Skip to main content

Preharvest Methyl Jasmonate and Postharvest UVC Treatments: Increasing Stilbenes in Wine

  • Reference work entry
  • First Online:
Co-Evolution of Secondary Metabolites

Abstract

In varieties of Vitis vinifera, a number of different stilbenes are present in several parts of the grapevine as constitutive compounds of the lignified organs (roots, canes, seeds, and stems) and as induced substances (in leaves and berries) acting as phytoalexins in the mechanisms of grape resistance against pathogens.

This chapter describes the strategies and recent advances regarding ways to increase the stilbene concentration in grapes through the use of a combination of elicitors. Special attention is paid to the treatment combining MEJA (methyl jasmonate)+UVC (Ultraviolet C light), which results in grapes enriched in stilbenes. The effectiveness of treatments is subject to many vinicultural factors, as is the transfer of stilbene compounds into the wine. Maximum skin contact with the must and minimum amounts of fining agent is recommended. However, the production of stilbene-enriched wines is a complex process which is difficult to standardize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BTH:

Benzothiadiazole

C4H:

Cinnamate 4-hydroxylase

CHIT:

Chitosan

Dm:

Time required for reaching maximum concentration of resveratrol

f.w.:

Fresh weight

MEJA :

Methyl jasmonate

OZ:

Ozone

PAL:

Phenylalanine ammonia lyase

STS:

Stilbene synthase

TAL:

Tyrosine ammonia lyase

US:

Ultrasonication

UVC:

Ultraviolet C light

References

  1. Pawlus AD, Waffo-Teguo P, Shaver J, Mérillon JM (2012) Stilbenoid chemistry from wine and the genus Vitis, a review. J Int des Sci de la Vigne et du Vin 46(2):57–111

    CAS  Google Scholar 

  2. Gabaston J, Cantos-Villar E, Biais B, Waffo-Teguo P, Renouf E, Corio-Costet MF, Richard T, Mérillon JM (2017) Stilbenes from Vitis vinifera L. waste: a sustainable tool for controlling Plasmopara Viticola. J Agric Food Chem 65(13):2711–2718

    Article  CAS  PubMed  Google Scholar 

  3. Gabaston J, Khawand T, Waffo-Teguo P, Decendit A, Richard T, Mérillon JM, Pavela R (2018) Stilbenes from grapevine root: a promising natural insecticide against Leptinotarsa decemlineata. J Pestic Sci 91(2):897–906

    Article  Google Scholar 

  4. Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21(3):209–225

    Article  CAS  Google Scholar 

  5. Bertelli AAA, Das DK (2009) Grapes, wines, resveratrol and heart health. J Cardiovasc Pharmacol 54(6):468–476

    Article  CAS  PubMed  Google Scholar 

  6. Guerrero R, Cantos Villar E (2017) Chapter 3. Stilbenes in the Vitis genus: the key of revalorization in Winemaking. Stilbene. Derivatives, applications and research. Chemistry research and applications. Novinka, New York

    Google Scholar 

  7. Vitrac X, Monti JP, Vercauteren J, Deffieux G, Mérillon JM (2002) Direct liquid chromatographic analysis of resveratrol derivates and flavonols in wines with absorbance and fluorescence detection. Anal Chim Acta 458(1):103–110

    Article  CAS  Google Scholar 

  8. Brillante L, De Rosso M, Dalla Vedova A, Maoz I, Flamini R, Tomasi D (2017) Insights on the stilbenes in Raboso Piave grape (Vitis vinifera L.) as a consequence of postharvest vs on-vine dehydration. J Sci Food Agric 98(5):1961–1967

    Article  PubMed  CAS  Google Scholar 

  9. Rosso MD, Soligo S, Panighel A, Carraro R, Vedova AD, Maoz I, Tomasi D, Flamini R (2016) Changes in grape polyphenols (V. vinifera L.) as a consequence of post-harvest withering by high-resolution mass spectrometry: Raboso Piave versus Corvina. J Mass Spectrom 51(9):750–760

    Article  PubMed  CAS  Google Scholar 

  10. Buiarelli F, Coccioli F, Jasionowska R, Merolle M, Terraciano A (2007) Analysis of some stilbenes in Italian wines by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21(18):2955–2964

