Skip to main content

Plant Allelochemicals and Their Various Applications

  • Reference work entry
  • First Online:
Book cover Co-Evolution of Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Allelopathy has shown both inhibitory and stimulatory roles in plant processes such as on seed germination, overall growth, development, reproduction, disease/weed management, cell division, or biosynthesis of photosynthetic pigments of other plants by releasing some allelochemicals, mainly secondary metabolites. It is a multidisciplinary science, and their influences are noted in agriculture as well as forestry sectors. However, in several cases, a proper understanding of released chemical compounds or structure is desirable for the efficient positive application. It has been reported that metabolites, for instance, phenols, alkaloids, terpenoids, benzoxazinoids, glucosinolates, and isothiocyanates, are some important allelochemicals. This chapter is focused on the role of secondary metabolites as allelochemicals and their various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020

    PubMed  PubMed Central  Google Scholar 

  2. Duke SO (2015) Proving allelopathy in crop-weed interactions. Weed Sci 63(Species issue):121–132

    Article  Google Scholar 

  3. Masum SM, Hossain MA, Akamine H, Sakagami JI, Ishii T, Gima S, Kensaku T, Bhowmik PC (2018) Isolation and characterization of allelopathic compounds from the indigenous rice variety ‘Boterswar’ and their biological activity against Echinochloa crus-galli L. Allelopath J 43:31–42

    Article  Google Scholar 

  4. Mushtaq W, Ain Q, Siddiqui MB, Hakeem KR (2019) Cytotoxic allelochemicals induce ultrastructural modifications in Cassia tora L. and mitotic changes in Allium cepa L.: a weed versus weed allelopathy approach. Protoplasma 17:1–5

    Google Scholar 

  5. Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7–20

    Google Scholar 

  6. Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHM (2011) Role of allelopathy in agricultural pest management. Pest Manag Sci 67:494–506

    Google Scholar 

  7. Chou CH (1999) Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit Rev Plant Sci 18:609–636

    Article  Google Scholar 

  8. Mallik AU (2008) Allelopathy: advances, challenges and opportunities. Allelo For Ecol 25–38

    Google Scholar 

  9. Field B, Jordan F, Osbourn A (2006) First encounters–deployment of defence-related natural products by plants. New Phytol 172:193–207

    Article  CAS  PubMed  Google Scholar 

  10. Inderjit, Callaway RM, Vivanco JM (2006) Can plant biochemistry contribute to understanding of invasion ecology? Trends Plant Sci 11:574–580

    Article  CAS  PubMed  Google Scholar 

  11. Zheng YL, Feng YL, Zhang LK, Callaway RM, Valiente-Banuet A, Luo, Liao ZY, Lei YB, Barclay GF, Silva-Pereyra C (2015) Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol 205:1350–1359

    Article  PubMed  Google Scholar 

  12. Jin ZH, Zhuang YY, Dai SG, Li TL (2003) Isolation and identification of extracts of Eichhornia crassipes and their allelopathic effects on algae. Bull Environ Contam Toxicol 71:1048–1052

    Article  CAS  PubMed  Google Scholar 

  13. Gao L, Li B (2004) The study of a specious invasive plant, water hyacinth (Eichhornia crassipes): achievements and challenges. Chin J Plant Ecol 28:735–752

    Article  CAS  Google Scholar 

  14. Broeckling CD, Vivanco JM (2008) A selective, sensitive, and rapid in-field assay for soil catechin, an allelochemical of Centaurea maculosa. Soil Biol Biochem 40:1189–1196

    Article  CAS  Google Scholar 

  15. Vaughn SF, Berhow MA (1999) Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J Chem Ecol 25:2495–2504

    Article  CAS  Google Scholar 

  16. Zeng RS, Mallik AU, Luo SM (2008) Allelopathy in sustainable agriculture and forestry. Springer Science+Business Media, LLC, New York, ISBN 978-0-387-77337–7

    Book  Google Scholar 

  17. Chou CH, Leu LL (1992) Allelopathic substances and interactions of Delonix regia (BOJ) RAF. J Chem Ecol 18:2285–2303

    Article  CAS  PubMed  Google Scholar 

  18. Batish DR, Lavanya K, Singh HP, Kohli RK (2007) Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regul 51:119–128

    Article  CAS  Google Scholar 

  19. Hiradate S, Morita S, Sugie H, Fujii Y, Harada J (2004) Phytotoxic cis-cinnamoyl glucosides from Spiraea thunbergii. Phytochemistry 65:731–739

    Article  CAS  PubMed  Google Scholar 

  20. Sasikumar K, Vijayalakshmi C, Parthiban KT (2002) Allelopathic effects of Eucalyptus on blackgram (Phaseolus mungo L.). Allelopath J 9:205–214

