Skip to main content

Evolution of the Angiosperms and Co-evolution of Secondary Metabolites, Especially of Alkaloids

  • Reference work entry
  • First Online:
Book cover Co-Evolution of Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Plants produce a wide variety of secondary metabolites (PSM) for protection against herbivores, microorganisms, and competing plants. PSM also function as signal compounds to attract pollinating and fruit-dispersing animals. PSM occur in complex mixtures, which vary between organs and developmental stages of a plant. PSM have been structurally optimized during evolution to affect molecular targets in animals, other plants, and microbes. Many insect herbivores have adapted to the defense chemistry of their host plants and are mono- and oligophagous. The largest class of PSM are alkaloids, which often function as strong neurotoxins against insects and vertebrates. Whereas the production of alkaloids is very limited in spore bearing plants and gymnosperms, they are dominant in angiosperms, which comprise more than 90% of all living plants. Angiosperms develop showy flowers to attract pollinators. However, these pollinators should only feed on nectar but not on the aerial parts or flowers of a plant. It is argued that the diversification of angiosperms was a driving force for the radiation and diversification of insects, which comprise the majority of animals with more than 1.4 million species. As a sort of co-evolution, angiosperms, which rely on animal pollination, started to produce a wide diversity of neurotoxic and fast-acting alkaloids to keep their animal visitors under control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AMP:

Antimicrobial peptide

PSM:

Plant secondary metabolite

References

  1. Dewick PM (2002) Medicinal natural products. A biosynthetic approach. Wiley, New York. 507pp

    Google Scholar 

  2. Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic, London

    Google Scholar 

  3. Harborne JB, Baxter H (1993) Phytochemical dictionary. A handbook of bioactive compounds from plants. Taylor & Francis, London

    Google Scholar 

  4. Seigler DS (1998) Plant secondary metabolism. Kluwer, Dordrecht/London/Boston

    Book  Google Scholar 

  5. Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    Article  CAS  Google Scholar 

  6. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  PubMed  Google Scholar 

  7. Wink M (2016) Evolution of secondary plant metabolism. In: eLS. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0001922.pub3

    Chapter  Google Scholar 

  8. Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Natl Prod Commun 3:1205–1216

    CAS  Google Scholar 

  9. Wink M (2013) Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot 89:164–175

    Article  CAS  Google Scholar 

  10. Zenk MH, Juenger M (2007) Evolution and current status of the phytochemistry of nitrogenous compounds. Phytochemistry 65:2757–2772

    Article  CAS  Google Scholar 

  11. Wink M (2010) Biochemistry of plant secondary metabolism. Annual plant reviews, vol 40. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  12. Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  CAS  PubMed  Google Scholar 

  13. Wink M (2008) Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine. Curr Drug Metab 9:996–1009

    Article  CAS  PubMed  Google Scholar 

  14. Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2:251–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wink M (2010) Function of plant secondary metabolites and their exploitation in biotechnology. Annual plant reviews, vol 39. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  16. van Wyk BE, Wink M (2017) Medicinal plants of the world, 2nd edn. CABI, Wallingford

    Book  Google Scholar 

  17. Wink M, Schimmer O (2010) Molecular modes of action of defensive secondary metabolites. In: Wink M (ed) Functions and biotechnology of plant secondary metabolites. Annual plant reviews, vol 39, pp 21–161

    Chapter  Google Scholar 

  18. Beckers GJM, Spoel SH (2005) Fine-tuning plant defense signaling: salicylate versus jasmonate. Plant Biol 8:1–10

    Article  CAS  Google Scholar 

  19. Krauss GJ, Nies DH (2014) Ecological biochemistry. Environmental and interspecific interactions. Wiley-VCH, Weinheim

    Google Scholar 

  20. Rosenthal GA, Berenbaum MR (1991) Herbivores: their interactions with secondary plant metabolites. Vol. 1. The chemical participants. Academic, San Diego

    Google Scholar 

  21. Rosenthal GA, Berenbaum MR (1992) Herbivores: their interactions with secondary plant metabolites. Vol. 2. Ecological and evolutionary processes. Academic, San Diego

