Skip to main content

Applications of Hydrogels

  • Reference work entry
  • First Online:
Functional Biopolymers

Abstract

Hydrogels offer multiple unique properties in terms of their porosities, mechanics, interfacial dynamics, and biological responses that make them highly relevant to a broad range of potential applications. Herein, we review how hydrogels can address key challenges in biomedical, personal care, cosmetic, bioseparations, environmental (including natural resource extraction), catalytic, and agricultural applications, with an emphasis on how hydrogels can be rationally engineered in each case for optimal performance. Biomedical applications of hydrogels in drug delivery, tissue engineering, cell encapsulation, wound healing, and biological barrier materials are particularly highlighted in the context of how various approaches to hydrogel synthesis and fabrication influence hydrogel performance in such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAc:

Acrylic acid

AAm:

Acrylamide

AAS:

Atomic absorption spectroscopy

AgNPs:

Silver nanoparticles

AMPS:

2-Acrylamido-2-methyl-1-propanesulfonic acid

APO-1:

Apoptosis antigen-1

APTMACl:

(3-Acrylamidopropyl)trimethylammonium chloride

CD95:

Cluster of differentiation 95

CMC:

Carboxymethyl cellulose

CRF:

Controlled release fertilizer

ECM:

Extracellular matrix

EHS:

Engelbreth-Holm-Swarm

FDA:

US Food and Drug Administration

GAG:

Glycosaminoglycan

HA:

Hyaluronic acid

HPMA:

2-Hydroxypropyl methacrylate

HPMC:

Hydroxypropylmethyl cellulose

Hydrogel-M:

Hydrogel-embedded metal catalyst

MMPs:

Metallomatrix proteinases

MW:

Molecular weight

NPs:

Nanoparticles

PA:

Peptide amphiphile

PAA:

Poly(acrylic acid)

PAAm:

Poly(acrylamide)

PAGE:

Poly(acrylamide) gel electrophoresis

PCL:

Poly(ɛ-caprolactone)

PDADMAC:

Poly(diallyldimethylammonium chloride)

PEG:

Poly(ethylene glycol)

PEO:

Poly(ethylene oxide)

PGA:

Poly(glycolic acid)

PHEMA:

Poly(hydroxyethyl methacrylate)

PLA:

Poly(lactic acid)

PLGA:

Poly(lactic-co-glycolic) acid

PNIPAM:

Poly(N-isopropylacrylamide)

PPO:

Poly(p-phenylene oxide)

PU:

Poly(urethane)

PVA:

Poly(vinyl alcohol),

RGD:

Arginylglycylaspartic acid

SAPs:

Superabsorbent polymers

SDS:

Sodium dodecyl sulfate

SPHs:

Superporous hydrogels

SPIONs:

Superparamagnetic iron oxide nanoparticles

SRF:

Slow release fertilizer

TNFRSF6:

Tumor necrosis factor receptor superfamily member 6

UV:

Ultraviolet

VEGF:

Vascular endothelial growth factor

References

  1. O. Wichterle, D. Lim, Hydrophilic gels for biological use. Nature 185, 117–118 (1960)

    Article  Google Scholar 

  2. R. Hepp, In the pipeline: line-field OCT. Rev. Optom. 154(9), 3–4 (2017)

    Google Scholar 

  3. J. Zhu, R.E. Marchant, Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices 8(5), 607–626 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. F. Brandl, F. Sommer, A. Goepferich, Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28(2), 134–146 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. E.L. Baker, R.T. Bonnecaze, M.H. Zaman, Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97(4), 1013–1021 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J.E. Scott, Extracellular matrix, supramolecular organization and shape. J. Anat. 187, 259–269 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. H. Geckil, F. Xu, X. Zhang, S. Moon, U. Demirci, Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5(3), 469–484 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. G. Camci-Unal, J.W. Nichol, H. Bae, H. Tekin, J. Bischoff, A. Khademhosseini, Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J. Tissue Eng. Regen. Med. 7(5), 337–347 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. J. Zhu, C. Tang, K. Kottke-Marchant, R.E. Marchant, Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug. Chem. 20(2), 333–339 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Tsubota, H. Mizushima, T. Hirosaki, S. Higashi, H. Yasumitsu, K. Miyazaki, Isolation and activity of proteolytic fragment of laminin-5 α3 chain. Biochem. Biophys. Res. Commun. 278(3), 614–620 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. S. Halstenberg, A. Panitch, S. Rizzi, H. Hall, J.A. Hubbell, Biologically engineered protein-graft poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3(4), 710–723 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. S.H. Lee, J.J. Moon, J.S. Miller, J.L. West, Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualized collagenase activity during three dimensional cell migration. Biomaterials 28(20), 3163–3170 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. J. Taipale, J. Keski-Oja, Growth factors in the extracellular matrix. FASEB J. 11(1), 51–59 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. R.R. Chen, D.J. Mooney, Polymeric growth factor delivery strategies for tissue engineering. Pharm. Res. 20(80), 1103–1112 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. H.J. Lee, J.S. Lee, T. Chansakul, C. Yu, J.H. Elisseef, S.M. Yu, Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials 27(30), 5268–5276 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. C.N. Salinas, K.S. Anseth, Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J. Biomed. Mater. Res. A 90(2), 456–464 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. H. Tan, K.G. Marra, Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3(3), 1746–1767 (2010)

    Article  CAS  PubMed Central  Google Scholar 

  18. Y. Li, J. Rodrigues, H. Tomas, Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41(6), 2193–2221 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. I. Mironi-Harpaz, D.Y. Wang, S. Venkatraman, D. Seliktar, Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater. 8(5), 1838–1848 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. S.S. Stalling, S.O. Akintoye, S.B. Nicoll, Development of photocrosslinked methylcellulose hydrogels for soft tissue reconstruction. Acta Biomater. 5(6), 1911–1918 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. K.J. De France, F. Xu, T. Hoare, Structured macroporous hydrogels: progress, challenges, and opportunities. Adv. Healthc. Mater. (2017). https://doi.org/10.1002/adhm.201700927

  22. K. Chatterjee, M.F. Young, C.G. Simon, Fabricating gradient hydrogel scaffolds for 3D cell culture. Comb. Chem. High Throughput Screen. 14(4), 227–236 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J.A. Burdick, A. Khademhosseini, R. Langer, Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20(13), 5153–5156 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. A. Sergeeva, N. Feoktistova, V. Prokopovic, D. Gorin, D. Volodkin, Design of porous alginate hydrogels by sacrificial CaCO3 templates: formation mechanism. Adv. Mater. Interfaces 2(18), 1500386 (2015)

    Article  CAS  Google Scholar 

  25. S. Liu, M. Jin, Y. Chen, H. Gao, X. Shi, W. Cheng, L. Ren, Y. Wang, High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive microporous hydrogel monoliths. J. Mater. Chem. B 5, 2671 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. C. Ji, N. Annabi, A. Khademhosseini, F. Dehghani, Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater. 7(4), 1653–1664 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. R.Y. Tam, S.A. Fisher, A.E.G. Baker, M.S. Shoichet, Transparent porous polysaccharide cryogels provide biochemically defined, biomimetic matrices for tunable 3D cell culture. Chem. Mater. 28(11), 3762–3770 (2016)

    Article  CAS  Google Scholar 

  28. C.B. Highley, C.B. Rodell, J.A. Burdick, Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27(34), 5075–5079 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. S. Nedjari, A. Hébraud, S. Eap, G. Schlatter, Electrostatic template-assisted deposition of microparticles on electrospun nanofibers: towards microstructured functional biochips for screening applications. Mater. Lett. 142, 83600–83607 (2015). https://doi.org/10.1039/C5RA15931H