    Google Scholar 

  21. Florentine SK, Fox JED (2003) Allelopathic effects of Eucalyptus victrix L. on eucalyptus species and grasses. Allelopath J 11:77–83

    Google Scholar 

  22. Da Silva ER, Da Silveira LH, Overbeck GE, Soares GL (2018) Inhibitory effects of Eucalyptus saligna leaf litter on grassland species: physical versus chemical factors. Plant Ecol Divers 11:55–67

    Article  Google Scholar 

  23. Zhang C, Fu S (2010) Allelopathic effects of leaf litter and live roots exudates of Eucalyptus species on crops. Allelopath J 26:91–100

    Google Scholar 

  24. Nega F, Gudeta T (2019) Allelopathic effect of Eucalyptus globulus Labill. on seed germination and seedling growth of highland teff (Eragrostis tef (Zuccagni) Trotter) and Barely (Hordeum vulgare L.). J Exp Agric Int 30:1–12

    Article  Google Scholar 

  25. Zhao W, Zheng Z, Zhang J, Roger SF, Luo X (2019) Allelopathically inhibitory effects of eucalyptus extracts on the growth of Microcystis aeruginosa. Chemosphere 225:424–433

    Article  CAS  PubMed  Google Scholar 

  26. Dordevic T, Sarić-Krsmanović M, Gajic Umiljendic J (2019) Phenolic compounds and allelopathic potential of fermented and unfermented wheat and corn straw extracts. Chem Biodivers 16:e1800420

    Article  PubMed  CAS  Google Scholar 

  27. Batish DR, Kaur S, Singh HP, Kohli RK (2009) Role of root-mediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Oryza sativa). Flora 204:388–395

    Article  Google Scholar 

  28. Seziene V, Baležentiene L, Maruska A (2017) Identification and allelochemical activity of phenolic compounds in extracts from the dominant plant species established in clear-cuts of scots pine stands. iForest Biogeosci For 10:309–314

    Article  Google Scholar 

  29. Nishimura H, Mizutani J (1995) Identification of allelochemicals in Eucalyptus citriodora and Polygonum sachalinense. In: Allelopathy: organisms, processes, and applications. http://agris.fao.org/agris-search/search.do?recordID=US9634959. Accessed on 20 Feb 2019

  30. Mata R, Macias ML, Rojas IS, Hennsen BL, Toscano RA, Anya AL (1998) Phytotoxic compounds from Esenbeckia yaxhoob. Phytochemistry 49:441–449

    Article  CAS  Google Scholar 

  31. Razavi SM, Ghasemiyan A, Salehi S, Zahri F (2009) Screening of biological activity of Zosima absinthifolia fruits extracts. Eur Asia J Biosci 4:25–28

    Article  Google Scholar 

  32. Razavi SM, Zarrini G, Zahri S, Mohammadi S (2010) Biological activity of Prangos uloptera DC. roots, a medicinal plants from Iran. Nat Prod Res 24:797–803

    Article  CAS  PubMed  Google Scholar 

  33. Anya AL, Rubalcava MM, Ortega RC, Santana CG, Monterrubio PNS, Bautista BEH, Mata R (2005) Allelochemicals from Staurantus perforatus, a Rutaceae tree of the Yuctan Pensula, Mexico. Phytochemistry 66:487–494

    Article  CAS  Google Scholar 

  34. Razavi SM (2011) Plant coumarins as allelopathic agents. Int J Biol Chem 5:86–90

    Article  CAS  Google Scholar 

  35. Friedman J, Waller GR (1985) Allelopathy and autotoxicity. Trends Biochem Sci 10:47–50

    Article  CAS  Google Scholar 

  36. Bravo HR, Iglesias MJ, Copaja SV, Argandoña VH (2010) Phytotoxicity of indole alkaloids from cereals. Rev Latinoam Quím 38:123–129

    CAS  Google Scholar 

  37. Putnam AR, Duke WB (1974) Biological suppression of weeds: evidence for allelopathy in accessions cucumber. Science 185:370–372

    Article  CAS  PubMed  Google Scholar 

  38. Lovett JV, Potts WC (1987) Primary effects of allelochemicals of Datura stramonium L. Plant Soil 98:137–144

    Article  CAS  Google Scholar 

  39. Elisante F, Tarimo MT, Ndakidemi PA (2013) Allelopathic effect of seed and leaf aqueous extracts of Datura stramonium on leaf chlorophyll content, shoot and root elongation of Cenchrus ciliaris and Neonotonia wightii. Am J Plant Sci 4:23–32

