Skip to main content

Polyurethane and Its Derivatives

  • Reference work entry
  • First Online:
Functional Polymers

Abstract

Polyurethane (PU) is one of the widely used materials with great potential for multipurpose applications due to their excellent physical, chemical, and mechanical properties. PU materials are widely being used in many applications all over the world. The targeted PU properties for different applications can be achieved by changing the base monomers and their ratios as well as different synthesis process. This chapter highlights the PU application, its chemistry, and its base monomers. The latest modification and new application of PU and its derivatives are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Chattopadhyay, K. Raju, Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 32, 352–418 (2007)

    Article  CAS  Google Scholar 

  2. D. Chattopadhyay, D.C. Webster, Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34, 1068–1133 (2009)

    Article  CAS  Google Scholar 

  3. O. Bayer, Das di-isocyanate-polyadditionsverfahren (polyurethane). Angew. Chem. 59(9), 257–272 (1947)

    Article  Google Scholar 

  4. M.R. Islam, M.D.H. Beg, S.S. Jamari, Development of vegetable-oil-based polymers. J. Appl. Polym. Sci. 131(18), 40787–40790 (2014)

    Article  Google Scholar 

  5. E. Delebecq, J.-P. Pascault, B. Boutevin, F.O. Ganachaud, On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 113, 80–118 (2012)

    Article  PubMed  Google Scholar 

  6. R.B. Seymour, G.B. Kauffman, Polyuretanes: a class of modern versitile materials. J. Chem. Educ. 69, 909 (1992)

    Article  CAS  Google Scholar 

  7. Z.S. Petrović, J. Ferguson, Polyurethane elastomers. Prog. Polym. Sci. 16, 695–836 (1991)

    Article  Google Scholar 

  8. Z. Rafiee, V. Keshavarz, Synthesis and characterization of polyurethane/microcrystalline cellulose bionanocomposites. Prog. Org. Coat. 86, 190–193 (2015)

    Article  CAS  Google Scholar 

  9. K.M. Zia, S. Anjum, M. Zuber, M. Mujahid, T. Jamil, Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. Int. J. Biol. Macromol. 66, 26–32 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. C. Prisacariu, Polyurethane Elastomers: From Morphology to Mechanical Aspects (Springer Science & Business Media, 2011), Vienna

    Google Scholar 

  11. M. Ionescu, Chemistry and technology of polyols for polyurethanes, Rapra Technology, Shrewsbury, UK. Polym. Int. 56, 820 (2007)

    Article  Google Scholar 

  12. S.A. Madbouly, J.U. Otaigbe, Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Prog. Polym. Sci. 34, 1283–1332 (2009)

    Article  CAS  Google Scholar 

  13. P. Vermette, H.J. Griesser, G. Laroche, R. Guidoin, Biomedical Applications of Polyurethanes, vol 6 (Landes Bioscience, Georgetown, 2001)

    Google Scholar 

  14. G.T. Howard, Biodegradation of polyurethane: a review. Int. Biodeterior. Biodegrad. 49, 245–252 (2002)

    Article  CAS  Google Scholar 

  15. T. Romaškevič, S. Budrienė, K. Pielichowski, J. Pielichowski, Application of polyurethane-based materials for immobilization of enzymes and cells: a review. Chemija 17, 74–89 (2006)

    Google Scholar 

  16. M. Szycher, Handbook of Polyurethanes (CRC Press, Boca Raton, 1999)

    Google Scholar 

  17. U. Lochner, H. Chin, Y. Yamaguchi, Polyurethane foams, in Chemical Economics Handbook, Report No. 580.1600 A (IHS Group, Englewood, 2012)

    Google Scholar 

  18. http://www.grandviewresearch.com/industry-analysis/bio-based-polyurethane-industry

  19. N. Taheri, S. Sayyahi, Effect of clay loading on the structural and mechanical properties of organoclay/HDI-based thermoplastic polyurethane nanocomposites. E-Polymers 16(1), 65–73 (2016)

