Skip to main content

Textile Coatings

  • Reference work entry
  • First Online:

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Textile coatings usually provide material layers which adhere to the textile structures. A typical textile coating formulation generally contains polymeric binder(s) along with other additives (such as colorants, adhesion promoter, biocide, plasticizers, etc.) which are applied in the form of a solution or a dispersion or a paste or a similar fashion using a spreading technique onto a textile fabric. Different types of techniques are commonly used for textile coatings, for examples, spray coating techniques, the application of nanoscale technologies, biotechnology, and plasma technology. Certain coating technologies including digital coating technology have many industrial potentials in order to produce higher performance coated textiles with a variety of conventional and functional properties. Textiles with multifunctionalities are increasingly demanded as a part of advanced and future marketing strategies, for instance, garments and technical textiles for outdoor environments can have novelty and durable self-cleaning properties at the same time. Various ways are usually used to impart novelty and functionality into coated textiles. For example, sol–gel chemistry is one of many techniques which can be used to produce superhydrophobic coated textiles suitable for many high-tech and general application purposes. This chapter provides selective pieces of information on different types of popular textile coatings and related specific features which have pronounced impacts on the behaviors of coated textiles. It also briefly provides some selective pieces of information on different advancements in textile coatings in consideration to the applications of new advanced techniques as well as frequently used general coating techniques (such as spraying, padding, etc.) to produce high-performance coated textiles for conventional and high-tech applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.M.R. Billah, Chapter 4. Inkjet printed photo-responsive textiles for conventional and high-tech applications, in Textiles: History, Properties & Performance and Applications, ed. by M.I.H. Mondal (Nova Science Publishers, New York, 2014), pp. 81–122

    Google Scholar 

  2. S.M.R. Billah, Chapter 7. Smart textiles and the effective uses of photochromic, thermochromic, ionochromic and electrochromic molecular switches, in Textiles: History, Properties & Performance and Applications, ed. by M.I.H. Mondal (Nova Science Publishers, New York, 2014), pp. 187–238

    Google Scholar 

  3. (a) E. Amerio, P. Fabbri, G. Malucelli, M. Messori, M. Sangermano, R. Taurino, Scratch resistance of nano-silica reinforced acrylic coatings. Prog. Org. Coat. 62, 129 (2008). (b) J. Baghdachi, Chapter 1. Smart coatings, in Smart Coatings II, ACS Symposium Series, vol. 1002 (2009), pp. 3–24

    Google Scholar 

  4. (a) A.K. Sen, Coated Textiles – Principles and Applications, 2nd edn. (CRC Press, Boca Raton, 2008), pp. 1–225. (b) A.A. Tracton (ed.), Coating Technology – Fundamentals, Testing, and Processing Techniques, 2nd edn., pp. 1–250. (c) A.A. Tracton (ed.), Coating Technology Fundamentals, Testing, and Processing Techniques, 3rd edn. (CRC Press, 2006), pp. 1–320. (d) B. Zorn, J. Coat. Fabrics 13, 166 (1984)

    Google Scholar 

  5. M.N. Sathyanarayana, M. Yaseen, Role of promoters in improving adhesion of organic coatings to a substrate. Prog. Org. Coat. 26, 275–313 (1995)

    Article  CAS  Google Scholar 

  6. J. Kettle, T. Lamminmaki, P. Gane, A review of modified surfaces for high speed inkjet coating. Surf. Coat. Technol. 204, 2103–2109 (2010)

    Article  CAS  Google Scholar 

  7. Y. Ner, C. Asemota, J.R. Olson, G.A. Sotzing, Nanofiber alignment on a flexible substrate: hierarchical order from macro to nano. Appl. Mater. Interfaces 1, 2093–2097 (2009)

    Article  CAS  Google Scholar 

  8. S. Sundarrajan, A.R. Chandrasekaran, S. Ramakrishna, An update on nanomaterials-based textiles for protection and decontamination. J. Am. Ceram. Soc. 93(12), 3955–3975 (2010)