    Article  Google Scholar 

  40. Szabó R, Nádasy E, Pásztor G (2018) Study on the allelopathic effect of Amaranthus retroflexus L., Datura stramonium L. and Panicum miliaceum L. on the germination of maize. Julius-Kühn Arch 458:459–468

    Google Scholar 

  41. Rajaee V, Gholamalipour AE, Avarseji Z, Naeemi M (2019) Evaluating hetrotoxic potential of aqueous extract of Datura stramonium shoots on germination traits and content of photosynthetic pigments of wheat cultivars. Iran J Seed Res 5:29–41

    Article  Google Scholar 

  42. Pacanoski Z, Velkosa V, Tyr S, Veres T (2014) Allelopathic potential of Jimsonweed on the early growth of maize (Zea mays L) and sunflower (Helianthus annuus L). J Cent Eur Agric 15:198–208

    Article  Google Scholar 

  43. Butnariu M (2012) An analysis of Sorghum halepense’s behavior in presence of tropane alkaloids from Datura stramonium extracts. Chem Cent J 6:1–7

    Article  CAS  Google Scholar 

  44. Thakur NS, Kumar D, Chauhan RS, Hegde HT, Gunaga RP (2019) Allelopathic effects of Melia azedarach L. on germination, growth and yield of black gram and chickpea. Allelopath J 46:133–144

    Article  Google Scholar 

  45. Ogunsusi M, Akinlalu AO, Komolafe IJ, Oyedapo OO (2018) Allelopathic effects of alkaloid fraction of Crotalaria retusa Linn on growth and some biochemical parameters of bean seedlings (Phaseolus vulgaris). Int J Plant Physiol Biochem 10:1–9

    Article  CAS  Google Scholar 

  46. Romagni JG, Duke SO, Dayan FE (2000) Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiol 123:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Scavo A, Rial C, Molinillo JMG, Varela RM, Mauromicale G, Macias FA (2019) The extraction procedure improves the allelopathic activity of cardoon (Cynara cardunculus var. altilis) leaf allelochemicals. Ind Crop Prod 128:479–487

    Article  CAS  Google Scholar 

  48. Shiming GWDSL (1998) Ecological characteristic of terpenoids and their allelopathic effects to plants. J South China Agric Univ 4. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNNB804.024.htm

  49. Penuelas J, Ribas-carbo M, Giles L (1995) Allelochemical effects of plant respiration and on oxygen discrimination by alternative oxidase. J Chem Ecol 22:801–805

    Article  Google Scholar 

  50. Fischer NH (1991) Plant terpenoids as allelopathic agents. In: Harborne JB, Tomes-Barbeeran FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 377–399

    Google Scholar 

  51. Fischer NH, Tanrisever N, Williamson GB (1988) Allelopathy in the Florida scrub community as a model for natural herbicide actions. In: Waller GR (ed) Allelochemicals: role in agriculture and forestry. American society symposium series, 330. American Chemical Society, Washington, DC, pp 233–249

    Google Scholar 

  52. Liu X, Chen Q, Wang Z, Xie L, Xu Z (2008) Allelopathic effects of essential oil from Eucalyptus grandis× E. urophylla on pathogenic fungi and pest insects. Front For China 3:232–236

    Article  Google Scholar 

  53. Zhao X, Zheng GW, Niu XM, Li WQ, Wang FS, Li SH (2009) Terpenes from Eupatorium adenophorum and their allelopathic effects on Arabidopsis seeds germination (dagger). J Agric Food Chem 57:478–482

    Article  CAS  PubMed  Google Scholar 

  54. Shao H, Wei C, Zhou S, Li W, Jiang C, Yang W, Han C, Zhang C (2019) Chemical composition and allelopathic, phytotoxic and pesticidal activities of Atriplex cana Ledeb. (Amaranthaceae) essential oil. Chem Biodivers. https://doi.org/10.1002/cbdv.201800595

  55. Fischer NH, Williamson GB, Weidenhamer JD, Richardson DR (1994) In search of allelopathy in the Florida scrub: the role of terpenoids. J Chem Ecol 20:1355–1380

    Article  CAS  PubMed  Google Scholar 

  56. Chotsaeng N, Laosinwattana C, Charoenying P (2017) Herbicidal activities of some allelochemicals and their synergistic behaviors toward Amaranthus tricolor L. Molecules 22:1–16

    Article  CAS  Google Scholar 

  57. Young GP, Bush JK (2009) Assessment of the allelopathic potential of Juniperus ashei on germination and growth of Bouteloua curtipendula. J Chem Ecol 35:74–80