    Article  CAS  PubMed  Google Scholar 

  11. Guebailia HA, Chira K, Richard T, Mabrouk T, Furiga A, Vitrac X, Monti JP, Delauny JC, Mérillon JM (2006) Hopeaphenol: the first resveratrol tetramer in wines from North Africa. J Agric Food Chem 54(25):9559–0564

    Article  CAS  PubMed  Google Scholar 

  12. Cantos E, Espín JC, Fernández MJ, Oliva J, Tomás-Barberán FA (2003) Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. J Agric Food Chem 51(5):1208–1214

    Article  CAS  PubMed  Google Scholar 

  13. Portu J, Santamaría P, López-Alfaro I, López R, Garde-Cerdán T (2015) Methyl jasmonate foliar application to tempranillo vineyard improved grape and wine phenolic content. J Agric Food Chem 63(8):2328–2337

    Article  CAS  PubMed  Google Scholar 

  14. Lee J, Renaker C (2007) Antioxidant capacity and stilbene contents of wines produced in the Snake River Valley of Idaho. Food Chem 105:195–203

    Article  CAS  Google Scholar 

  15. Cantos E, Tomás-Barberán FA, Martínez A, Espín JC (2003) Differential stilbene induction susceptibility of seven red wine grape varieties upon post-harvest UV-C irradiation. Eur Food Res Technol 217(3):253–258

    Article  CAS  Google Scholar 

  16. Ribeiro de Lima MT, Wafo-Teguo P, Teissendre PL, Pujolas A, Vercauteren J, Cabanis JC, Merillon JM (1999) Determination of stilbenes (trans-astriginin, cis and trans-piceid, and cis and trans-resveratrol) in Portuguese wines. J Agric Food Chem 47(7):2666–2670

    Article  CAS  PubMed  Google Scholar 

  17. Feijoo O, Moreno A, Falque E (2008) Content of trans- and cis-resveratrol in Galician white and red wines. J Food Compos Anal 21(8):608–613

    Article  CAS  Google Scholar 

  18. Vitrac X, Bornet A, Vanderline R, Valls J, Richard T, Delauny J-C, Mérillon J-M, Teissedère P-L (2005) Determination of stilbenes (δ-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, ε-viniferin) in Brazilian wines. J Agric Food Chem 53(14):5664–5669

    Article  CAS  PubMed  Google Scholar 

  19. Burns J, Yokota T, Ashihara H, Lean MEJ, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50(11):337–3340

    Article  CAS  Google Scholar 

  20. Amira-Guebailia H, Valls J, Richard T, Vitrac X, Monti JP, Delaunay JC, Mérillon JM (2009) Centrifugal partition chromatography followed by HPLC for the isolation of cis-ε-viniferin, a resveratrol dimer newly extracted from a red Algerian wine. Food Chem 113(1):320–324

    Article  CAS  Google Scholar 

  21. Zamora-Ros R, Andres-Lacueva C, Lamuela-Raventós RM, Berenguert T, Jakszyn P, Martínez C, Sánchez MJ, Navarro C, Chirlaque MD, Tormo MJ, Quirós JR, Amiano P, Dorronsoro M, Larranaga N, Barricarte A, Ardanaz E, González CA (2008) Concentrations of resveratrol and derivates in foods and estimation of dietary intake in a Spanish population: European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Br J Nutr 100(1):188–196

    Article  CAS  PubMed  Google Scholar 

  22. Bavaresco L, Fregoni C, van Zeller de Macedo Basto Gonçalves MI, Velluzi S (2009) Physiology and molecular biology of grapevine stilbenes: an update. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology. Springer Netherlands, New York

    Google Scholar 

  23. Lee SJ, Lee JE, Kim HW, Kim SS, Koh KH (2006) Development of Korean red wines using Vitis labrusca varieties: instrumental and sensory characterization. Food Chem 94(3):385–393

    Article  CAS  Google Scholar 

  24. Guerrero R, Puertas B, Fernández MI, Palma M, Cantos-Villar E (2010) Induction of stilbenes in grapes by UV-C: comparison of different subspecies of Vitis. Innov Food Sci Emerg Technol 11:231–238

    Article  CAS  Google Scholar 

  25. Jeandet P, Bessis R, Maume BF, Meunier P, Peyron D, Trollat P (1995) Effect of enological practices on the resveratrol isomer content of wine. J Agric Food Chem 43(2):316–319