    Article  CAS  Google Scholar 

  9. A. El Shafei, S. Shaarawy, A. Hebeish, Application of reactive cyclodextrin poly butyl acrylate preformed polymers containing nano-ZnO to cotton fabrics and their impact on fabric performance. Carbohydr. Polym. 79, 852–857 (2010)

    Article  CAS  Google Scholar 

  10. Y. Li, D.X. Wu, J.Y. Hu, S.X. Wang, Novel infrared radiation properties of cotton fabric coated with nano Zn/ZnO particles. Colloids Surf. A Physicochem. Eng. Asp. 300, 140–144 (2007)

    Article  CAS  Google Scholar 

  11. M.H. El-Rafie, A.A. Mohamed, T.I. Shaheen, A. Hebeish, Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr. Polym. 80, 779–782 (2010)

    Article  CAS  Google Scholar 

  12. C. Su, J. Li, The friction property of super-hydrophobic cotton textiles. Appl. Surf. Sci. 256, 4220–4225 (2010)

    Article  CAS  Google Scholar 

  13. H. Lu, L. Song, Y. Hu, A review on flame retardant technology in China. Part II: flame retardant polymeric nanocomposites and coatings. Polym. Adv. Technol. 22, 379–394 (2011)

    Article  CAS  Google Scholar 

  14. K.H. Ki, J.H. Kim, S.C. Kwon, S.H. Jeong, A study on multifunctional wool textiles treated with nano-sized silver. J. Mater. Sci., Germany, 42, 8020–8024 (2007)

    Article  CAS  Google Scholar 

  15. L. Hu, M. Pasta, F.L. Mantia, L.F. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett. 10(2), 708–714 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. B. Leng, Z. Shao, G. With, W. Ming, Superoleophobic cotton textiles. Langmuir 25, 2456–2460 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. G.K. Hyde, K.J. Park, S.M. Stewart, J.P. Hinestroza, G.N. Parsons, Atomic layer deposition of conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: effect of surface topology on film growth characteristics. Langmuir 23, 9844–9849 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. (a) I.P. Parkin, R.G. Palgrave, Self-cleaning coatings. J. Mater. Chem. 15, 1689–1695 (2005). (b) B. Mahltig, T. Textor, Nanosols and Textiles (World Scientific Publishing, 2008)

    Google Scholar 

  19. S. Sakka, Handbook of Sol-Gel Science and Technology (Springer, 2004), pp. 23–353

    Google Scholar 

  20. J. Alongi, M. Ciobanu, G. Malucelli, Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes. Carbohydr. Polym. 87(3), 2093–2099 (2012)

    Article  CAS  Google Scholar 

  21. B. Tomšic, B. Simoncic, B. Orel, M. Zerjav, H. Schroers, A. Simoncic, Z. Samardzija, Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr. Polym. 75, 618–626 (2009)

    Article  CAS  Google Scholar 

  22. K. Qi, J.H. Xin, Room-temperature synthesis of single-phase anatase TiO2 by aging and its self-cleaning properties. Appl. Mater. Interfaces 2, 3479–3485 (2010)

    Article  CAS  Google Scholar 

  23. A. Vilcnik, I. Jerman, A. SurcaVuk, M. Kozelj, B. Orel, B. Tomsic, B. Simoncic, J. Kovac, Structural properties and antibacterial effects of hydrophobic and oleophobic sol-gel coatings for cotton fabrics. Langmuir 25(10), 5869–5880 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. T. Textor, B. Mahltig, A sol–gel based surface treatment for preparation of water repellent antistatic textiles. Appl. Surf. Sci. 256, 1668–1674 (2010)

    Article  CAS  Google Scholar 

  25. C. Zheng, G. Chen, Z. Qi, Ultraviolet resistant/antiwrinkle finishing of cotton fabrics by sol-gel method. J. Appl. Polym. Sci. 122, 2090–2098 (2011)

    Article  CAS  Google Scholar 

  26. M. Messaoud, E. Chadeau, C. Brunon, T. Ballet, L. Rappenne, F. Roussel, D. Leonard, N. Oulahal, M. Langlet, Photocatalytic generation of silver nanoparticles and application to the antibacterial functionalization of textile fabrics. J. Photochem. Photobiol. A Chem. 215, 147–156 (2010)