    Article  CAS  PubMed  Google Scholar 

  58. Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their break down products in food and food plants. Crit Rev Food Sci Nutr 18:123–201

    Article  CAS  PubMed  Google Scholar 

  59. Bangarwa SK, Norsworthy JK (2016) Glucosinolate and isothiocyanate production for weed control in plasticulture production system. In: Mérillon JM, Ramawat K (eds) Glucosinolates. Reference series in phytochemistry. Springer, Cham, pp 1–35

    Google Scholar 

  60. Yamane A, Fujikura J, Ogawa H, Mizutani J (1992) Isothiocyanates as allelopathic compounds from Rorippa indica Hiern. (Cruciferae) roots. J Chem Ecol 18:1941–1954

    Article  CAS  PubMed  Google Scholar 

  61. Urbancsok J, Bones A, Kissen R (2017) Glucosinolate-derived isothiocyanates inhibit Arabidopsis growth and the potency depends on their side chain structure. Int J Mol Sci 18:2372

    Article  PubMed Central  CAS  Google Scholar 

  62. Zhou S, Richter A, Jander G (2018) Beyond defense: multiple functions of benzoxazinoids in maize metabolism. Plant Cell Physiol 59:1528–1537

    Article  CAS  PubMed  Google Scholar 

  63. Schulz M, Marocco A, Tabaglio V, Macias FA, Molinillo JM (2013) Benzoxazinoids in rye allelopathy-from discovery to application in sustainable weed control and organic farming. J Chem Ecol 39:154–174

    Article  CAS  PubMed  Google Scholar 

  64. Rice CP, Cai G, Teasdale JR (2012) Concentrations and allelopathic effects of benzoxazinoid compounds in soil treated with rye (Secale cereale) cover crop. J Agric Food Chem 60:4471–4479

    Article  CAS  PubMed  Google Scholar 

  65. Agdam HB, Lisar SYS, Motafakkerazad R (2019) Allelopathic effects of redroot pigweed (Amaranthus retroflexus L.) aqueous extract on cucumber and wheat. Allelopath J 46:55–72

    Article  Google Scholar 

  66. Jiang M, Zhou Y, Wang N, Xu L, Zheng Z, Zhang J (2019) Allelopathic effects of harmful algal extracts and exudates on biofilms on leaves of Vallisneria natans. Sci Total Environ 655:823–830

    Article  CAS  PubMed  Google Scholar 

  67. Carvalhoa MSS, Andrade-Vieirab LF, Santosb FED, Correab FF, Cardosoc MDG, Vilelaa LR (2019) Allelopathic potential and phytochemical screening of ethanolic extracts from five species of Amaranthus spp. in the plant model Lactuca sativa. Sci Hortic 245:90–98

    Article  CAS  Google Scholar 

  68. Kueh BWB, Yusup S, Osman N, Ramli NH (2019) Analysis of Melaleuca cajuputi extract as the potential herbicides for paddy weeds. Sustain Chem Pharm 11:36–40

    Article  Google Scholar 

  69. Parmar AG, Thakur NS, Gunaga RP (2018) Melia dubia Cav. leaf litter allelochemicals have ephemeral allelopathic proclivity. Agrofor Syst 1–14. https://doi.org/10.1007/s10457-018-0243-5

    Article  Google Scholar 

  70. Zhang Y, Jiangtao W, Liju T (2019) Characterization of allelochemicals of the diatom Chaetoceros curvisetus and the effects on the growth of Skeletonema costatum. Sci Total Environ 660:269–276

    Article  CAS  PubMed  Google Scholar 

  71. Pandey DK (2009) Allelochemicals in Parthenium in response to biological activity and the environment. Indian J Weed Sci 41:111–123

    Google Scholar 

  72. Joshi A, Bachheti RK, Sharma A, Mamgain R (2016) Parthenium Hysterophorus. L. (Asteraceae): a boon or curse? (A review). Orient J Chem 32:1283–1294

    Article  CAS  Google Scholar 

  73. Srivastava JN, Shukla JP, Srivastava RC (1985) Effect of Parthenium hysterophorus Linn. extract on the seed germination and seedling growth of barley, pea and wheat. Acta Bot Ind 13:194–197

    Google Scholar 

  74. Fuentes-Gandara F, Torres A, Fernández-Ponce MT, Casas L, Mantell C, Varela R, Martínez de la Ossa-Fernández EJ, Francisco AM (2019) Selective fractionation and isolation of allelopathic compounds from Helianthus annuus L. leaves by means of high-pressure techniques. J Supercrit Fluids 143:32–41