  30. J.D. Ehrick, S.K. Deo, T.W. Browning, L.G. Bachas, M.J. Madou, S. Daunert, Genetically engineered protein in hydrogels tailors stimuli-responsive characteristic. Nat. Mater. 4(4), 298–302 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. D. Sengupta, S.C. Heilshorn, Protein-engineered biomaterials: highly tunable tissue engineering scaffolds. Tissue Eng. B 16(3), 285–293 (2010)

    Article  CAS  Google Scholar 

  32. J. Baier Leach, K.A. Bivens, C.W. Patrick, C.E. Schmidt, Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol. Bioeng. 82(5), 578–589 (2003)

    Article  PubMed  CAS  Google Scholar 

  33. B.K. Denizli, H.K. Can, Z.M.O. Rzaev, A. Guner, Preparation conditions and swelling equilibria of dextran hydrogels prepared by some crosslinked agents. Polymer 45(19), 6431–6435 (2004)

    Article  CAS  Google Scholar 

  34. C.M. Nimmo, S.C. Owen, M.S. Shoichet, Diels-Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 12(3), 824–830 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Lei, S. Gojgini, J. Lam, T. Segura, The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials 32(1), 39–47 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. N. Davidenko, J.J. Campbell, E.S. Thian, C.J. Watson, R.E. Cameron, Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater. 6(10), 3957–3968 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. S.E. Stabenfeldt, A. Garcia, M.C. LaPlaca, Thermoreversible laminin-functionalized hydrogel for neural tissue engineering. J. Biomed. Mater. Res. A 77(4), 718–725 (2006)

    Article  PubMed  CAS  Google Scholar 

  38. A. Shikanov, M. Xu, T.K. Woodruff, L.D. Shea, Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials 30(29), 5476–5485 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. N. Park, J.S. Kahn, E.J. Rice, M.R. Hartman, H. Funabashi, J. Xu, S.H. Um, D. Luo, High-yield cell-free protein production from P-gel. Nat. Protoc. 4(12), 1759–1770 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. C.K. Lee, S.R. Shin, S.H. Lee, J.H. Jeon, I. So, T.M. Kang, S.I. Kim, J.Y. Mun, S.S. Han, G.M. Spinks, G.G. Wallace, S.J. Kim, DNA hydrogel fiber with self-entanglement prepared by using an ionic liquid. Angew. Chem. Int. Ed. 47(13), 2470–2474 (2008)

    Article  CAS  Google Scholar 

  41. H.K. Kleinman, G.R. Martin, Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15(5), 378–386 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. A.N. Morritt, S.K. Bortolotto, R.J. Dilley, X.L. Han, A.R. Kompa, D. McCombe, C.E. Wright, S. Itescu, J.A. Angus, W.A. Morrison, Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115(3), 353–360 (2007)

    Article  PubMed  Google Scholar 

  43. R.H. Schmedlen, K. Masters, J.L. West, Photocrosslinked polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23(22), 4325–4332 (2002)

    Article  CAS  PubMed  Google Scholar 

  44. J. Lee, M.J. Cuddihy, N.A. Kotov, Three-dimensional cell culture matrices: state of the art. Tissue Eng. B 14(1), 61–86 (2008)

    Article  CAS  Google Scholar 

  45. S. Varghese, J.H. Elisseeff, Hydrogels for musculoskeletal tissue engineering. Adv. Polym. Sci. 203, 95–144 (2006)

    Article  CAS  Google Scholar 

  46. D.L. Hern, J.A. Hubbell, Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39(2), 266–276 (1998)

    Article  CAS  PubMed  Google Scholar 

  47. H. Shin, S. Jo, A.G. Mikos, Biomimetic materials for tissue engineering. Biomaterials 24(24), 4353–4364 (2003)

    Article  CAS  PubMed  Google Scholar 

  48. J. Kopecek, J. Yang, Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem. Int. Ed. 51(30), 7396–7417 (2012)

    Article  CAS  Google Scholar 

  49. C. Guo, Y. Luo, R. Zhou, G. Wei, Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. ACS Nano 6(5), 3907–3918 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. V. Jayawarna, M. Ali, T.A. Jowitt, A.F. Miller, A. Saiani, J.E. Gough, R.V. Uljin, Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl–dipeptides. Adv. Mater. 18(5), 611–614 (2006)

    Article  CAS  Google Scholar 

  51. A.K.A. Silva, C. Richard, M. Bessodes, D. Scherman, O.W. Merten, Growth factor delivery approaches in hydrogels. Biomacromolecules 10(1), 9–18 (2009)

    Article  PubMed  CAS  Google Scholar 

  52. T.E. Brown, K.S. Anseth, Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem. Soc. Rev. (2017). https://doi.org/10.1039/C7CS00445A

  53. A.P. Nowak, V. Breedveld, L. Pakstis, B. Ozbas, D.J. Pine, D. Pochan, T.J. Deming, Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. S.H. Kim, S.-H. Kim, S. Nair, E. Moore, Reactive electrospinning of cross-linked poly(2-hydroxyethyl methacrylate) nanofibers and elastic properties of individual hydrogel nanofibers in aqueous solutions. Macromolecules 38, 3719–3723 (2005)

    Article  CAS  Google Scholar 

  55. F. Xu, H. Sheardown, T. Hoare, Reactive electrospinning of degradable poly(oligoethylene glycol methacrylate)-based nanofibrous hydrogel networks. Chem. Commun. 52(7), 1451–1454 (2016)

    Article  CAS  Google Scholar 

  56. S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8), 773–785 (2014)

    Article  CAS  PubMed  Google Scholar 

  57. J.I. Rodriguez-Devora, B. Zhang, D. Reyna, Z.D. Shi, T. Xu, High throughput miniature drug-screening platform using bioprinting technology. Biofabrication 4(3), 035001 (2012)

    Article  PubMed  CAS  Google Scholar 

  58. X. Ma, X. Qu, W. Zhu, Y.S. Li, S. Yuan, H. Zhang, J. Liu, P. Wang, C.S.E. Lai, F. Zanella, G.S. Feng, F. Sheikh, S. Chien, S. Chen, Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl. Acad. Sci. 113(8), 2206–2211 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. C. Mandrycky, Z. Wang, K. Kim, D.K. Kim, 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34(4), 422–434 (2016)

    Article  CAS  PubMed  Google Scholar 

  60. C.A. DeForest, K.S. Anseth, Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 3, 421–444 (2012)

    Article  CAS  PubMed  Google Scholar 

  61. J. Malda, J. Visser, F.P. Melchels, T. Jungst, W.E. Hennink, W.J. Dhert, J. Groll, D.W. Hutmacher, 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25(36), 5011–5028 (2013)

    Article  CAS  PubMed  Google Scholar 

  62. S. Khalil, W. Sun, Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng. 131, 111002 (2009)

    Article  PubMed  Google Scholar 

  63. A. Tirella, A. Orsini, G. Vozzi, A. Ahluwalia, A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication 1(4), 045002 (2009)

    Article  CAS  PubMed  Google Scholar 

  64. K. Pataky, T. Braschler, A. Negro, P. Renaud, Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv. Mater. 24(3), 391–396 (2012)