    Article  CAS  Google Scholar 

  20. D. Sridaeng, B. Sukkaneewat, N. Chueasakol, N. Chantarasiri, Copper-amine complex solution as a low-emission catalyst for flexible polyurethane foam preparation. E-Polymers 15(2), 119–126 (2015)

    Article  CAS  Google Scholar 

  21. E.A. Ismail, A. Motawie, E. Sadek, Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols. Egypt. J. Pet. 20, 1–8 (2011)

    Article  CAS  Google Scholar 

  22. K.M. Zia, M. Zuber, M.J. Saif, M. Jawaid, K. Mahmood, M. Shahid, Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: surface characteristics. Int. J. Biol. Macromol. 62, 670–676 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. K.M. Zia, H.N. Bhatti, I.A. Bhatti, Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React. Funct. Polym. 67, 675–692 (2007)

    Article  CAS  Google Scholar 

  24. T. Gurunathan, S. Mohanty, S.K. Nayak, Effect of reactive organoclay on physicochemical properties of vegetable oil-based waterborne polyurethane nanocomposites. RSC Adv. 5, 11524–11533 (2015)

    Article  CAS  Google Scholar 

  25. P. Alagi, Y.J. Choi, S.C. Hong, Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane. Eur. Polym. J. 78, 46–60 (2016)

    Article  CAS  Google Scholar 

  26. P. Alagi, S.C. Hong, Vegetable oil-based polyols for sustainable polyurethanes. Macromol. Res. 23(12), 1079–1086 (2015)

    Article  CAS  Google Scholar 

  27. A. Fridrihsone-Girone, U. Stirna, M. Misāne, B. Lazdiņa, L. Deme, Spray-applied 100% volatile organic compounds free two component polyurethane coatings based on rapeseed oil polyols. Prog. Org. Coat. 94, 90–97 (2016)

    Article  CAS  Google Scholar 

  28. M. Ionescu, D. Radojčić, X. Wan, M.L. Shrestha, Z.S. Petrović, T.A. Upshaw, Highly functional polyols from castor oil for rigid polyurethanes. Eur. Polym. J. 88, 736–749 (2016)

    Article  Google Scholar 

  29. A. Guo, Y. Cho, Z.S. Petrović, Structure and properties of halogenated and nonhalogenated soy-based polyols. J. Polym. Sci. A Polym. Chem. 38, 3900–3910 (2000)

    Article  CAS  Google Scholar 

  30. Z.S. Petrovic, W. Zhang, I. Javni, Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Biomacromolecules 6, 713–719 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. U. Schuchardt, R. Sercheli, R.M. Vargas, Transesterification of vegetable oils: a review. J. Braz. Chem. Soc. 9, 199–210 (2008)

    Google Scholar 

  32. A. Guo, D. Demydov, W. Zhang, Z.S. Petrovic, Polyols and polyurethanes from hydroformylation of soybean oil. J. Polym. Environ. 10, 49–52 (2002)

    Article  CAS  Google Scholar 

  33. Y. Kojima, A. Usuki, M. Kawasumi, V. Okada, Y. Fukushima, T. Kurauchi, Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 8, 1185–1189 (1993)

    Article  CAS  Google Scholar 

  34. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8, 1179–1184 (1993)

    Article  CAS  Google Scholar 

  35. F. Bergaya, C. Detellier, J.-F. Lambert, G. Lagaly, Introduction to clay–polymer nanocomposites (CPN), in Handbook of Clay Science, vol. 5, (Elsevier, Oxford, 2013), pp. 655–677

    Chapter  Google Scholar 

  36. B. Chen, J.R. Evans, H.C. Greenwell, P. Boulet, P.V. Coveney, A.A. Bowden, A critical appraisal of polymer–clay nanocomposites. Chem. Soc. Rev. 37, 568–594 (2008)

    Article  PubMed  Google Scholar 

  37. E.D. Weil, in Reaction Polymers, ed. by W.F. Gum, H. Ulrich, W. Riese (Hanser Publishers, Oxford University Press, Munich/New York, 1992), p. 838, Wiley Online Library, 1993