    Article  CAS  Google Scholar 

  26. Bavaresco L, Gatti M, Pezzutto S, Fregoni M, Mattivi F (2008) Effect of leaf removal on grape yield, berry composition, and stilbene concentration. Am J Enol Vitic 59(3):292–298

    Google Scholar 

  27. Ruiz-García Y, Gil-Muñoz R, López-Roca JM, Martínez-Cutillas A, Romero-Cascales I, Gómez-Plaza E (2013) Increasing the phenolic compound content of grapes by preharvest application of abscisic acid and a combination of methyl jasmonate and benzothiadiazole. J Agric Food Chem 61(16):3978–3983

    Article  PubMed  CAS  Google Scholar 

  28. Cisneros-Zevallos L (2003) The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value of fresh fruits and vegetables. J Food Sci 68(5):1560–1564

    Article  CAS  Google Scholar 

  29. Hasan M, Bae H (2017) An overview of stress-induces resveratrol synthesis in grapes: perspectives for resveratrol enriched grape products. Review. Molecules 22(2):294

    Article  PubMed Central  CAS  Google Scholar 

  30. Iriti M, Rossoni M, Borgo M, Ferrara L, Faoro F (2005) Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: primary versus secondary metabolism. J Agric Food Chem 53:9133–9139

    Article  CAS  PubMed  Google Scholar 

  31. Iriti M, Rossoni M, Faoro F (2008) Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to botrytis cinerea. J Agric Food Chem 52:4406–4413

    Article  CAS  PubMed  Google Scholar 

  32. Gómez-Plaza E, Bautista-Ortín AB, Ruiz-García Y, Fernández-Fernández JI, Gil-Muñoz R (2017) Effect of elicitors on the evolution of grape phenolic compounds during the ripening period. J Sci Food Agric 97(3):977–983

    Article  PubMed  CAS  Google Scholar 

  33. Fernández-Marín MI, Guerrero RF, Puertas B, García-Parrilla MC, Collado IG, Cantos Villar E (2013) Impact of preharvest and postharvest treatments combinations on increase of stilbene content in grape. J Int des Sci de la Vigne et du Vin 47(3):203–212

    Google Scholar 

  34. Gozzo F (2003) Systemic acquired resistance in crop protection: from nature to a chemical approach. Review. J Agric Food Chem 51(16):4487–4503

    Article  CAS  PubMed  Google Scholar 

  35. Ferri M, Tassoni A, Franceschetti M, Riguetti L, Naldrett MJ, Bagni N (2009) Chitosan treatment induces changes on protein expression profile and stilbene distribution in Vitis vinífera cell suspensions. Proteomics 9:610–624

    Article  CAS  PubMed  Google Scholar 

  36. Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopatology 96(11):1188–1194

    Article  CAS  Google Scholar 

  37. Romanazzi G, Gabler FM, Smilanick JL (2006) Preharvest chitosan and postharvest UV irradiation treatments suppress gray mold of table grapes. Plant Dis 90:445–450

    Article  CAS  PubMed  Google Scholar 

  38. Beckers GJ, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol 8(1):1–10

    Article  CAS  PubMed  Google Scholar 

  39. Fernández-Marín I, Puertas B, Guerrero R, García-Parrilla MC, Cantos-Villar E (2014) Preharvest methyl jasmonate and postharvest UVC treatments: increasing stilbenes in wine. J Food Sci 79(3):C310–C317

    Article  PubMed  CAS  Google Scholar 

  40. Ruiz-García Y, Romero Cascales I, Gil Muñoz R, Fernández-Fernández JI, López Roca JM, González Plaza E (2012) Improving grape phenolic content and wine chromatic characteristics through the use of two different elicitors; Methyl jasmonate versus benzothiadiazole. J Agric Food Chem 60:1283–1290

    Article  PubMed  CAS  Google Scholar 

  41. Vezzulli S, Civardi S, Ferrari F, Bavaresco L (2007) Methyl jasmonate treatment as a trigger of resveratrol synthesis in cultivated grapevine (Vitis vinífera L). Am J Enol Vitic 58:530–533