    Article  CAS  PubMed  Google Scholar 

  65. N.C. Hunt, L.M. Grover, Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol. Lett. 32(6), 733–742 (2010)

    Article  CAS  PubMed  Google Scholar 

  66. S.W. Liao, J. Rawson, K. Omori, K. Ishiyama, D. Mozhdehi, A.R. Oancea, T. Ito, Z. Guan, Y. Mullen, Maintaining functional islets through encapsulation in an injectable saccharide-peptide hydrogel. Biomaterials 34(16), 3984–3991 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. E. Santos, J.L. Pedraz, R.M. Hernandez, G. Orive, Therapeutic cell encapsulation: ten steps towards clinical translation. J. Control. Release 170(1), 1–14 (2013)

    Article  CAS  PubMed  Google Scholar 

  68. Y.A. Mørch, I. Donati, B.L. Strand, G. Skjak-Braek, Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7, 1471–1480 (2006)

    Article  PubMed  CAS  Google Scholar 

  69. K.M. Gattas-Asfura, C.A. Fraker, C.L. Stabler, Perfluorinated alginate for cellular encapsulation. J. Biomed. Mater. Res. A 100(8), 1963–1971 (2012)

    Article  PubMed  CAS  Google Scholar 

  70. C.-G. Yang, R.-Y. Pan, Z.-R. Xu, A single-cell encapsulation method based on a microfluidic multi-step droplet splitting system. Chin. Chem. Lett. 26(12), 1450–1454 (2015)

    Article  CAS  Google Scholar 

  71. S.Q. Liu, Q. Tian, L. Wang, J.L. Hedrick, J.H. Hui, Y.Y. Yang, P.L. Ee, Injectable biodegradable poly(ethylene glycol)/RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stem cells. Macromol. Rapid Commun. 31(13), 1148–1154 (2010)

    Article  CAS  PubMed  Google Scholar 

  72. P.S. Hume, K.S. Anseth, Inducing local T cell apoptosis with anti-Fas-functionalized polymeric coatings fabricated via surface-initiated photopolymerizations. Biomaterials 31(12), 3166–3174 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. W. Yanbin, S. Joseph, N.R. Aluru, Effect of cross-linking on the diffusion of water, ions, and small molecules in hydrogels. J. Phys. Chem. B 113, 3512–3520 (2009)

    Article  CAS  Google Scholar 

  74. Y. Peng, L.E. Tellier, J.S. Temenoff, Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery. Biomater. Sci. 4(9), 1371–1380 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. C.T. Gustafson, F. Boakye-Agyeman, C.L. Brinkman, J.M. Reid, R. Patel, Z. Bajzer, M. Dadestan, M.J. Yaszemski, Controlled delivery of vancomycin via charged hydrogels. PLoS One 11(1), e0146401 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. M. McKenzie, D. Betts, A. Suh, K. Bui, L.D. Kim, H. Cho, Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 20(11), 20397–20408 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. D. Gu, A.J. O’Connor, G.H. Qiao, K. Ladewig, Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opin. Drug Deliv. 14(7), 879–895 (2017)

    Article  CAS  PubMed  Google Scholar 

  78. T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenges. Polymer 49(8), 1993–2007 (2008)

    Article  CAS  Google Scholar 

  79. C.T. Huynh, D.S. Lee, Controlled release, in Encyclopedia of Polymeric Nanomaterials, ed. by S. Kobayashi, K. Müllen, vol 1116 (Springer-Verlag Berlin Heidelberg, 2015), pp. 439–449. https://www.springer.com/gp/book/9783642296475

  80. A. Mohanan, B. Vishalakshi, S. Ganesh, Swelling and diffusion characteristics of stimuli-responsive N-isopropylacrylamide and j-Carrageenan semi-IPN hydrogels. Int. J. Polym. Mater. 60(10), 787–798 (2011)

    Article  CAS  Google Scholar 

  81. J.E. Mockel, B.C. Lippold, Zero-order drug release from hydrocolloid matrices. Pharm. Res. 10(7), 1066–1070 (1993)

    Article  CAS  PubMed  Google Scholar 

  82. S. Stithit, W. Chen, J.C. Price, Development and characterization of buoyant theophylline microspheres with near zero order release kinetics. J. Microencapsul. 15(6), 725–737 (1998)

    Article  CAS  PubMed  Google Scholar 

  83. P. Costa, J.M.S. Lobo, Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 13(2), 123–133 (2001)

    Article  CAS  PubMed  Google Scholar 

  84. P.L. Ritger, N.A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 5(1), 37–42 (1987)

    Article  CAS  Google Scholar 

  85. B. Falk, S. Garramone, S. Shivkumar, Diffusion coefficient of paracetamol in a chitosan hydrogel. Mater. Lett. 58(26), 3261–3265 (2004)

    Article  CAS  Google Scholar 

  86. E.T. Cole, Liquid-filled and -sealed hard gelatin capsule technologies, in Modified-Release Drug Delivery Technology, ed. by J.H. Michael, J. Rathbone, M.S. Roberts (CRC Press, Boca Raton, 2002)

    Google Scholar 

  87. S. Dubey, S.K. Bajpai, Poly(methacrylamide-co-acrylic acid) hydrogels for gastrointestinal delivery of theophylline. I. Swelling characterization. J. Appl. Polym. Sci. 101(5), 2995–3008 (2006)

    Article  CAS  Google Scholar 

  88. A. Dafe, H. Etemadi, A. Dilmaghani, G.R. Mahdavinia, Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int. J. Biol. Macromol. 97, 536–543 (2017)

    Article  CAS  PubMed  Google Scholar 

  89. K.C. Hemant Yadav, C.S. Satish, H.G. Shivakumar, Preparation and evaluation of chitosan-poly (acrylic acid) hydrogels as stomach specific delivery for amoxicillin and metronidazole. Indian J. Pharm. Sci. 69(1), 91–95 (2007).

    Article  Google Scholar 

  90. N.S. Malik, M. Ahmad, M.U. Minhas, Cross-linked beta-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 12(2), e0172727 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. S.G. Choi, S.E. Lee, B.K. Kang, C.L. Ng, E. Davaa, J.S. Park, Thermosensitive and mucoadhesive sol-gel composites of paclitaxel/dimethyl-beta-cyclodextrin for buccal delivery. PLoS One 9(9), e109090 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. S. Sarabahi, Recent advances in topical wound care. Indian J. Plast. Surg. 45(2), 379–387 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  93. J.S. Boateng, K.H. Matthews, H.N. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97(8), 2892–2923 (2008)

    Article  CAS  PubMed  Google Scholar 

  94. M.G. Arafa, B.M. Ayoub, DOE optimization of nano-based carrier of pregabalin as hydrogel: new therapeutic & chemometric approaches for controlled drug delivery systems. Sci. Rep. 7, 41503 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. W. Fong Yen, M. Basri, M. Ahmad, M. Ismail, Formulation and evaluation of galantamine gel as drug reservoir in transdermal patch delivery system. Sci. World J. 2015, 495271 (2015)

    Article  CAS  Google Scholar 

  96. H.E. Boddé, E.A.C. van Aalten, H.E. Junginger, Hydrogel patches for transdermal drug delivery; in-vivo water exchange and skin compatibility. J. Pharm. Pharmacol. 41(3), 152–155 (1989)

    Article  PubMed  Google Scholar 

  97. R.F. Donnelly, T.R.R. Singh, M.J. Garland, K. Migalska, R. Majithiya, C.M. McCrudden, P.L. Kole, T.W.T. Mahmood, H.O. McCarthy, A.D. Woolfson, Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 22(23), 4879–4890 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. T. Furst, M. Piette, A. Lechanteur, B. Evrard, G. Piel, Mucoadhesive cellulosic derivative sponges as drug delivery system for vaginal application. Eur. J. Pharm. Biopharm. 95A, 128–135 (2015)