    Google Scholar 

  38. H. Ulrich, Chemistry and Technology of Isocyanates (Wiley, Chichester, 1996)

    Google Scholar 

  39. M. Soto, R.M. Sebastián, J. Marquet, Photochemical activation of extremely weak nucleophiles: highly fluorinated urethanes and polyurethanes from polyfluoro alcohols. J. Organomet. Chem. 79, 5019–5027 (2014)

    Article  CAS  Google Scholar 

  40. M. Charlon, B. Heinrich, Y. Matter, E. Couzigné, B. Donnio, L. Avérous, Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols. Eur. Polym. J. 61, 197–205 (2014)

    Article  CAS  Google Scholar 

  41. N.N.P.N. Pauzi, R.A. Majid, M.H. Dzulkifli, M.Y. Yahya, Development of rigid bio-based polyurethane foam reinforced with nanoclay. Compos. Part B 67, 521–526 (2014)

    Article  Google Scholar 

  42. Z.S. Petrović, Polyurethanes from vegetable oils. Polym. Rev. 48, 109–155 (2008)

    Article  Google Scholar 

  43. B.F. Richard, B.A.R.D. Edmund, Mechanically Frothed Gel Elastomers and Methods of Making and Using Them, US 20160017084 A1, US 14/730,867, Jan 21, 2016

    Google Scholar 

  44. G.P. Rajendran, V. Mahadevan, M. Srinivasan, Synthesis of some low glass transition temperature polytetrahydrofuran polymers. Eur. Polym. J. 25(5), 461–463 (1989)

    Article  CAS  Google Scholar 

  45. M.F. Sonnenschein, Polyurethanes. Science, Technology, Markets, and Trends (The Dow Chemical Company, Midland, 2014)

    Google Scholar 

  46. M.R. Anisur, M.A. Kibria, M.H. Mahfuz, R. Saidur, I.H.S.C. Metselaar, Latent heat thermal storage (LHTS) for energy sustainability, in Energy Sustainability Through Green Energy, Part of the series Green Energy and Technology (2015), Springer, New Delhi, pp. 245–263

    Google Scholar 

  47. M. Heinen, A.E. Gerbase, C.L. Petzhold, Vegetable oil-based rigid polyurethanes and phosphorylated flame-retardants derived from epoxydized soybean oil. Polym. Degrad. Stab. 108, 76–86 (2014)

    Article  CAS  Google Scholar 

  48. M.Z. Arniza, S.S. Hoong, Z. Idris, S.K. Yeong, H.A. Hassan, A.K. Din, Y.M. Choo, Synthesis of transesterified palm olein-based polyol and rigid polyurethanes from this polyol. J. Am. Oil Chem. Soc. 92, 243–255 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. V.B. Veronese, R.K. Menger, M.M.C. Forte, C.L. Petzhold, Rigid polyurethane foam based on modified vegetable oil. J. Appl. Polym. Sci. 120, 530–537 (2011)

    Article  CAS  Google Scholar 

  50. M. Zhang, Z. Luo, J. Zhang, S. Chen, Y. Zhou, Effects of a novel phosphorus–nitrogen flame retardant on rosin-based rigid polyurethane foams. Polym. Degrad. Stab. 120, 427–434 (2015)

    Article  CAS  Google Scholar 

  51. M. Zhang, J. Zhang, S. Chen, Y. Zhou, Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol. Polym. Degrad. Stab. 110, 27–34 (2014)

    Article  CAS  Google Scholar 

  52. L. Zhang, M. Zhang, L. Hu, Y. Zhou, Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind. Crop. Prod. 52, 380–388 (2014)

    Article  CAS  Google Scholar 

  53. S. Semenzato, A. Lorenzetti, M. Modesti, E. Ugel, D. Hrelja, S. Besco, A novel phosphorus polyurethane FOAM/montmorillonite nanocomposite: preparation, characterization and thermal behaviour. Appl. Clay Sci. 44, 35–42 (2009)