    CAS  Google Scholar 

  42. Gil-Muñoz R, Fernández-Fernández JI, Crespo-Villegas O, Garde-Cerdán T (2017) Elicitors used as a tool to increase stilbenes in grapes and wines. Food Res Int 98:34–39

    Article  PubMed  CAS  Google Scholar 

  43. Portu J, López R, Baroja E, Santamaría P, Garde-Cerdán T (2016) Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chem 201:213–221

    Article  CAS  PubMed  Google Scholar 

  44. Ju Y, Liu M, Zhao H, Meng JF, Fang YL (2016) Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of Cabernet Sauvignon (Vitis vinifera L.) grape berries. Molecules 21(10):1354–1369

    Article  PubMed Central  CAS  Google Scholar 

  45. Hasan MM, Yun HK, Kwak EJ, Baek KH (2014) Preparation of resveratrol-enriched grape juice from ultrasonication treated grape fruits. Ultrason Sonochem 21(2):729–734

    Article  CAS  PubMed  Google Scholar 

  46. Bavaresco L, Cantu E, Fregoni M, Trevisan M (1997) Constitutive stilbene contents of grapevine cluster stems as potential source of resveratrol in wine. Vitis 36(3):115–118

    CAS  Google Scholar 

  47. González-Barrio R, Beltran D, Cantos E, Gil MI, Espín JC, Tomás-Barberán FA (2006) Comparison of ozone and UV-C treatments on the postharvest stilbenoid monomer, dimer, and trimer induction in var. ‘Superior’ white table grapes. J Agric Food Chem 54(12):4222–4228

    Article  PubMed  CAS  Google Scholar 

  48. Jiménez J, Orea JM, Ureña AG, Escribano P, De La Osa PL, Guadarrama A (2007) Short anoxic treatments to enhance trans-resveratrol content in grapes and wine. Eur Food Res Technol 224(3):373–378

    Article  CAS  Google Scholar 

  49. Bintsis T, Litopoulou-Tzanetaki E, Robinson RK (2000) Existing and potential applications of ultraviolet light in the food industry. A critical review. J Sci Food Agric 80(6):637–645

    Article  CAS  PubMed  Google Scholar 

  50. Langcake P, Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33(2):151–152

    Article  CAS  PubMed  Google Scholar 

  51. Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. Review. J Agric Food Chem 50(10):2731–2741

    Article  CAS  PubMed  Google Scholar 

  52. Douillet-Breuil AC, Jeandet P, Adrian M, Bessis R (1999) Changes in the phytoalexin content of various Vitis spp. in response to ultraviolet C elicitation. J Agric Food Chem 47(10):4456–4461

    Article  CAS  PubMed  Google Scholar 

  53. Cantos E, García-Viguera C, de Pascual-Teresa S, Tomás-Barberán FA (2000) Effect of postharvest ultraviolet irradiation on resveratrol and other phenolics of cv. Napoleon table grapes. J Agric Food Chem 48(10):4606–4612

    Article  CAS  PubMed  Google Scholar 

  54. Cantos E, Espín JC, Tomás-Barberán FA (2001) Postharvest induction modeling method using Uv irradiation pulses for obtaining resveratrol-enriched table grapes: a new “functional” fruit? J Agric Food Chem 49(10):5052–5058

    Google Scholar 

  55. Guerrero RF, Cantos-Villar E, Fernández-Marín MI, Puertas B, Serrano-Albarrán MJ (2015) Optimising UV-C preharvest light for stilbene synthesis stimulation in table grape: applications. Innov Food Sci Emerg Technol 29:222–229

    Article  CAS  Google Scholar 

  56. Cantos E, Espín JC, Tomás-Barberán FA (2002) Postharvest stilbene-enrichment of red and white table grape varieties using UV-C irradiation pulses. J Agric Food Chem 50(22):6322–6329

    Article  CAS  PubMed  Google Scholar 

  57. Luckey TD (1980) Hormesis with ionizing radiation. CRC Press, Boca Raton

    Google Scholar 

  58. Guerrero RF, Cantos-Villar E, Puertas B, Richard T (2016) Daily preharvest UV-C light maintains the high stilbenoid concentration in grapes. J Agric Food Chem 64(25):5139–5147

    Article  CAS  PubMed  Google Scholar 

  59. Faurie B, Cluzet S, Mérillon JM (2009) Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. Plant Physiol 166(17):1863–1877