    Article  CAS  Google Scholar 

  75. Zhou X, Zhang Y, An X, De Philippis R, Ma X, Ye C, Chen L (2019) Identification of aqueous extracts from Artemisia ordosica and their allelopathic effects on desert soil algae. Chemoecology 29:61–71

    Article  Google Scholar 

  76. Anwar T, Ilyas N, Qureshi R, Munazir M, Rahim B, Qureshi H, Kousar R, Maqsood M, Abbas Q, Bhatti M, Panni M (2019) Allelopathic potential of Pinus roxburghii needles against selected weeds of wheat crop. Appl Ecol Environ Res 17:1717–1739

    Article  Google Scholar 

  77. Abbas T, Nadeem MA, Tanveer A, Ahmad R (2016) Evaluation of fenoxaprop-pethyl resistant littleseed canarygrass (Phalaris minor) in Pakistan. Planta Daninha 34:833–838

    Article  Google Scholar 

  78. Ali HH, Tanveer A, Naeem M, Jamil M, Iqbal M, Javaid MM, Kashif MS (2015a) Efficacy of pre-emergence herbicides in controlling Rhynchosia capitata, an emerging summer weed in Pakistan. Philipp Agric Sci 98:301–311

    Google Scholar 

  79. Ali HH, Tanveer A, Naeem M, Jamil M, Iqbal M, Chadhar AR, Kashif MS (2015b) Assessing the competitive ability of Rhynchosia capitata; an emerging summer weed in Asia. Planta Daninha 33:175–182

    Article  Google Scholar 

  80. Ali HH, Peerzada AM, Hanif Z, Hashim S, Chauhan BS (2017) Weed management using crop competition in Pakistan: a review. Crop Prot 95:22–30

    Article  Google Scholar 

  81. Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122

    Article  PubMed  Google Scholar 

  82. Liebman M, Davis AS (2000) Integration of soil, crop, and weed management in low-external-input farming systems. Weed Res 40:27–47

    Article  Google Scholar 

  83. Baumann DT, Bastiaans L, Kropff MJ (2002) Intercropping system optimization for yield, quality, and weed suppression combining mechanistic and descriptive models. Agron J 94:734–742

    Article  Google Scholar 

  84. Ali Z, Malik MA, Cheema MA (2000) Studies on determining a suitable canola-wheat intercropping pattern. Int J Agric Biol 2:42–44

    Google Scholar 

  85. Khaliq A, Matloob A, Ihsan MZ, Abbas RN, Aslam Z, Rasul F (2013) Supplementing herbicides with manual weeding improves weed control efficiency, growth and yield of dry seeded rice. Int J Agric Biol 15:191–199

    CAS  Google Scholar 

  86. Siddiqi MH, Lee SW, Khan AM (2014) Weed image classification using wavelet transform, stepwise linear discriminant analysis, and support vector machines for an automatic spray control system. J Inf Sci Eng 30:1227–1244

    Google Scholar 

  87. Teasdale JR, Mohler CL (2000) The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci 48:385–392

    Article  CAS  Google Scholar 

  88. Bilalis D, Sidiras N, Economou G, Vakali C (2003) Effect of different levels of wheat straw soil surface coverage on weed flora in Vicia faba crops. J Agron Crop Sci 189:233–241

    Article  Google Scholar 

  89. Narwal SS (2005) Role of allelopathy in crop production. J Herbologia 6:31

    Google Scholar 

  90. Younis A, Bhatti MZM, Riaz A, Tariq U, Arfan M, Nadeem M, Ahsan M (2012) Effect of different types of mulching on growth and flowering of Freesia alba CV. Aurora Pak J Agric Sci 49:429–433

    Google Scholar 

  91. Cheema ZA, Khaliq A, Saeed S (2004) Weed control in maize (Zea mays L.) through sorghum allelopathy. J Sustain Agric 23:73–86

    Article  Google Scholar 

  92. Cheema ZA, Khaliq A (2000) Use of sorghum allelopathic properties to control weeds in irrigated wheat in semiarid region of Punjab. Agric Ecosyst Environ 79:105–112

    Article  Google Scholar 

  93. Riaz MY (2010) Non-chemical weed management strategies in dry direct seeded fine grain aerobic rice (Oryza sativa L.). M.Sc. (Hons.) thesis, Department of Agronomy, University of Agriculture, Faisalabad, Pakistan

    Google Scholar 

  94. Ikeh AO, Udoh E, Opara A (2019) Effect of mulching on weed, fruit yield and economic returns of garden egg (Solanum melongena) in Okigwe Southeastern Nigeria. J Res Weed Sci 2:52–64

    Google Scholar 

  95. Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzoleni S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578