    Article  CAS  Google Scholar 

  99. K. Bouchemal, A. Aka-Any-Grah, N. Dereuddre-Bosquet, L. Martin, V. Lievin-Le-Moal, R. Le Grand, V. Nicholas, D. Gibellini, D. Lembo, C. Pous, A. Koffi, G. Ponchel, Thermosensitive and mucoadhesive pluronic-hydroxypropylmethylcellulose hydrogel containing the mini-CD4 M48U1 is a promising efficient barrier against HIV diffusion through macaque cervicovaginal mucus. Antimicrob. Agents Chemother. 59(4), 2215–2222 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. S. Malli, C. Bories, B. Pradines, K. Bouchemal, In situ forming pluronic(R) F127/chitosan hydrogel limits metronidazole transmucosal absorption. Eur. J. Pharm. Biopharm. 112, 143–147 (2017)

    Article  CAS  PubMed  Google Scholar 

  101. Z. Pavelic, N. Skalko-Basnet, R. Schubert, Liposomal gels for vaginal drug delivery. Int. J. Pharm. 219, 139–149 (2001)

    Article  CAS  PubMed  Google Scholar 

  102. K.M. Gupta, S.R. Barnes, R.A. Tangaro, M.C. Roberts, D.H. Owen, D.F. Katz, P.F. Kiser, Temperature and pH sensitive hydrogels: an approach towards smart semen-triggered vaginal microbicidal vehicles. J. Pharm. Sci. 96(3), 670–681 (2007)

    Article  CAS  PubMed  Google Scholar 

  103. A. Mahalingam, J.I. Jay, K. Langheinrich, S. Shukair, M.D. McRaven, L.C. Rohan, B.C. Herold, T.J. Hope, P.F. Kiser, Inhibition of the transport of HIV in vitro using a pH-responsive synthetic mucin-like polymer system. Biomaterials 32(33), 8343–8355 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. S. Mohammadi, L. Jones, M. Gorbet, Extended latanoprost release from commercial contact lenses: in vitro studies using corneal models. PLoS One 9(9), e106653 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. D. Gulsen, C.C. Li, A. Chauhan, Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr. Eye Res. 30(12), 1071–1080 (2005)

    Article  CAS  PubMed  Google Scholar 

  106. A. ElShaer, S. Mustafa, M. Kasar, S. Thapa, B. Ghatora, R.G. Alany, Nanoparticle-laden contact lens for controlled ocular delivery of prednisolone: formulation optimization using statistical experimental design. Pharmaceutics 8(2), E14 (2016). https://www.ncbi.nlm.nih.gov/pubmed/27104555

  107. J.B. Ciolino, T.R. Hoare, N.G. Iwata, I. Behlau, C.H. Dohlman, R. Langer, D.S. Kohane, A drug-eluting contact lens. Invest. Ophthalmol. Vis. Sci. 50(7), 3346–3352 (2009)

    Article  PubMed  Google Scholar 

  108. W. Huang, N. Zhang, H. Hua, T. Liu, Y. Tang, L. Fu, Y. Yang, X. Ma, Y. Zhao, Preparation, pharmacokinetics and pharmacodynamics of ophthalmic thermosensitive in situ hydrogel of betaxolol hydrochloride. Biomed. Pharmacother. 83, 107–113 (2016)

    Article  CAS  PubMed  Google Scholar 

  109. P. Sheikholeslami, B. Muirhead, D.S. Baek, H. Wang, X. Zhao, D. Sivakumaran, S. Boyd, H. Sheardown, T. Hoare, Hydrophobically-modified poly(vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel. Exp. Eye Res. 137, 18–31 (2015)

    Article  CAS  PubMed  Google Scholar 

  110. G.P. Misra, T.W. Gardner, T.L. Lowe, Hydrogels for ocular posterior segment drug delivery, in Drug Product Development for the Back of the Eye, ed. by U. Kompella, H. Edelhauser. AAPS Advances in the Pharmaceutical Sciences Series, vol 2 (Springer, 2011)

    Google Scholar 

  111. Y. Yu, L.C. Lau, A.C. Lo, Y. Chau, Injectable chemically crosslinked hydrogel for the controlled release of bevacizumab in vitreous: a 6-month in vivo study. Transl. Vis. Sci. Technol. 4(2), (2015). https://doi.org/10.1167/tvst.4.2.5

  112. Y.K. Katare, J.E. Piazza, J. Bhandari, R.P. Daya, K. Akilan, M.J. Simpson, T. Hoare, R.K. Mishra, Intranasal delivery of antipsychotic drugs. Schizophr. Res. 184, 2–13 (2017)

    Article  PubMed  Google Scholar 

  113. S. Khan, K. Patil, N. Bobade, P. Yeole, R. Gailkwad, Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J. Drug Target. 18(3), 223–234 (2010)

    Article  CAS  PubMed  Google Scholar 

  114. H.S. Mahajan, S. Gattani, In situ gels of metoclopramide hydrochloride for intranasal delivery: in vitro evaluation and in vivo pharmacokinetic study in rabbits. Drug Deliv. 17(1), 19–27 (2010)

    Article  CAS  PubMed  Google Scholar 

  115. T. Nochi, Self-assembled polysaccharide nanogels for nasal delivery of biopharmaceuticals, in Mucosal Delivery of Pharmaceuticals: Biology, Challenges, and Strategies, ed. by J. das Neves, B. Sarmento (Springer, Boston, 2011)

    Google Scholar 

  116. J. Xu, M. Tam, S. Samaei, S. Lerouge, J. Barralet, M.M. Stevenson, M. Cerruti, Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater. 48, 247–257 (2017)

    Article  CAS  PubMed  Google Scholar 

  117. M.G. Dodov, K. Goracinova, M. Simonoska, S. Trajkovic-Jolevska, J.T. Ribarska, M.D. Mitevska, Formulation and evaluation of diazepam hydrogel for rectal administration. Acta Pharma. 55, 251–261 (2005)

    CAS  Google Scholar 

  118. M. Patenaude, N.M.B. Smeets, T. Hoare, Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol. Rapid Commun. 35(6), 598–617 (2014)

    Article  CAS  PubMed  Google Scholar 

  119. T. Hoare, E. Bellas, D. Zurakowski, D.S. Kohane, Rheological blends for drug delivery. II. Prolongation of nerve blockade, biocompatibility, and in vitro-in vivo correlations. J. Biomed. Mater. Res. A 92(2), 586–595 (2010)

    PubMed  Google Scholar 

  120. H. Wu, K. Wang, H. Wang, F. Chen, W. Huang, Y. Chen, J. Chen, J. Tao, X. Wen, S. Xiong, Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy. Colloids Surf. B: Biointerfaces 149, 97–104 (2017)

    Article  CAS  PubMed  Google Scholar 

  121. N. Morimoto, S. Hirano, H. Takahashi, S. Loethen II, D.H. Thompson, K. Akitoshi, Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules 14(1), 56–63 (2013)

    Article  CAS  PubMed  Google Scholar 

  122. T. Hoare, S. Young, M.W. Lawlor, D.S. Kohane, Thermoresponsive nanogels for prolonged duration local anesthesia. Acta Biomater. 8(10), 3596–3605 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. H.K.S. Yadav, N.A. Al Halabi, G.A. Alsalloum, Nanogels as novel drug delivery systems – a review. J. Pharm. Pharm. Res. 1, 5 (2017)

    Google Scholar 

  124. H.R. Culver, J.R. Clegg, N.A. Peppas, Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc. Chem. Res. 50(2), 170–178 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. T. Hoare, R. Pelton, Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules 9, 733–740 (2008)