    Article  CAS  Google Scholar 

  27. G.Y. Bae, B.G. Min, Y.G. Jeong, S.C. Lee, J.H. Jang, G.H. Koo, Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. J. Colloid Interface Sci. 337(1), 170–175 (2009)

    Article  CAS  PubMed  Google Scholar 

  28. M. Yu, G. Gu, W.D. Meng, F.L. Qing, Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl. Surf. Sci. 253(7), 3669–3673 (2007)

    Article  CAS  Google Scholar 

  29. C.H. Xue, S.T. Jia, H.Z. Chen, M. Wang, Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization. Sci. Technol. Adv. Mater. 9(3), 035001–035006 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. O.A. Hakeim, A.A. Arafa, M.K. Zahran, L.A.W. Abdou, UV-curable encapsulation of surface – modified organic pigments for inkjet printing of textiles. Colloids Surf. A 447, 172–182 (2014)

    Article  CAS  Google Scholar 

  31. (a) A.S.H. Makhlouf, I. Tiginyanu, Nanocoatings and Ultra-Thin Films Technologies and Applications (Woodhead Publishing Limited, Cambridge, 2011), pp. 1–345. (b) E.P. Plueddemann, Silane Coupling Agents, 2nd edn. (Plenum Press, New York, 1991), pp. 1–22

    Google Scholar 

  32. E.K. Drown, H.A. Moussawi, L. Drzal, Glass fiber sizings and their role in fiber-matrix adhesion, in Silanes and Other Coupling Agents, ed. by K.L. Mittal (VSP, Utrecht, 1992), pp. 513–529

    Google Scholar 

  33. M.A. Ansarifar, L.K. Chong, J. Zhang, A. Bell, R.J. Ellis, Effect of bifunctional organosilane on the joint strength of some natural rubber compounds to nylon 6,6. Int. J. Adhes. Adhes. 23(3), 177–188 (2003)

    Article  CAS  Google Scholar 

  34. A.C. Miller, J.C. Berg, Predicting adhesion between a crystalline polymer and silane-treated glass surfaces in filled composites. J. Adhes. Sci. Technol. 16(14), 1949–1956 (2002)

    Article  CAS  Google Scholar 

  35. G.L. Witucki, A silane primer: chemistry and applications of alkoxy silanes. J. Coat. Technol. 65(822), 57–60 (1993)

    CAS  Google Scholar 

  36. M. Guichenuy, M.L. Abel, M. Audenaert, A. Vineer, J.F. Watts, Mechanism of delamination of a thick coating on untreated steel, in Proceedings of the 27th Annual Meeting of the Adhesion Society, Inc. (2004), pp. 200–201

    Google Scholar 

  37. F.J. Boerio, P. Shah, Adhesion of injection molded PVC to steel substrates. J. Adhes. 81(6), 645–675 (2005)

    Article  CAS  Google Scholar 

  38. H. Scott, J. Humphries, Novel crosslinking method for polyethylene. Mod. Plast. 50(3), 82 (1973)

    CAS  Google Scholar 

  39. M.S. Hearn, J.D. Baird, L.P. Nethsinghe, M. Gilbert, Silane crosslinking of plasticized polyvinyl chloride. Polym. Commun. 31(5), 194–197 (1990)

    CAS  Google Scholar 

  40. F.D. Buyl, Silicone sealants and structural adhesives. Int. J. Adhes. Adhes. 21(5), 411–422 (2001)

    Article  Google Scholar 

  41. T.P. Chou, C. Chandrasekaran, S. Limmer, C. Nguyen, G.Z. Cao, Organic-inorganic sol-gel coating for corrosion protection of stainless steel. J. Mater. Sci. Lett. 21, 251–255 (2002)

    Article  CAS  Google Scholar 

  42. B. Arkles, J.R. Steinmetz, J. Zazyczny, P. Metha, Factors contributing to the stability of alkoxysilanes in aqueous solution, in Silanes and Other Coupling Agents, ed. by K.L. Mittal (VSP, Utrecht, 1992), pp. 91–104