    Article  CAS  Google Scholar 

  60. Romanazzi G, Gabler FM, Smilanik JL (2006) Preharvest chitosan and postharvest UV irradiation treatments suppress gray mold of table grapes. Plant Dis 90:445–450

    Article  CAS  PubMed  Google Scholar 

  61. Larronde F, Gaudillère JP, Krisa S, Decendit A, Deffieux G, Mérillon JM (2003) Airborne methyl jasmonate induces stilbene accumulation in leaves and berries of grapevine plants. Am J Enol Vitic 54:63–66

    Google Scholar 

  62. Lijavetzky D, Almagro L, Belchi-Navarro S, Martínez-Zapater JM, Bru R, Pedreño MA (2008) Synergistic effect of methyl jasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1:132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tisserant LP, Aziz A, Jullian N, Jeandet P, Clément C, Courot E, Boitel-Conti M (2016) Enhanced stilbene production and excretion in Vitis vinifera cv pinot noir hairy root cultures. Molecules 21(12):1703

    Article  PubMed Central  CAS  Google Scholar 

  64. Xu A, Zhan JC, Huang WD (2015) Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell Tissue Organ Cult 122(1):197–211

    Article  CAS  Google Scholar 

  65. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339(8808):1523–1526

    Article  CAS  PubMed  Google Scholar 

  66. Pignatelli P, Ghiselli A, Buchetti B, Carnevale R, Natella F, Germanò G, Fimognari F, Di Santo S, Lenti L, Violi F (2006) Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis 188(1):77–83

    Article  CAS  PubMed  Google Scholar 

  67. Vrhovsek U, Wendelin S, Eder R (1997) Effects of various vinification techniques on the concentration of cis- and trans-resveratrol and resveratrol glucoside isomers in wine. Am J Enol Vitic 48(2):214–219

    CAS  Google Scholar 

  68. Becker JVW, Armstrong GO, Van Der Merwe MJ, Lambrechts MG, Vivier MA, Pretorius IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4(1):79–85

    Article  CAS  PubMed  Google Scholar 

  69. Castellari M, Spinabelli U, Riponi C, Amati A (1998) Influence of some technological practices on the quantity of resveratrol in wine. Z Lebensm Unters Forsch 206(3):151–155

    Article  CAS  Google Scholar 

  70. Castro RI, Forero-Doria O, Guzmán L, Laurie VF, Valdés O, Ávila-Salas F, López-Cortés X, Santos LS (2016) New polymer for removal of wine phenolics: poly(N-(3-(N-isobutyrylisobutyramido)-3-oxopropyl)acrylamide) (P-NIOA). Food Chem 213:554–560

    Article  CAS  PubMed  Google Scholar 

  71. Soleas GJ, Diamandis EP (1995) Influences of viticultural and oenological factor on changes in cis- and trans-resveratrol in commercial wines. J Wine Res 6(2):107–121

    Article  Google Scholar 

  72. Moreno-Labanda JF, Mallavia R, Pérez-Fons L, Lizama V, Saura D, Micol V (2004) Determination of piceid and resveratrol in Spanish wines deriving from Monastrell (Vitis vinífera, L.) grape variety. J Agric Food Chem 52(17):5396–5403

    Article  CAS  PubMed  Google Scholar 

  73. Guerrero RF, Puertas B, Jiménez MJ, Cacho J, Cantos-Villar E (2010) Monitoring the process to obtain red wine enriched in resveratrol and piceatannol without quality loss. Food Chem 122(1):195–202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank INIA and FEDER for their financial support of the projects “Stilbenes as a sustainable tool to replace SO2 in winemaking” (RTA2015-00005-C02-01) and “Research and Technological Innovations in Viticulture” (AVA.AVA201601.3). Susana Cruz and Maria I. Fernandez thanks FEDER program (2014–2020) for supporting her contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Cantos-Villar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cruz, S., Guerrero, R.F., Puertas, B., Fernández-Marín, M.I., Cantos-Villar, E. (2020). Preharvest Methyl Jasmonate and Postharvest UVC Treatments: Increasing Stilbenes in Wine. In: Mérillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-96397-6_20

Download citation

Publish with us

Policies and ethics