    Article  CAS  PubMed  Google Scholar 

  96. Cheema ZA, Luqman M, Khaliq A (1997) Use of allelopathic extracts of sorghum and sunflower herbage for weed control in wheat. J Anim Plant Sci 7:91–93

    Google Scholar 

  97. Cheema ZA, Khaliq A, Akhtar S (2001) Use of sorghum water extract (sorghum water extract) as a natural weed inhibitor in spring mungbean. Int J Agric Biol 3:515–518

    Google Scholar 

  98. Cheema ZA, Iqbal M, Ahmad R (2002) Response of wheat varieties and some rabi weeds to allelopathic effects of sorghum water extract. Int J Agric Biol 4:52–55

    Google Scholar 

  99. Irshad A, Cheema ZA (2005) Effect of sorghum extract on management of barnyard grass in rice crop. Allelopath J 14:205–213

    Google Scholar 

  100. Iqbal J, Cheema ZA, Mushtaq MN (2009) Allelopathic crop water extracts reduce the herbicide dose for weed control in cotton (Gossypium hirsutum). Int J Agric Biol 11:360–366

    CAS  Google Scholar 

  101. Jabran K, Cheema ZA, Farooq M, Hussain M (2010) Lower doses of pendimethalin mixed with allelopathic crop water extracts for weed management in canola (Brassica napus L). Int J Agric Biol 12:335–340

    CAS  Google Scholar 

  102. Nawaz R, Cheema ZA, Mahmood T (2001) Effect of row spacing and sorghum water extract on sunflower and its weeds. Int J Agric Biol 3:360–362

    Google Scholar 

  103. Khaliq A, Cheema ZA, Mukhtar MA, Basra SMA (1999) Evaluation of sorghum (Sorghum bicolor) water extracts for weed control in soybean. Int J Agric Biol 1:23–26

    Google Scholar 

  104. Eladel H, Battah M, Dawa A, Abd-Elhay R, Anees D (2019) Effect of rice straw extracts on growth of two phytoplankton isolated from a fish pond. J Appl Phycol 1–7. https://doi.org/10.1007/s10811-019-01766-0

    Article  Google Scholar 

  105. Wang C, Wu B, Jiang K (2019) Allelopathic effects of Canada golden rod leaf extracts on the seed germination and seedling growth of lettuce reinforced under salt stress. Ecotoxicology 28:103–116

    Article  CAS  PubMed  Google Scholar 

  106. Bar-Eyal M, Sharon E, Spiegel Y (2006) Nematicidal activity of Chrysanthemum coronarium. Eur J Plant Pathol 114:427–433

    Article  Google Scholar 

  107. Husen A (2010) Growth characteristics, physiological and metabolic responses of teak (Tectona grandis Linn. f.) clones differing in rejuvenation capacity subjected to drought stress. Silvae Genetica 59:124–136

    Article  Google Scholar 

  108. Getnet Z, Husen A, Fetene M, Yemata G (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) Moench} varieties-a field trial under drought-prone area in Amhara regional state, Ethiopia. J Agron 14:188–202

    Article  CAS  Google Scholar 

  109. Embiale A, Hussein M, Husen A, Sahile S, Mohammed K (2016) Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agron 15:45–57

    Article  CAS  Google Scholar 

  110. Hussein M, Embiale A, Husen A, Aref IM, Iqbal M (2017) Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pak J Bot 49:867–877

    CAS  Google Scholar 

  111. Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress. J Environ Biol 37:421–429

    CAS  Google Scholar 

  112. Husen A, Iqbal M, Aref IM (2017) Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol 38:179–186

    Article  Google Scholar 

  113. Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br). Agric Food Secur 7:44

    Article  Google Scholar 

  114. Husen A, Iqbal M, Khanum N, Aref IM, Sohrab SS, Meshresa G (2019) Modulation of salt-stress tolerance of Niger (Guizotia abyssinica), an oilseed plant, by application of salicylic acid. J Environ Biol 40:94–104

    Article  Google Scholar 

  115. Farooq M, Nadeem F, Arfat MY, Nabeel M, Musadaq S, Cheema SA, Nawaz A (2018) Exogenous application of allelopathic water extracts helps improving tolerance against terminal heat and drought stresses in bread wheat (Triticum aestivum L. Em. Thell.). J Agron Crop Sci 204:298–312

    Article  CAS  Google Scholar 

  116. Javaid A, Shoaib A (2013) Allelopathy for the management of phytopathogens. Springer, Heidelberg, pp 299–319

    Book  Google Scholar 

  117. Singh SP, Gupta KC (1992) Allelopathic effect of some essential oils of plants on phytopathogenic fungi. In: Proceedings of the first national symposium. Allelopathy in agroecosystems (agriculture & forestry), February 12–14, 1992, held at CCS Haryana Agricultural University, Hisar-125 004, India. Indian Society of Allelopathy, CCS Haryana Agricultural University, pp 187–188