    Article  CAS  Google Scholar 

  43. N. Abidi, H. Eric, L. Cabrales, Functionalization of a cotton fabric surface with titania nanosols: applications for self-cleaning and UV-protection properties. ACS Appl. Mater. Interfaces 1, 2141–2146 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. R. Higgins, Powder Coatings (Campden Publishing Ltd., New York, USA, 1998), pp. 2–77

    Google Scholar 

  45. W.A. Daoud, J.H. Xin, Y.H. Zhang, K. Qi, Surface characterization of thin titania films prepared at low temperatures. J. Non-Cryst. Solids 351(16), 1486–1490 (2005)

    Article  CAS  Google Scholar 

  46. R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structure materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B Biointerfaces 79, 5–18 (2010)

    Article  CAS  PubMed  Google Scholar 

  47. (a) Z. Shi, I. Wymana, G. Liua, H. Hua, H. Zoub, J. Hub, Preparation of water-repellent cotton fabrics from fluorinated diblock copolymers and evaluation of their durability. Polymer 54, 6406–6414 (2013). (b) R. Rahal, T. Pigot, D. Foix, S. Lacombe, Photocatalytic efficiency and self-cleaning properties under visible light of cotton fabrics coated with sensitized TiO2. Appl. Catal. B Environ. 104 (2011)

    Google Scholar 

  48. D. Wu, M. Long, J. Zhou, W. Cai, X. Zhu, C. Chen, Y. Wu, Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through facile approach. Surf. Coat. Technol. 203, 3728–3733 (2009)

    Article  CAS  Google Scholar 

  49. M. Hasem, P. Hauser, B. Smith, Wrinkle recovery for cellulosic fabric by means of ionic crosslinking. Text. Res. J. 3(9), 762–766 (2003)

    Article  Google Scholar 

  50. M. Hasem, P. Hauser, B. Smith, Reaction efficiency for cellulose cationization using 3-chloro-2-hydroxypropyl trimethyl ammonium chloride. Text. Res. J. 73(11), 1017–1023 (2003)

    Article  Google Scholar 

  51. M.M. Kamel, E.A. El Kharadly, B.M. Youssef, Dyeing of chemically modified cellulose with methylolated acrylamide derivatives. Cellul. Chem. Technol. 18(5), 459–468 (1984)

    CAS  Google Scholar 

  52. R. Butnaru, A. Muresanu, S. Mitu, Influence of crease resist finish treatments upon the comfort indices in cotton-type textiles. Cellul. Chem. Technol. 20(3), 349–355 (1986)

    CAS  Google Scholar 

  53. P. Bajaj, S. Chakrapani, N.K. Jha, Flame retardant durable-press finishes for cotton and polyester/cellulose blends. Text. Res. J. 54(9), 619–630 (1984)

    Article  CAS  Google Scholar 

  54. Y. Shin, N.R.S. Hollies, K. Yeh, Polymerization crosslinking of cotton fabric for superior performance properties. I. A preliminary study. Text. Res. J. 59(11), 635–642 (1989)

    Article  CAS  Google Scholar 

  55. I. Holme, Water repellency and waterproofing, in Textile Finishing, ed. by D. Heywood (Society of Dyers and Colourists, West Yorkshire, 2003), pp. 137–213

    Google Scholar 

  56. E. Kissa, Handbook of Fiber Science and Technology, vol. II Chemical Processing of Fibers and Fabrics Part B, ed. by M. Lewin, S. Sello (Marcel Dekker, New York, 1984), pp. 2–65

    Google Scholar 

  57. W. Schindler, P. Hauser, Chemical Finishing of Textiles (Woodhead Publishing Limited, Cambridge, 2004), pp. 2–78

    Book  Google Scholar 

  58. K. Singha, A review on coating & lamination in textiles: processes and applications. Am. J. Polym. Sci. 2(3), 39–49 (2012)

    Article  CAS  Google Scholar 

  59. I. Holme, Coating and Lamination Enhance Textile Performance, 3rd edn. (Technical Textiles International, Woodhead Publishing Limited, Cambridge, England. 2003)

