Trotta V (2013) Tomato below ground-above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Mol Plant-Microbe Interact 26:1249–1256. https://doi.org/10.1094/MPMI-02-13-0059-R

    Article  CAS  PubMed  Google Scholar 

  119. Nemcovic M, Jakubikova L, Viden I, Farkas V (2008) Induction of condition by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236. https://doi.org/10.1111/j.1574-6968.2008.01202.x

    Article  CAS  PubMed  Google Scholar 

  120. Slater GP, Haskins RH, Hogge LR, Nesbitt LR (1967) Metabolic products from a Trichoderma viride Pers Ex Fries. Can J Chem 45:92–96. https://doi.org/10.1139/v67-020

    Article  CAS  Google Scholar 

  121. De Stefano S, Nicoletti R (1999) Pachybasin and chrysophanol, two anthraquinones produced by the fungus Trichoderma aureoviride. Tabacco 7:21–24

    Google Scholar 

  122. Abe N, Murata T, Hirota A (1998) Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Biosci Biotechnol Biochem 62:661–666. https://doi.org/10.1271/bbb.62.661

    Article  CAS  PubMed  Google Scholar 

  123. Qian-Cutrone J, Huang S, Chang LP, Pirnik DM, Klohr SE, Dalterio RA, Hugill R, Lowe S, Alam M, Kadow KF (1996) Harziphilone and fleephilone, two new HIV REV/RRE binding inhibitors produced by Trichoderma harzianum. J Antibiot 49:990–997. https://doi.org/10.7164/antibiotics.49.990

    Article  CAS  PubMed  Google Scholar 

  124. Amagata T, Usami Y, Minoura K, Ito T, Numata A (1998) Cytotoxic substances produced by a fungal strain from a sponge: physico-chemical properties and structures. J Antibiot 51:33–40. https://doi.org/10.7164/antibiotics.51.33

    Article  CAS  PubMed  Google Scholar 

  125. Dodge JA, Sato M, Vlahos CJ (1995) Inhibition of phosphatidylinositol 3-kinase with viridin and analogs thereof. European Patent Application 648492, 19 Apr 1995

    Google Scholar 

  126. Hanson JR (1995) The viridin family of steroidal antibiotics. Nat Prod Rep 12:381–384. https://doi.org/10.1039/NP9951200381

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Carlos Cortés-Penagos (UMSNH) for kindly providing us with T. virens Gv29-8. We apologize to colleagues whose relevant work we were unable to cite owing to space limitations. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hexon Angel Contreras-Cornejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Contreras-Cornejo, H.A., Macías-Rodríguez, L., del-Val, E., Larsen, J. (2020). Interactions of Trichoderma with Plants, Insects, and Plant Pathogen Microorganisms: Chemical and Molecular Bases. In: Mérillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-96397-6_23

Download citation

Publish with us

Policies and ethics