    Google Scholar 

  118. Yu JQ (1999) Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato–Chinese chive (Allium tuberosum) intercropping system. J Chem Ecol 25:2409–2417

    Article  CAS  Google Scholar 

  119. Riaz T, Khan SN, Javaid A (2010a) Management of corm-rot disease of gladiolus by plant extracts. Nat Prod Res 24:1131–1138

    Article  CAS  PubMed  Google Scholar 

  120. Riaz T, Khan SN, Javaid A (2010b) Management of Fusarium corm rot of gladiolus (Gladiolus grandiflorus sect. Blandus cv. Aarti) by using leaves of allelopathic plants. Afr J Biotechnol 8:4681–4686

    Google Scholar 

  121. Deepak B (2011) Soil amendments, plant extracts and plant products for integrated disease management in agricultural crops: a review. Afr J Agric Res 6:6790–6797

    Article  Google Scholar 

  122. Javaid A, Saddique A (2011) Management of Macrophomina root rot of mungbean using dry leaves manure of Datura metel as soil amendment. Span J Agric Res 9:901–905

    Article  Google Scholar 

  123. Klein E, Katan J, Gamliel A (2011) Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Dis 95:1116–1123

    Article  PubMed  Google Scholar 

  124. Heap I (2018) The international survey of herbicide resistant weeds. Online, September 20, 2018. www.weedscience.org. Accessed 5 Dec 2018

  125. Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production chemical nature and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825

    Article  CAS  Google Scholar 

  126. Duke SO, Dayan FE, Romagni JG, Rimando AM (2000) Natural products as sources of herbicides: current status and future trends. Weed Res 40:99–111

    Article  CAS  Google Scholar 

  127. Jabran K (2017) Allelopathy: introduction and concepts. In: Jabran K (ed) Manipulation of allelopathic crops for weed control. SpringerBriefs in Plant Science. Springer International Publishing AG, Switzerland, pp 1–12

    Chapter  Google Scholar 

  128. Anaya AL (2006) Allelopathic organisms and molecules: promising bioregulators for the control of plant diseases, weeds, and other pests. In: Allelochemicals: biological control of plant pathogens and diseases. Springer, Dordrecht, pp 31–78

    Chapter  Google Scholar 

  129. Liu S, Qin FC, Zheng Y, Yu SX (2019) Allelopathic effects of Eucalyptus urophylla on Legume-Rhizobium symbiosis. Allelopath J 46:97–108

    Article  Google Scholar 

  130. Dayan FE, Duke SO (2014) Natural compounds as next-generation herbicides. Plant Physiol 166:1090–1105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Li ZR, Liu YB, Zhou XM, Li XG, Bai LY (2019) Allelopathic herbicidal effects of crude ethanolic extracts of Veronica persica (Lour.) Merr weeds. Allelopath J 46:85–96

    Article  Google Scholar 

  132. Puig CG, Reigosa MJ, Valentao P, Andrade PB, Pedrol N (2018) Unravelling the bioherbicide potential of Eucalyptus globulus Labill: biochemistry and effects of its aqueous extract. PLoS One 13:e0192872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Perveen S, Yousaf M, Mushtaq M, Sarwar N, Khaliq A, Hashim S (2019) Selective bioherbicidal potential of delonix regia allelopathic leaf extract on germination and seedling growth of field bindweed and wheat. Appl Ecol Environ Res 17:511–519

    Article  Google Scholar 

  134. Macias FA, Marin D, Oliveros-Bastidas A, Varela RM, Simonet AM, Carrera C, Molinillo JM (2003) Allelopathy as a new strategy for sustainable ecosystems development. Biol Sci Space 17:18–23

    Article  PubMed  Google Scholar 

  135. Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Han X, Cheng ZH, Meng HW, Yang XL, Ahmad I (2013) Allelopathic effect of decomposed garlic (Allium Sativum L.) stalk on lettuce (L. Sativa Var. Crispa L.). Pak J Bot 45:225–233

    Google Scholar 

  137. Jabran K, Mhajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed controling agricultural systems. Crop Prot 72:57–65

    Article  Google Scholar 

  138. Singh HP, Batish DR, Kohli RK (2003) Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit Rev Plant Sci 22:239–311

    Article  CAS  Google Scholar 

  139. Khanh TD, Chung MI, Xuan TD, Tawata S (2005) The exploitation of crop allelopathy in sustainable agricultural production. J Agron Crop Sci 191:172–184