    Google Scholar 

  60. S. Mondal, Phase change materials for smart textiles – an overview. Appl. Therm. Eng. 28(11–12), 1536–1550 (2008)

    Article  CAS  Google Scholar 

  61. G. Stephen, B. Serge, R. Meryline, V. Isabelle, T. Lan, D. Rene, P. Frank, Flame retarded polyurea with microencapsulated ammonium phosphate. Polym. Degrad. Stab. 88, 106–113 (2005)

    Article  CAS  Google Scholar 

  62. Y.L. Weijun, M. Fai, X. John, T. Leung, L.D. Kam, L. Pei, Novel core-shell particles with poly(n-butyl acrylate) cores & chitosan shells as an antibacterial coating for textiles. Polymer 46, 10538–10543 (2005)

    Article  CAS  Google Scholar 

  63. S.V. Kangwansupamonkon, Antibacterial effect of apatite-coated titanium dioxide for textiles application. Nanomed. Nanotechnol. Biol. Med. 5, 240–249 (2009)

    Article  CAS  Google Scholar 

  64. (a) T. Matejmicusik, M. Igor, F. Katarina, M. Chehimi, Conductive polymer coated textiles: the role of fabric treatment by pyrrole-functionalised triethoxysilane. Synth. Met. 157, 914–923 (2007). (b) T. Lin, L. Wang, X. Wang, A. Kaynak, Polymerising pyrrole on polyester textiles and controlling the conductivity through coating thickness. Thin Solid Films 489, 77–82 (2005)

    Google Scholar 

  65. S.M. Bidoki, R. Wittlinger, Environmental and economical acceptance of polyvinyl chloride (PVC) coating agents. J. Clean. Prod. 18(3), 219–225 (2010)

    Article  CAS  Google Scholar 

  66. F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2010)

    Article  CAS  Google Scholar 

  67. (a) I. Bombard, P. Laurent, J. Lieto, G. Jeandel, A model of the infrared cure of powder coatings based on surface absorptivities in-situ measurements. J. Coat. Technol. Res. 5(3), 353–363 (2008). (b) F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009)

    Google Scholar 

  68. M.E. Gross, P.M. Martin, Chapter 11: Vacuum polymer deposition, in Handbook of Deposition Technologies for Films and Coatings, P.M. Martin, Editor. 2010, Elsevier. pp. 532–553

    Chapter  Google Scholar 

  69. (a) T.F. Degnan, Temperature gradients in electron beam cured coatings. Radiat. Phys. Chem. 19(5), 393–401(1982); (b) Natural wood effect with UV curable powder coatings. Focus Powder Coat 2008(11), 2–5 (2008)

    Google Scholar 

  70. H. Zhou, H. Wang, H. Niu, T. Lin, Superphobicity/philicity Janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids. Sci. Rep. 3, 2964 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  71. H. Zhou, H. Wang, H. Niu, A. Gestos, T. Lin, Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane and modified silica nanoparticles. Adv. Funct. Mater. 23, 1664 (2013)

    Article  CAS  Google Scholar 

  72. H. Zhou, H. Wang, H. Niu, A. Gestos, X. Wang, T. Lin, Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv. Mater. 24, 2409–2412 (2012)

    Article  CAS  PubMed  Google Scholar 

  73. H. Wang, H. Zhou, A. Gestos, J. Fang, H. Niu, J. Ding, T. Lin, Robust, electro-conductive, self-healing superamphiphobic fabric prepared by one-step vapour-phase polymerisation of poly(3,4-ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane. Soft Matter 9, 277 (2013)

    Article  CAS  Google Scholar 

  74. H. Wang, H. Zhou, A. Gestos, J. Fang, T. Lin, Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Appl. Mater. Interfaces 5, 10221–10226 (2013)

    Article  CAS  PubMed  Google Scholar 

  75. (a) Y. Okamoto, Y. Hasegawa, F. Yoshino, Urethane/acrylic composite polymer emulsions. Prog. Org. Coat. 29(1–4), 175–182 (1996). (b) H. Wang, H. Zhou, T. Lin, Adv. Sci. Technol. 80, 152–155 (2013)

    Google Scholar 

  76. Z. Yoshimitsu, A. Nakajima, T. Watanabe, L. Hashimoto, Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 18(15), 5818–5822 (2002)