    Article  CAS  Google Scholar 

  54. A.M. Borreguero, P. Sharma, C. Spiteri, M.M. Velencoso, M.S. Carmona, J.E. Moses, J.F. Rodriguez, A novel click-chemistry approach to flame retardant polyurethanes. React. Funct. Polym. 73, 1207–1212 (2013)

    Article  CAS  Google Scholar 

  55. D. Fournier, B.G.D. Geest, F.E.D. Prez, On-demand click functionalization of polyurethane films and foams. Polymer 50, 5362–5367 (2009)

    Article  CAS  Google Scholar 

  56. G. Chen, X. Guan, R. Xu, J. Tian, M. He, W. Shen, J. Yang, Synthesis and characterization of UV-curable castor oil-based polyfunctional polyurethane acrylate via photo-click chemistry andisocyanate polyurethane reaction. Prog. Org. Coat. 93, 11–16 (2016)

    Article  CAS  Google Scholar 

  57. S. Kantheti, P.S. Sarath, R. Narayan, K.V.S.N. Raju, Synthesis and characterization of triazole rich polyether polyols using click chemistry for highly branched polyurethanes. React. Funct. Polym. 73, 1597–1605 (2013)

    Article  CAS  Google Scholar 

  58. A. Serrano, A.M. Borreguero, I. Garrido, J.F. Rodríguez, M. Carmona, Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules. Appl. Therm. Eng. 103, 226–232 (2016)

    Article  CAS  Google Scholar 

  59. J. Njuguna, S. Michałowski, K. Pielichowski, K. Kayvantash, A.C. Walton, Fabrication, characterization and low-velocity impact testing of hybrid sandwich composites with polyurethane/layered silicate foam cores. Polym. Compos. 32, 6–13 (2011)

    Article  CAS  Google Scholar 

  60. P. Xiao, Y. Dudal, P.F.X. Corvini, U. Pieles, P. Shahgaldian, Cyclodextrin-based polyurethanes act as selective molecular recognition materials of active pharmaceutical ingredients (APIs). Polym. Chem. 2, 1264–1266 (2011)

    Article  CAS  Google Scholar 

  61. Y.P. Chin, S. Mohamad, M.R.B. Abas, Removal of parabens from aqueous solution using β-cyclodextrin cross-linked polymer. Int. J. Mol. Sci. 11, 3459–3471 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. P. Davies, G. Evrard, Accelerated ageing of polyurethanes for marine applications. Polym. Degrad. Stab. 92, 1455–1464 (2007)

    Article  CAS  Google Scholar 

  63. B. Zhou, Y. Hu, J. Li, B. Li, Chitosan/phosvitin antibacterial films fabricated via layer-by-layer deposition. Int. J. Biol. Macromol. 64, 402–408 (2014)

    Article  CAS  PubMed  Google Scholar 

  64. X. Zhou, T. Zhang, D. Guo, N. Gu, A facile preparation of poly(ethylene oxide)-modified medical polyurethane to improve hemocompatibility. Colloids Surf. A Physicochem. Eng. Asp. 441, 34–42 (2014)

    Article  CAS  Google Scholar 

  65. Y. Wang, Q. Hong, Y. Chen, X. Lian, Y. Xiong, Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers. Colloids Surf. B. Biointerfaces 100, 77–83 (2012)

    Article  CAS  PubMed  Google Scholar 

  66. M. Garrido, J.R. Correia, T. Keller, Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels. Constr. Build. Mater. 118, 235–244 (2016)

    Article  CAS  Google Scholar 

  67. M.A. Mekewi, A.M. Ramadan, F.M. ElDarse, M.H.A. Rehim, N.A. Mosa, M.A. Ibrahim, Preparation and characterization of polyurethane plasticizer for flexible packaging applications: natural oils affirmed access. Egypt. J. Pet. 26, 9–15 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mizanur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rahman, M.M., Rabbani, M.M., Saha, J.K. (2019). Polyurethane and Its Derivatives. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_7

Download citation

Publish with us

Policies and ethics