    Article  CAS  PubMed  Google Scholar 

  126. S. Kang, Y.H. Bae, A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J. Control. Release 86, 115–121 (2003)

    Article  CAS  PubMed  Google Scholar 

  127. Y. Dong, W. Wang, O. Veiseh, E.A. Appel, K. Xue, M.J. Webber, B.C. Tang, X.W. Yang, G.C. Weir, R. Langer, D.G. Anderson, Injectable and glucose-responsive hydrogels based on boronic acid-glucose complexation. Langmuir 32(34), 8743–8747 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Z. Gu, T.T. Dang, M. Ma, B.C. Tang, H. Cheng, S. Jiang, Y. Dong, Y. Zhang, D.G. Anderson, Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 7(8), 6758–6766 (2013)

    Article  CAS  PubMed  Google Scholar 

  129. M.E. Byrne, K. Park, N.A. Peppas, Molecular imprinting within hydrogels. Adv. Drug Deliv. Rev. 54, 149–161 (2002)

    Article  CAS  PubMed  Google Scholar 

  130. R. Yoshida, K. Sakaim, T. Okano, Y. Sakurai, Pulsatile drug delivery systems using hydrogels. Adv. Drug Deliv. Rev. 11, 85–108 (1993)

    Article  CAS  Google Scholar 

  131. K. Zhang, X.-Y. Wu, Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J. Control. Release 80, 169–178 (2002)

    Article  CAS  PubMed  Google Scholar 

  132. T. Hoare, J. Santamaria, G.F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer, D.S. Kohane, A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 9(10), 3651–3657 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. A. Rocca, G. Aprea, G. Surfaro, M. Amato, A. Giuliani, M. Paccone, A. Salzano, A. Russo, D. Tafuri, B. Amato, Prevention and treatment of peritoneal adhesions in patients affected by vascular diseases following surgery: a review of the literature. Open Med. 11(1), 106–114 (2016)

    Article  CAS  Google Scholar 

  134. W.Z. Polishuk, B. Bercovici, Intraperitoneal low molecular weight dextran in tubal surgery. J Obstet. Gynaecol. Br. Commonw. 78, 724–727 (1971)

    Article  CAS  PubMed  Google Scholar 

  135. C.K. Ryan, H.C. Sax, Evaluation of a carboxymethylcellulose sponge for prevention of postoperative adhesions. Am. J. Surg. 169, 154–160 (1995)

    Article  CAS  PubMed  Google Scholar 

  136. T. Ito, Y. Yeo, C.B. Highley, E. Bellas, D.S. Kohane, Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions. Biomaterials 28(23), 3418–3426 (2007)

    Article  CAS  PubMed  Google Scholar 

  137. Y. Yeo, C.B. Highley, E. Bellas, T. Ito, R. Marini, R. Langer, D.S. Kohane, In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials 27(27), 4698–4705 (2006)

    Article  CAS  PubMed  Google Scholar 

  138. T. Hoare, Y. Yeo, E. Bellas, J.P. Bruggeman, D.S. Kohane, Prevention of peritoneal adhesions using polymeric rheological blends. Acta Biomater. 10(3), 1187–1193 (2014)

    Article  CAS  PubMed  Google Scholar 

  139. T. Ito, I.P. Fraser, Y. Yeo, C.B. Highley, E. Bellas, D.S. Kohane, Anti-inflammatory function of an in situ cross-linkable conjugate hydrogel of hyaluronic acid and dexamethasone. Biomaterials 28(10), 1778–1786 (2007)

    Article  CAS  PubMed  Google Scholar 

  140. P. Young, A. Johns, C. Templeman, C. Witz, B. Webster, R. Ferland, M.P. Diamond, K. Block, G. di Zerega, Reduction of postoperative adhesions after laparoscopic gynecological surgery with oxiplex/AP gel: a pilot study. Fertil. Steril. 84(5), 1450–1456 (2005)

    Article  PubMed  Google Scholar 

  141. M.H. Thornton, D.B. Johns, J.D. Campeau, F. Hoehler, G.S. DiZerega, Clinical evaluation of 0.5% ferric hyaluronate adhesion prevention gel for the reduction of adhesions following peritoneal cavity surgery: open-label pilot study. Hum. Reprod. 13(6), 1480–1485 (1998)

    Article  CAS  PubMed  Google Scholar 

  142. C.L. Tang, D.G. Jayne, F. Seow-Choen, Y.Y. Ng, K.W. Eu, N. Mustapha, A randomized controlled trial of 0.5% ferric hyaluronate gel (Intergel) in the prevention of adhesions following abdominal surgery. Ann. Surg. 243(4), 449–455 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  143. Y. Liu, X.Z. Shu, G.D. Prestwich, Reduced postoperative intra-abdominal adhesions using Carbylan-SX, a semisynthetic glycosaminoglycan hydrogel. Fertil. Steril. 87(4), 940–948 (2007)

    Article  CAS  PubMed  Google Scholar 

  144. R. Dunn, M.D. Lyman, P.G. Edelman, P.K. Campbell, Evaluation of the SprayGel™ adhesion barrier in the rat cecum abrasion and rabbit uterine horn adhesion models. Fertil. Steril. 75(2), 411–416 (2001)

    Article  CAS  PubMed  Google Scholar 

  145. W. Wu, Q. Ni, Y. Xiang, Y. Dai, S. Jiang, L. Wan, X. Liu, W. Cui, Fabrication of a photo-crosslinked gelatin hydrogel for preventing abdominal adhesion. RSC Adv. 6(95), 92449–92453 (2016)

    Article  CAS  Google Scholar 

  146. J.L. Hill-West, S.M. Chowdhury, A.S. Sawhney, C.P. Pathak, R.C. Dunn, J.A. Hubbell, Prevention of postoperative adhesions in the rat by in situ photopolymerization of bioresorbable hydrogel barrier. Obsterics Gynecol. 83(1), 59–64 (1994)

    CAS  Google Scholar 

  147. J.L. Hill-West, S.M. Chowdhury, A.S. Sawhney, C.P. Pathak, R.C. Dunn, J.A. Hubbell, Efficacy of adhesion barriers. Resorbable hydrogel, oxidized regenerated cellulose and hyaluronic acid. J. Reprod. Med. 41(3), 149–154 (1996)

    Google Scholar 

  148. E.R. Coelho Jr., L.O. Costa, A.V. Alencar, A.P. Barbosa, F.C. Pinto, J.L. Aguiar, Prevention of peritoneal adhesion using a bacterial cellulose hydrogel, in experimental study. Acta Cir. Bras. 30(3), 194–198 (2015)

    Article  Google Scholar 

  149. L. Song, L. Li, T. He, N. Wang, S. Yang, X. Yang, Y. Zheng, W. Zhang, L. Yang, Q. Wu, C. Gong, Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model. Sci. Rep. 6, 37600 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. W. Zhu, L. Gao, Q. Luo, C. Gao, G. Zha, Z. Shen, X. Li, Metal and light free “click” hydrogels for prevention of post-operative peritoneal adhesions. Polym. Chem. 5(6), 2018–2026 (2014)

    Article  CAS  Google Scholar 

  151. M. Madaghiele, C. Demitri, A. Sannino, L. Ambrosio, Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns Trauma 2(4), 153–161 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  152. J.C. Dumville, S. O’Meara, S. Deshpande, K. Speak, Hydrogel dressings for healing diabetic foot ulcers. Cochrane Database Syst. Rev. 7, CD009101 (2013)