    Article  Google Scholar 

  140. Reeves DW, Price AJ, Patterson MG (2005) Evaluation of three winter cereals for weed control in conservation-tillage non transgenic cotton. Weed Technol 19:731–736

    Article  Google Scholar 

  141. Yildirim E, Guvenc I (2005) Intercropping based on cauliflower: more productive, profitable and highly sustainable. Eur J Agron 22:11–18

    Article  Google Scholar 

  142. Iqbal J, Cheema ZA, An M (2007) Intercropping of field crops in cotton for the management of purple nut sedge (Cyperus rotundus L.). Plant Soil 300:163–171

    Article  CAS  Google Scholar 

  143. Mahmood A, Cheema ZA, Mushtaq MN, Farooq M (2013) Maize- sorghum intercropping systems for purple nut sedge management. Arch Agron Soil Sci 59:1279–1288

    Article  Google Scholar 

  144. Wortman SE, Drijber RA, Francis CA, Lindquist JL (2013) Arable weeds, cover crops and tillage drive soil microbial community composition in organic cropping systems. Appl Soil Ecol 72:232–241

    Article  Google Scholar 

  145. Farooq M, Hussain T, Wakeel A, Cheema ZA (2014) Differential response of maize and mungbean to tobacco allelopathy. Exp Agric 50:611–624

    Article  Google Scholar 

  146. Silva RMG, Brante RT, Santos VHM, Mecina GF, Silva LP (2014) Phytotoxicity of ethanolic extract of turnip leaves (Raphanus Sativus L.). Biosci J 30:891–902

    Google Scholar 

  147. Wezel A, Casagrande M, Celette F, Vian JF, Ferrer A, Peigne J (2014) Agroecological practices for sustainable agriculture. A review. Agron Sustain Dev 34:1–20

    Article  Google Scholar 

  148. Haider G, Cheema ZA, Farooq M, Wahid A (2015) Performance and nitrogenuse of wheat cultivars in response to application of allelopathic crop residues and 3,4-dimethylpyrazolephosphate. Int J Agric Biol 17:261–270

    CAS  Google Scholar 

  149. Brilli F, Loreto F, Baccelli I (2019) Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front Plant Sci 10:1–8

    Article  Google Scholar 

  150. Loreto F, Csengele B, Brilli F, Nogués I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828

    Article  CAS  PubMed  Google Scholar 

  151. Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    Article  CAS  PubMed  Google Scholar 

  152. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175

    Article  CAS  PubMed  Google Scholar 

  153. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210

    Article  CAS  Google Scholar 

  154. Moola F, Mallik AU, Lautenschlager RA (1998) Effects of conifer release treatments on the growth and fruit production of Vaccinium spp. in north western Ontario. Can J For Res 28:841–851

    Article  Google Scholar 

  155. Jobidon R (1989) Phytotoxic effects barley, oat and wheat straw mulches in eastern Quebec forest plantations. I. Effects on red raspberry (Rubus idaeus). For Ecol Manag 29:277–294

    Article  Google Scholar 

  156. Jobidon R (1991) Some future directions for biologically based vegetation control in forestry research. For Chron 67:514–529

    Article  Google Scholar 

  157. Vivanco JM, Bais HP, Stermitz TR, Thelen GC, Callaway RM (2004) Biogeochemical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol Lett 7:285–292

    Article  Google Scholar 

  158. Birkett MA, Chamberlain K, Hooper AM, Pickett JA (2001) Does allelOpathy offer real promise for practical weed management and for explaining rhizosphere interactions involving plants? Plant Soil 232:31–39

    Google Scholar 

  159. Duke SO, Dayan FE, Rimando AM, Schrader KK, Aliotta G, Oliva A, Romagni JG (2002) Chemicals from nature for weed management. Weed Sci 50:138–151

    Article  CAS  Google Scholar 

  160. Aliotta G, Mallik AU, Pollio A (2008) Historical examples of allelopathy and ethnobotany from the Mediterranean region. Allelo Forest Ecol 11–24. https://doi.org/10.1007/978-0-387-77337-7_1

  161. Huang J, Hu R, Rozelle S, Pray C (2005) Insect resistance GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308:688–690

    Article  CAS  PubMed  Google Scholar 

  162. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  PubMed  Google Scholar 

  163. Mallik AU (2008) Allelopathy: advances, challenges and opportunities. In: Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 25–38

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Bachheti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bachheti, A., Sharma, A., Bachheti, R.K., Husen, A., Pandey, D.P. (2020). Plant Allelochemicals and Their Various Applications. In: Mérillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-96397-6_14

Download citation

Publish with us

Policies and ethics