    Article  CAS  Google Scholar 

  77. R.V. Lakshmi, T. Bharathidasan, B.J. Basu, Superhydrophobic sol–gel nanocomposite coatings with enhanced hardness. Appl. Surf. Sci. 257(24), 10421–10426 (2011)

    Article  CAS  Google Scholar 

  78. S.S. Latthe, H. Imai, V. Ganesan, A.V. Rao, Superhydrophobic silica films by sol–gel co-precursor method. Appl. Surf. Sci. 256(1), 217–222 (2009)

    Article  CAS  Google Scholar 

  79. S.M.R. Billah, R.M. Christie, R. Shamey, Direct coloration of textiles with photochromic dyes. Part 3: dyeing of wool with photochromic acid dyes. Color. Technol. 128(6), 488–492 (2012)

    Article  CAS  Google Scholar 

  80. S.M.R. Billah, R.M. Christie, R.H. Wardman, Inkjet printed textile based molecular switches, in Conference Proceeding of Textile Institute World Conference, Manchester, 3–4 Nov 2010 (2010), pp. 1–10

    Google Scholar 

  81. A.S. Aly, A.B.E. Mostafa, M.A. Ramadan, A. Hebeish, Innovative dual antimicrobial & anticrease finishing of cotton fabric. Polym. Plast. Technol. Eng. 46, 703–707 (2007)

    Google Scholar 

  82. (a) R. Schwalm, UV Coatings: Basics, Recent Developments and New Applications (Elsevier, San Diego, 2006), (b) I. Holme, Adhesion to textile fibres and fabrics. Int. J. Adhes. Adhes. 19(6), 455–463 (1999)

    Google Scholar 

  83. C.M. Carr, I.H. Leaver, A.E. Hughes, X-ray photoelectron spectroscopic study of the wool fiber surface. Text. Res. J. 56(7), 457–461 (1986)

    Article  CAS  Google Scholar 

  84. R.J. Ward, H.A. Willis, G.A. George, G.B. Guise, R.J. Denning, D.J. Evans, R.D. Short, Surface analysis of wool by X-ray photoelectron spectroscopy and static secondary ion mass spectrometry. Text. Res. J. 63(6), 362–368 (1993)

    Article  CAS  Google Scholar 

  85. J.D. Leeder, J.H. Bradbury, Effects of shrink proofing and other chemical treatments on the epicuticle of wool. Text. Res. J. 41(3), 215–281 (1971)

    Article  CAS  Google Scholar 

  86. (a) W.A. Daoud, J.H. Xin, Y. Zhang, Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf. Sci. 599(1–3), 69–75 (2005). (b) C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, 1990)

    Google Scholar 

  87. L. Xu, W. Zhuang, B. Xu, Z. Cai, Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization. J. Appl. Polym. Sci. 257(13), 5491–5498 (2011)

    CAS  Google Scholar 

  88. C. Sanchez, F. Ribot, Chemical Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J. Chem. 18, 1007–1047 (1994)

    CAS  Google Scholar 

  89. S.Y. Chang, T.A. Ring, Map of gel times for three phase region tetraethoxysilane, ethanol and water. J. Non-Cryst. Solids 147–148, 56–61 (1992)

    Article  Google Scholar 

  90. D. Knittel, E. Schollmeyer, Technologies for a new century. Surface modification of fibres. J. Text. Inst. 91(3), 151–165 (2000)

    Article  Google Scholar 

  91. B. Mahltig, H. Böttcher, Refining of textiles by nanosol coating. Melliand Textilber. 83(4), 251–253, E50–E51 (2002)

    Google Scholar 

  92. M. Joshi, A. Bhattacharyya, Nanotechnology – a new route to high performance functional textiles. Text. Prog. 43(3), 155–233 (2011)

    Article  Google Scholar 

  93. B. Mahltig, H. Haufe, H. Böttcher, Functionalisation of textiles by inorganic sol-gel coatings. J. Mater. Chem. 15(41), 4385–4398 (2005)