    Google Scholar 

  153. R.F. Pereira, P.J. Bartolo, Traditional therapies for skin wound healing. Adv. Wound Care 5(5), 208–229 (2016)

    Article  Google Scholar 

  154. C. Ghobril, M.W. Grinstaff, The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem. Soc. Rev. 44(7), 1820–1835 (2015)

    Article  CAS  PubMed  Google Scholar 

  155. W.D. Spotnitz, S. Burks, Hemostats, sealants, and adhesives: components of the surgical toolbox. Transfusion 48(7), 1502–1516 (2008)

    Article  PubMed  Google Scholar 

  156. P.J.M. Bouten, M. Zonjee, J. Bender, S.T.K. Yauw, H. van Goor, J.C.M. van Hest, R. Hoogenboom, The chemistry of tissue adhesive materials. Prog. Polym. Sci. 39(7), 1375–1405 (2014)

    Article  CAS  Google Scholar 

  157. A.P. Duarte, J.F. Coelho, J.C. Bordado, M.T. Cidade, M.H. Gil, Surgical adhesives: systematic review of the main types and development forecast. Prog. Polym. Sci. 37(8), 1031–1050 (2012)

    Article  CAS  Google Scholar 

  158. R. Rakhshaei, H. Namazi, A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater. Sci. Eng. C 73, 456–464 (2017)

    Article  CAS  Google Scholar 

  159. A.M. Abdel-Mohsen, J. Jancar, D. Massoud, Z. Fohlerova, H. Elhadidy, Z. Spotz, A. Hebeish, Novel chitin/chitosan-glucan wound dressing: isolation, characterization, antibacterial activity and wound healing properties. Int. J. Pharm. 510(1), 86–99 (2016)

    Article  CAS  PubMed  Google Scholar 

  160. L. Shi, N. Yang, H. Zhang, L. Chen, L. Tao, Y. Wei, H. Liu, Y. Luo, A novel poly(gamma-glutamic acid)/silk-sericin hydrogel for wound dressing: synthesis, characterization and biological evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 48, 533–540 (2015)

    Article  CAS  PubMed  Google Scholar 

  161. D. Kostic, S. Vidovic, B. Obradovic, Silver release from nanocomposite Ag/alginate hydrogels in the presence of chloride ions: experimental results and mathematical modeling. J. Nanopart. Res. 18(3), 1–16 (2016). https://doi.org/10.1007/s11051-016-3384-3

  162. S.K. P T, V.K. Lakshmanan, M. Raj, R. Biswas, T. Hiroshi, S.V. Nair, R. Jayakumar, Evaluation of wound healing potential of beta-chitin hydrogel/nano zinc oxide composite bandage. Pharm. Res. 30(2), 523–537 (2013)

    Article  PubMed  CAS  Google Scholar 

  163. L. Fan, J. Yang, H. Wu, Z. Hu, J. Yi, J. Tong, X. Zhu, Preparation and characterization of quaternary ammonium chitosan hydrogel with significant antibacterial activity. Int. J. Biol. Macromol. 79, 830–836 (2015)

    Article  CAS  PubMed  Google Scholar 

  164. T.R. Nimal, G. Baranwal, M.C. Bavya, R. Biswas, R. Jayakumar, Anti-staphylococcal activity of injectable nano tigecycline/chitosan-PRP composite hydrogel using Drosophila melanogaster model for infectious wounds. ACS Appl. Mater. Interfaces 8(34), 22074–22083 (2016)

    Article  CAS  PubMed  Google Scholar 

  165. Y.J. Zheng, X.J. Loh, Natural rheological modifiers for personal care. Polym. Adv. Technol. 27(12), 1664–1679 (2016)

    Article  CAS  Google Scholar 

  166. United States Food and Drug Administration, Cosmetics & U.S. Law (2017)

    Google Scholar 

  167. S. Kumar, Exploratory analysis of global cosmetic industry: major players, technology and market trends. Technovation 25(11), 1263–1272 (2005)

    Article  Google Scholar 

  168. S.X. Lu, L. Liu, Delivery of smart, functional innovative materials: a supramolecular chemistry approach to anti-aging & acne products. Euro Cosmet. 3, 38–42 (2015)

    Google Scholar 

  169. A. Quattrone, A. Czajka, S. Sibilla, Thermosensitive hydrogel mask significantly improves skin moisture and skin tone: bilateral clinical trial. Cosmetics 4(2), 17 (2017). https://doi.org/10.3390/cosmetics4020017

    Article  CAS  Google Scholar 

  170. S. Doktorovova, E.B. Souto, Nanostructured lipid carrier-based hydrogel formulations for drug delivery: a comprehensive review. Expert Opin. Drug Deliv. 6(2), 165–176 (2009)

    Article  CAS  PubMed  Google Scholar 

  171. M. Gou, L. Wu, Q. Yin, Q. Guo, G. Guo, J. Liu, X. Zhao, Y. Wei, Z. Qian, Transdermal anaesthesia with lidocaine nano-formulation pretreated with low-frequency ultrasound in rats model. J. Nanosci. Nanotechnol. 9(11), 6360–6365 (2009)

    Article  CAS  PubMed  Google Scholar 

  172. S.H. Song, K.M. Lee, J.B. Kang, S.G. Lee, M.J. Kang, Y.W. Choi, Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem. Pharm. Bull. 62(8), 793–798 (2014)

    Article  CAS  Google Scholar 

  173. D.M. Tichota, A.C. Silva, J.M. Sousa Lobo, M.H. Amaral, Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration. Int. J. Nanomedicine 9, 3855–3864 (2014)

    PubMed  PubMed Central  Google Scholar 

  174. M. Uner, S.A. Wissing, G. Yener, R.H. Muller, Skin moisturizing effect and skin penetration of ascorbyl palmitate entrapped in solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) incorporated into hydrogel. Pharmazie 60, 751–755 (2005)

    CAS  PubMed  Google Scholar 

  175. A. Semenzato, A. Costantini, G. Baratto, Green polymers in personal care products: rheological properties of tamarind seed polysaccharide. Cosmetics 2(1), 1–10 (2014)

    Article  Google Scholar 

  176. J.V. Gruber, in Principles of Polymer Science and Technology in Cosmetics and Personal Care, ed. by E. D. Goddard, vol 22 (Marcel Dekker, New York, 1999)

    Google Scholar 

  177. I. Schnitzler, C. Hausen, C. Klein, Hydrogel for natural cosmetic purposes, US Patent, US 20130029933 A1, 2013

    Google Scholar 

  178. H. Omidian, J.G. Rocca, K. Park, Advances in superporous hydrogels. J. Control. Release 102(1), 3–12 (2005)

    Article  CAS  PubMed  Google Scholar 

  179. B.L. Atkins, R.N. Bashaw, B.G. Harper, Absorbent product containing a hydrocelloidal composition, US Patent US3669103A, 1972

    Google Scholar 

  180. C. Harmon, Absorbent product containing a hydrocolloidal composition, US Patent US3670731A, 1972

    Google Scholar 

  181. A. Sannino, C. Demitri, M. Madaghiele, Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2), 353–373 (2009)

    Article  CAS  PubMed Central  Google Scholar 

  182. J. Zohuriaan, K. Kabiri, Superabsorbent polymer materials: a review. Iran. Polym. J. 17(6), 451–477 (2008)

    Google Scholar 

  183. W. Zou, L. Yu, X. Liu, L. Chen, X. Zhang, D. Qiao, R. Zhang, Effects of amylose/amylopectin ratio on starch-based superabsorbent polymers. Carbohydr. Polym. 87(2), 1583–1588 (2012)

    Article  CAS  Google Scholar 

  184. S.R. Kellenberger, Absorbent products containing hydrogels with ability to swell against pressure, European Patent EP0339461 A1, 1992