    Google Scholar 

  22. Detzel A, Wink M (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18

    Article  CAS  Google Scholar 

  23. Kaczorowski R, Koplovich A, Sporer F, Wink M, Katzir G, Izhaki I, Markman S (2014) Immediate effects of nectar robbing by Palestine sunbirds (Nectarinia osea) on nectar alkaloid concentrations in tree tobacco (Nicotiana glauca). J Chem Ecol 40:325–330

    Article  CAS  PubMed  Google Scholar 

  24. Yi W, Hengwu J, Peihua J (2019) Huabin Z Functional divergence of bitter taste receptors in a nectar-feeding bird. Biol Lett. https://doi.org/10.1098/rsbl.2019.0461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:292–302

    Article  CAS  Google Scholar 

  26. Hartmann T (2004) Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Planta 219:1–4

    Article  CAS  PubMed  Google Scholar 

  27. Hilker M, Meiners T (2011) Plants and insect eggs: how do they affect each other? Phytochemistry 72:1612–1623

    Article  CAS  PubMed  Google Scholar 

  28. Wink M (2016) Secondary metabolites: deterring herbivores. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0000918.pub3

    Chapter  Google Scholar 

  29. Kelly CA, Bowers MD (2016) Preference and performance of generalist and specialist herbivores on chemically defended host plants. Ecol Entomol 41:308–316

    Article  Google Scholar 

  30. Wink M (2016) Evolution, diversification, and function of secondary metabolites. In: Encyclopedia of evolutionary biology, vol 4. https://doi.org/10.1016/B978-0-12-800049-6.00263-8

    Chapter  Google Scholar 

  31. Holzinger F, Frick C, Wink M (1992) Molecular base for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett 314:477–480

    Article  CAS  PubMed  Google Scholar 

  32. Aardema ML, Andolfatto P (2016) Phylogenetic incongruence and evolutionary origins of cardenolide-resistant forms of Na+, K+-ATPase in Danaus butterflies. Evolution 70:1913–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dobler S, Dalla S, Wagschal V, Agrawal AA (2012) Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na, K-ATPase. PNAS 109:13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holzinger F, Wink M (1996) Mediation of cardiac glycoside insensitivity in the monarch (Danaus plexippus): role of an amino acid substitution in the ouabain binding site of Na+, K+ -ATPase. J Chem Ecol 22:1921–1937

    Article  CAS  PubMed  Google Scholar 

  35. Karageorgi M et al (2019) Genome editing retraces the evolution of toxin resistenace in the monarch butterfly. Nature 574:409–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boppré M (1986) Insects pharmacophagously utilising defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26

    Article  Google Scholar 

  37. Eisner T, Eisner M, Siegler M (2007) Secret weapons: defenses of insects, spiders, scorpions, and other many-legged creatures. Harvard University Press, Boston

    Google Scholar 

  38. Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495

    Article  CAS  Google Scholar 

  39. Laurent P, Braekman J-C, Daloze D (2005) Insect chemical defense. Top Curr Chem 240:167–229

    Article  CAS  Google Scholar 

  40. Macel M (2011) Attract and deter: a dual role for pyrrolizidine alkaloids in plant-insect interactions. Phytochem Rev 10:75–82

    Article  CAS  PubMed  Google Scholar 

  41. Wink M (1992) The role of quinolizidine alkaloids in plant insect interactions. In: Bernays EA (ed) Insect-plant interactions, vol IV. CRC-Press, Boca Raton, pp 133–169

    Google Scholar 

  42. Zagrobelny M, Moller BL (2011) Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet mothBirdsfoot trefoil model system. Phytochemistry 72:1585–1592

    Article  CAS  PubMed  Google Scholar 

  43. Wink M (2019) Quinolizidine and pyrrolizidine alkaloid chemical ecology – a mini-review on their similarities and differences. J Chem Ecol 45:109–115

    Article  CAS  PubMed  Google Scholar 

  44. Wink M, Van Wyk BE (2008) Mind-altering and poisonous plants of the world. BRIZA, Pretoria

    Google Scholar 

  45. Brown KS, Trigo JR (1995) The ecological activity of alkaloids. In: Cordell GA (ed) The alkaloids, vol 47. Acedemic press, New York, pp 227–356