    Article  CAS  Google Scholar 

  94. I. Holme, Performance under adverse conditions. Int. Dyer 187(7), 11–12 (2002)

    Google Scholar 

  95. S. Amberg-Schwab, U. Weber, Functional coatings using nanotechnology. Int. Text. Bull. 50(1), 14–19 (2004)

    Google Scholar 

  96. M. Montazer, E. Pakdel, Functionality of nano titanium dioxide on textiles with future aspects: focus on wool. J Photochem. Photobiol. C Photochem. Rev. 12(4), 293–303 (2011)

    Article  CAS  Google Scholar 

  97. C. Günesoglu, Performing the electrospraying process for the application of textile nano finishing particles. Text. Res. J. 80(2), 106–115 (2009)

    Article  CAS  Google Scholar 

  98. (a) T. Textor, T. Bahners, E. Schollmeyer, Organically modified ceramics for coating textile materials. Prog. Colloid Polym. Sci. 117, 76–79 (2001). (b) J.S. Jur, G.N. Parsons, Nanoscale ceramic surface modification of textiles by atomic layer deposition. Am. Ceram. Soc. Bull. 91(6), 24–27 (2012)

    Google Scholar 

  99. P. Colomban, E. Bruneton, J.L. Lagrange, E. Mouchon, Sol-gel mullite matrix-SiC and -mullite 2D woven fabric composites with or without zirconia containing interphase: elaboration and properties. J. Eur. Ceram. Soc. 16(2), 301–314 (1996)

    Article  CAS  Google Scholar 

  100. B. Sun, T. Fan, J. Xu, D. Zhang, Biomorphic synthesis of SnO2 microtubules on cotton fibers. Mater. Lett. 59(18), 2325–2328 (2005)

    Article  CAS  Google Scholar 

  101. M. Nacken, S. Heidenreich, M. Hackel, G. Schaub, Catalytic activation of ceramic filter elements for combined particle separation, NOx removal and VOC total oxidation. Appl. Catal. B Environ. 70(1–4), 370–376 (2007)

    Article  CAS  Google Scholar 

  102. N.I. Baklanova, T.M. Zima, A.T. Titov, N.V. Isaeva, D.V. Grashchenkov, S.S. Solntsev, Protective coatings for carbon fibers. Inorg. Mater. 42(7), 744–749 (2006)

    Article  CAS  Google Scholar 

  103. B. Boutevin, Y. Pietrasanta, The synthesis and applications of fluorinated silicones, notably in high-performance coatings. Prog. Org. Coat. 13(5), 297–331 (1985)

    Article  CAS  Google Scholar 

  104. B. Mahltig, H. Böttcher, Modified silica sol coatings for water-repellent textiles. J. Sol-Gel Sci. Technol. 27, 43–52 (2003)

    Article  CAS  Google Scholar 

  105. W.A. Daoud, J.H. Xin, X. Tao, Superhydrophobic silica nanocomposite coating by a low-temperature process. J. Am. Ceram. Soc. 87(9), 1782–1784 (2004)

    Article  CAS  Google Scholar 

  106. T. Textor, T. Bahners, E. Schollmeyer, Surface modification of textile fabrics by coatings based on the sol-gel process. Melliand Textilber. 80(10), 847–848, E229 (1999)

    Google Scholar 

  107. J. Trepte, H. Böttcher, Improvement in the leaching behaviour of dye doped modified silica layers coated onto paper or textiles. J. Sol-Gel Sci. Technol. 19(1–3), 691–694 (2000)

    Article  CAS  Google Scholar 

  108. Q.B. Meng, S. Lee, C. Nah, Y. Lee, Preparation of waterborne polyurethanes using an amphiphilic diol for breathable waterproof textile coatings. Prog. Org. Coat. 66(4), 382–386 (2009)

    Article  CAS  Google Scholar 

  109. B. Mahltig, F. Audenaert, H. Böttcher, Hydrophobic silica sol coatings on textiles the influence of solvent and sol concentration. J. Sol-Gel Sci. Technol. 34(2), 103–109 (2005)

    Article  CAS  Google Scholar 

  110. B. Mahltig, Hydrophobic sol-gel based coating agent for textiles: improvement by solvothermal treatment. J. Text. Inst. 102(5), 455–459 (2011)