    Google Scholar 

  185. K. Kumari, U.V.S. Sara, M. Sachdeva, Formulation and evaluation of topical hydrogel of mometasone furoate using different polymers. Int. J. Pharm. Chem. Sci. 2(1), 89–100 (2013)

    Google Scholar 

  186. M.E. Parente, A. Ochoa Andrade, G. Ares, F. Russo, A. Jimenez-Kairuz, Bioadhesive hydrogels for cosmetic applications. Int. J. Cosmet. Sci. 37(5), 511–518 (2015)

    Article  CAS  PubMed  Google Scholar 

  187. E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015)

    Article  CAS  Google Scholar 

  188. J.J. Kim, K. Park, Smart hydrogels for bioseparation. Bioseparation 7, 177–184.18 (1999)

    Article  CAS  Google Scholar 

  189. D.C. Roepke, S.M. Goyal, C.J. Kelleher, D.A. Halvorson, A.J. Abraham, R.F. Freitas, E.L. Cussler, Use of temperature-sensitive gel for concentration of influenza virus from infected allantoic flu. J. Virol. Methods 15, 25–31 (1987)

    Article  CAS  PubMed  Google Scholar 

  190. E.L. Cussler, M.R. Stokar, J.E. Varberg, Gels as size selective extraction solvents. AICHE J. 30(4), 578–582 (1984)

    Article  CAS  Google Scholar 

  191. C. Gelfi, A. Orsi, F. Leoncini, P.G. Righetti, Fluidified polyacrylamides as molecular sieves in capillary zone electrophoresis of DNA fragments. J. Chromatogr. A 689, 97–105 (1995)

    Article  CAS  Google Scholar 

  192. P.D. Grossman, Electrophoretic separation of DNA sequencing extension products using low-viscosity entangled polymer networks. J. Chromatogr. A 663, 219–227 (1994)

    Article  CAS  Google Scholar 

  193. H. Yoshioka, Y. Mori, E. Tsuchida, Crosslinked poly(N-isopropylacrylamide) gel for electrophoretic separation and recovery of substances. Polym. Adv. Technol. 5, 221–224 (1994)

    Article  CAS  Google Scholar 

  194. F.N. Muya, C.E. Sunday, P. Baker, E. Iwuoha, Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review. Water Sci. Technol. 73(5), 983–992 (2016)

    CAS  PubMed  Google Scholar 

  195. M. Khan, I.M.C. Lo, A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: recent progress, challenges, and perspectives. Water Res. 106, 259–271 (2016)

    Article  CAS  PubMed  Google Scholar 

  196. H. Lv, X. Wang, Q. Fu, Y. Si, X. Yin, X. Li, G. Sun, J. Yu, B. Ding, A versatile method for fabricating ion-exchange hydrogel nanofibrous membranes with superb biomolecule adsorption and separation properties. J. Colloid Interface Sci. 506, 442–451 (2017)

    Article  CAS  PubMed  Google Scholar 

  197. F. Ullah, M.B.H. Othman, F. Javed, Z. Ahmad, H.M. Akil, Classification, processing and application of hydrogels: a review. Mater. Sci. Eng. C Mater. Biol. Appl. 57, 414–433 (2015)

    Article  CAS  PubMed  Google Scholar 

  198. S.C.N. Tang, P. Wang, K. Yin, I.M.C. Lo, Synthesis and application of magnetic hydrogel for Cr (VI) removal from contaminated water. Environ. Eng. Sci. 27(11), 947–954 (2010)

    Article  CAS  Google Scholar 

  199. N. Peng, D. Hu, J. Zeng, Y. Li, L. Liang, C. Chang, Superabsorbent cellulose–clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain. Chem. Eng. 4(12), 7217–7224 (2016)

    Article  CAS  Google Scholar 

  200. H. Kaşgöz, S. Özgümüş, M. Orbay, Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer 44(6), 1785–1793 (2003)

    Article  CAS  Google Scholar 

  201. O. Ozay, S. Ekici, Y. Baran, N. Aktas, N. Sahiner, Removal of toxic metal ions with magnetic hydrogels. Water Res. 43(17), 4403–4411 (2009)

    Article  CAS  PubMed  Google Scholar 

  202. S.C.N. Tang, I.M.C. Lo, M.S.H. Mak, Comparative study of the adsorption selectivity of Cr(VI) onto cationic hydrogels with different functional groups. Water Air Soil Pollut. 223(4), 1713–1722 (2011)

    Article  CAS  Google Scholar 

  203. Y.N. Patel, M.P. Patel, A new fast swelling poly[DAPB-co-DMAAm-co-AASS] superabsorbent hydrogel for removal of anionic dyes from water. Chin. Chem. Lett. 24(11), 1005–1007 (2013)

    Article  CAS  Google Scholar 

  204. C. Shen, Y. Shen, Y. Wen, H. Wang, W. Liu, Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel. Water Res. 45(16), 5200–5210 (2011)

    Article  CAS  PubMed  Google Scholar 

  205. M.L. Peralta Ramos, J.A. Gonzalez, S.G. Albornoz, C.J. Perez, M.E. Villanueva, S.A. Giorgieri, G.J. Copello, Chitin hydrogel reinforced with TiO 2 nanoparticles as an arsenic sorbent. Chem. Eng. J. 285, 581–587 (2016)

    Article  CAS  Google Scholar 

  206. P.H. Doe, R.B. Needham, Polymer flooding review. J. Petrol. Technol. 9, 1503–1507 (1987)

    Google Scholar 

  207. A.Z. Abidin, T. Puspasari, W.A. Nugroho, Polymers for enhanced oil recovery technology. Procedia Chem. 4, 11–16 (2012)

    Article  CAS  Google Scholar 

  208. R. Seright, Brief Introduction to Polymer Flooding and Gel Treatments and Injectivity Characteristics of EOR Polymers. New Mexico Tech, SPE 115142 (2009). https://www.uwyo.edu/eori/_files/eorc_ior_jackson/dr.%20randall_seright_new_mexico_tech.pdf

  209. A. Li, J. Zhang, A. Wang, Synthesis, characterization and water absorbency properties of poly(acrylic acid)/sodium humate superabsorbent composite. Polym. Adv. Technol. 16(9), 675–680 (2005)

    Article  CAS  Google Scholar 

  210. L. Chen, G. Zhang, J. Ge, P. Jiang, X. Zhu, Y. Ran, S. Han, Ultrastable hydrogel for enhanced oil recovery based on double-groups cross-linking. Energy Fuels 29(11), 7196–7203 (2015)

    Article  CAS  Google Scholar 

  211. C. Dai, W. Chen, Q. You, Q.,.H. Wang, Y. Zhe, L. He, B. Jiao, Y. Wu, A novel strengthened dispersed particle gel for enhanced oil recovery application. J. Ind. Eng. Chem. 41, 175–182 (2016)

    Article  CAS  Google Scholar 

  212. D.A.Z. Wever, F. Picchioni, A.A. Broekhuis, Polymers for enhanced oil recovery: a paradigm for structure–property relationship in aqueous solution. Prog. Polym. Sci. 36(11), 1558–1628 (2011)

    Article  CAS  Google Scholar 

  213. R. Zolfaghari, A.A. Katbab, J. Nabavizadeh, R.Y. Tabasi, M.H. Nejad, Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications. J. Appl. Polym. Sci. 100(3), 2096–2103 (2006)

    Article  CAS  Google Scholar 

  214. G. Chauveteau, R. Tabary, C. Le Bon, M. Renard, Y. Feng, A. Omari, In-depth permeability control by adsorption of soft size-controlled microgels. in SPE European Formation Damage Control Conference Proceedings (2003)