    Google Scholar 

  46. Mothes K, Schütte HR, Luckner M (1985) Biochemistry of alkaloids. Weinheim, Verlag Chemie

    Google Scholar 

  47. Roberts MF, Wink M (1998) Alkaloids-biochemistry, ecological functions and medical applications. Plenum, New York

    Google Scholar 

  48. Wink M (1993) Allelochemical properties and the raison d’etre of alkaloids. Alkaloids 43:1–118

    CAS  Google Scholar 

  49. Wink M (1993) Quinolizidine alkaloids. In: Waterman P (ed) Methods in plant biochemistry, vol 8. Academic, London, pp 197–239

    Google Scholar 

  50. Wink M (2016) Alkaloids – properties and determination. In: The encyclopedia of food and health, vol 1, pp 97–105

    Chapter  Google Scholar 

  51. Wink M (2016) Alkaloids – toxicology and health effects. In: The encyclopedia of food and health, vol 1, pp 106–114

    Chapter  Google Scholar 

  52. Trigo JR (2011) Effects of pyrrolizidine alkaloids through different trophic levels. Phytochem Rev 10:83–98

    Article  CAS  Google Scholar 

  53. Wink M (2000) Interference of alkaloids with neuroreceptors and ion channels. Bioactive Natl Prod 21:3–129

    CAS  Google Scholar 

  54. Wink M, Schmeller T, Latz-Brüning B (1998) Modes of action of allelochemical alkaloids: interaction with neuroreceptors, DNA and other molecular targets. J Chem Ecol 24:1881–1937

    Article  CAS  Google Scholar 

  55. Wink M (2007) Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. Alkaloids 64:1–48

    CAS  Google Scholar 

  56. APG IV (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Article  Google Scholar 

  57. Leebens-Mack JH, One Thousand Plant Transcriptome Initiative et al (2019) One thousand plant transcriptomes and the phyolgenomics of green plants. Nature. https://doi.org/10.1038/s-41586-019-1693-2

  58. Storch V, Welsch U, Wink M (2013) Evolutionsbiologie. Komplett überarbeitete 3. Aufl. Springer, Heidelberg. ISBN 978-3-642-32835-0

    Google Scholar 

  59. Wink M, Botschen F, Gosmann C, Schäfer H, Waterman PG (2010) Chemotaxonomy seen from a phylogenetic perspective and evolution of secondary metabolism. In: Wink M (ed) Biochemistry of plant secondary metabolism. Annual plant reviews, vol 40. Wiley Blackwell, Chichester, pp 364–433

    Google Scholar 

  60. Harborne JB, Turner BL (1984) Plant chemosystematics. Academic, London

    Google Scholar 

  61. Reynolds T (2007) The evolution of chemosystematics. Phytochemistry 68:2887–2895

    Article  CAS  PubMed  Google Scholar 

  62. Waterman PG (2007) The current status of chemical systematics. Phytochemistry 68:2896–2903

    Article  CAS  PubMed  Google Scholar 

  63. Waterman PG, Gray AI (1988) Chemical systematics. Natural Prod Rep 4:175–203

    Article  Google Scholar 

  64. Facchini PJ, Bird DA, St. Pierre B (2004) Can Arabidopsis make complex alkaloids? TIPS 9:116–122

    CAS  Google Scholar 

  65. Mabberley DJ (2008) Mabberley’s plant-book. Cambridge University Press, Cambridge

    Google Scholar 

  66. Chapman AD (2009) Numbers of living species in Australia and the world. Australian Biological Resources Study, Canberra, pp 1–80

    Google Scholar 

  67. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18(4):586–608

    Article  Google Scholar 

  68. Petschenka G, Agrawal AA (2016) How herbivores coopt plant defences: natural selection, specialization and sequestration. Curr Opin Insect Sci 14:17–24

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

My research on plant secondary metabolism, chemical ecology, and evolution for over 40 years was only possible through the collaboration with many students and colleagues and financial support by DFG, BMBF, GTZ, EU, DAAD, KAAD, AvH, CONACYT, Heidelberg University, and scholarship programs of France, Italy, Chile, Argentine, Brazil, Mexico, Egypt, Tunisia, China, Thailand, and Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wink, M. (2020). Evolution of the Angiosperms and Co-evolution of Secondary Metabolites, Especially of Alkaloids. In: Mérillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-96397-6_22

Download citation

Publish with us

Policies and ethics