    Google Scholar 

  215. M.L. Zweigle, J.C. Lamphere, Cross-linked, water-swellable polymer microgels, US Patent, US4172066A, 1979

    Google Scholar 

  216. P. Tongwa, B. Baojun, A more superior preformed particle gel with potential application for conformance control in mature oilfields. J. Pet. Explor. Prod. Technol. 5(2), 201–210 (2014)

    Article  CAS  Google Scholar 

  217. P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2(1–2), 1400010 (2015)

    Article  CAS  Google Scholar 

  218. N. Sahiner, S. Butun, O. Ozay, B. Dibek, Utilization of smart hydrogel-metal composites as catalysis media. J. Colloid Interface Sci. 373(1), 122–128 (2012)

    Article  CAS  PubMed  Google Scholar 

  219. A. Doring, W. Birnbaum, D. Kuckling, Responsive hydrogels – structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem. Soc. Rev. 42(17), 7391–7420 (2013)

    Article  PubMed  CAS  Google Scholar 

  220. N. Sahiner, Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog. Polym. Sci. 38(9), 1329–1356 (2013)

    Article  CAS  Google Scholar 

  221. N. Sahiner, O. Ozay, E. Inger, N. Aktas, Controllable hydrogen generation by use smart hydrogel reactor containing Ru nano catalyst and magnetic iron nanoparticles. J. Power Sources 196(23), 10105–10111 (2011)

    Article  CAS  Google Scholar 

  222. O. Ozay, N. Aktas, E. Inger, N. Sahiner, Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. Int. J. Hydrog. Energy 36(3), 1998–2006 (2011)

    Article  CAS  Google Scholar 

  223. O. Ozay, E. Inger, N. Aktas, N. Sahiner, Hydrogen production from ammonia borane via hydrogel template synthesized Cu, Ni, Co composites. Int. J. Hydrog. Energy 36(14), 8209–8216 (2011)

    Article  CAS  Google Scholar 

  224. J. Yang, X. Wang, B. Li, L. Ma, L. Shi, Y. Xiong, H. Xu, Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv. Funct. Mater. 27(17), 1606497 (2017)

    Article  CAS  Google Scholar 

  225. Y. Lu, P. Spyra, Y. Mei, M.A. Ballauff, A. Pich, Composite hydrogels: robust carriers for catalytic nanoparticles. Macromol. Chem. Phys. 208(3), 254–261 (2007)

    Article  CAS  Google Scholar 

  226. D. Wei, Y. Ye, X. Jia, C. Yuan, W. Qian, Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydr. Res. 345(1), 74–81 (2010)

    Article  CAS  PubMed  Google Scholar 

  227. N. Sahiner, H. Ozay, O. Ozay, N. Aktas, New catalytic route: hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Appl. Catal. A 385(1–2), 201–207 (2010)

    Article  CAS  Google Scholar 

  228. N. Sahiner, O. Ozay, N. Aktas, E. Inger, J. He, The on demand generation of hydrogen from Co-Ni bimetallic nano catalyst prepared by dual use of hydrogel: as template and as reactor. Int. J. Hydrog. Energy 36(23), 15250–15258 (2011)

    Article  CAS  Google Scholar 

  229. A. Heller, Potentially implantable miniature batteries. Anal. Bioanal. Chem. 385(3), 469–473 (2006)

    Article  CAS  PubMed  Google Scholar 

  230. X. Zhang, J. Xu, C. Lang, S. Qiao, G. An, X. Fan, L. Zhao, C. Hou, J. Liu, Enzyme-regulated fast self-healing of a pillararene-based hydrogel. Biomacromolecules 18(6), 1885–1892 (2017)

    Article  CAS  PubMed  Google Scholar 

  231. H. Wang, H. Gu, Z. Chen, L. Shang, Z. Zhao, Z. Gu, Y. Zhao, Enzymatic inverse opal hydrogel particles for biocatalyst. ACS Appl. Mater. Interfaces 9(15), 12914–12918 (2017)

    Article  CAS  PubMed  Google Scholar 

  232. T. Tian, X. Wei, S. Jia, R. Zhang, J. Li, Z. Zhu, H. Zhang, Y. Ma, Z. Lin, C.J. Yang, Integration of target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic devices (microPADs) for point-of-care testing (POCT). Biosens. Bioelectron. 77, 537–542 (2016)

    Article  CAS  PubMed  Google Scholar 

  233. N. Singh, C. Maity, K. Zhang, C.A. Angulo-Pachon, J.H. van Esch, R. Eelkema, B. Escuder, Synthesis of a double-network supramolecular hydrogel by having one network catalyse the formation of the second. Chem. Eur. J. 23(9), 2018–2021 (2017)

    Article  CAS  PubMed  Google Scholar 

  234. Y. Sun, Y. Ma, G. Fang, S. Ren, Y. Fu, Controlled pesticide release from porous composite hydrogels based on lignin and polyacrylic acid. Bioresources 11(1), 2361–2371 (2016)

    Article  CAS  Google Scholar 

  235. B. Singh, D.K. Sharma, A. Gupta, In vitro release dynamics of thiram fungicide from starch and poly(methacrylic acid)-based hydrogels. J. Hazard. Mater. 154(1–3), 278–286 (2008)

    Article  CAS  PubMed  Google Scholar 

  236. B. Singh, D.K. Sharma, S. Negi, A. Dhiman, Synthesis and characterization of agar-starch based hydrogels for slow herbicide delivery applications. Int. J. Plast. Technol. 19(2), 263–274 (2015)

    Article  Google Scholar 

  237. D.W. Davidson, M.S. Verma, F.X. Gu, Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springerplus 2(318), 2–9 (2013)

    Google Scholar 

  238. F.F. Montesano, A. Parente, P. Santamaria, A. Sannino, F. Serio, Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric. Agric. Sci. Proc. 4, 451–458 (2015)

    Google Scholar 

  239. R. Vundavalli, S. Vundavalli, M. Nakka, D.S. Rao, Biodegradable nano-hydrogels in agricultural farming – alternative source for water resources. Proc. Mater. Sci. 10, 548–554 (2015)

    Article  CAS  Google Scholar 

  240. H. Tang, L. Zhang, L. Hu, L. Zhang, Application of chitin hydrogels for seed germination, seedling growth of rapeseed. J. Plant Growth Regul. 33(2), 195–201 (2013)

    Article  CAS  Google Scholar 

  241. H. Böhlenius, E.Y. Rolf, Effects of direct application of fertilizers and hydrogel on the establishment of poplar cuttings. Forests 5(12), 2967–2979 (2014)

    Article  Google Scholar 

  242. X. Liu, Y. Yang, B. Gao, Y. Li, Y. Wan, Environmentally friendly slow-release urea fertilizers based on waste frying oil for sustained nutrient release. ACS Sustain. Chem. Eng. 5(7), 6036–6045 (2017)

    Article  CAS  Google Scholar 

  243. Y. Obonai, K. Furukawa, H. Yoshioka, Y. Mori, K. Kasuya, Water-retaining support for plants and plant body-growing water-retaining material, US Patent US6615539 B1, 2003

    Google Scholar 

  244. S. Sharma, A. Shahzad, J.A. Teixeira da Silva, Synseed technology-a complete synthesis. Biotechnol. Adv. 31(2), 186–207 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Hoare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Majcher, M.J., Hoare, T. (2019). Applications of Hydrogels. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95990-0_17

Download citation

Publish with us

Policies and ethics