    Article  Google Scholar 

  111. S. Leelajariyakul, H. Noguchi, S. Kiatkamjornwong, Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics. Prog. Org. Coat. 62(2), 145–161 (2008)

    Article  CAS  Google Scholar 

  112. J. Vince, B. Orel, A. Vilčnik, M. Fir, A.S. Vuk, V. Jovanovski, B. Simončič, Structural and water-repellent properties of a urea/poly(dimethylsiloxane) sol-gel hybrid and its bonding to cotton fabric. Langmuir 22(15), 6489–6497 (2006)

    Article  CAS  PubMed  Google Scholar 

  113. M. Fir, J. Vince, A.S. Vuk, A. Vilčnik, V. Jovanovski, G. Mali, B. Orel, B. Simončič, Functionalisation of cotton with hydrophobic urea/poly(dimethylsiloxane) sol-gel hybrid. Acta Chim. Slov. 54(1), 144–148 (2007)

    CAS  Google Scholar 

  114. B. Mahltig, A. Fischer, Inorganic/organic polymer coatings for textiles to realize water repellent and antimicrobial properties – a study with respect to textile comfort. J. Polym. Sci. B Polym. Phys. 48(14), 1562–1568 (2010)

    Article  CAS  Google Scholar 

  115. T. Bahners, T. Textor, K. Opwis, E. Schollmeyer, Recent approaches to highly hydrophobic textile surfaces. J. Adhes. Sci. Technol. 22(3–4), 285–309 (2008)

    Article  CAS  Google Scholar 

  116. M. Messaoud, M. Houmard, S. Briche, F. Roussel, M. Langlet, Hydrophobic functionalization of cotton-based textile fabrics through a non-fluorinated sol-gel route. J. Sol-Gel Sci. Technol. 55(2), 243–254 (2010)

    Article  CAS  Google Scholar 

  117. T. Pipatchanchai, K. Srikulkit, Hydrophobicity modification of woven cotton fabric by hydrophobic fumed silica coating. J. Sol-Gel Sci. Technol. 44(2), 119–123 (2007)

    Article  CAS  Google Scholar 

  118. A. Khoddami, O. Avinc, F. Ghahremanzadeh, Improvement in poly(lactic acid) fabric performance via hydrophilic coating. Prog. Org. Coat. 72(3), 299–304 (2011)

    Article  CAS  Google Scholar 

  119. H. Zhang, R.N. Lamb, Superhydrophobic treatment for textiles via engineering nanotextured silica/polysiloxane hybrid material onto fibres. Surf. Eng. 25(1), 21–24 (2009)

    Article  CAS  Google Scholar 

  120. D. Chen, L. Tan, H. Liu, J. Hu, Y. Li, F. Tang, Fabricating superhydrophilic wool fabrics. Langmuir 26(7), 4675–4679 (2010)

    Article  CAS  PubMed  Google Scholar 

  121. L. Xu, W. Zhuang, B. Xu, Z. Cai, Superhydrophobic cotton fabrics prepared by one-step water-based sol-gel coating. J. Text. Inst. 103(3), 311–319 (2012)

    CAS  Google Scholar 

  122. Z. Li, Y. Xing, J. Dai, Superhydrophobic surfaces prepared from water glass and non-fluorinated alkylsilane on cotton substrates. Appl. Surf. Sci. 254(7), 2131–2135 (2008)

    Article  CAS  Google Scholar 

  123. W. Huang, Y. Xing, Y. Yu, S. Shang, J. Dai, Enhanced washing durability of hydrophobic coating on cellulose fabric using polycarboxylic acids. Appl. Surf. Sci. 257(9), 4443–4448 (2011)

    Article  CAS  Google Scholar 

  124. C. Wang, J. He, Citric acid as crosslinking agent for grafting β-cyclodextrin onto wool fabric, in Proceedings of the 12th International Wool Research Conference, Shanghai, vol. I (2010), pp. 399–402

    Google Scholar 

  125. M. Montazer, E. Pakdel, Self-cleaning and color reduction in wool fabric by nano titanium dioxide. J. Text. Inst. 102(4), 343–352 (2011)

    Article  CAS  Google Scholar 

  126. K. Satoh, H. Nakazumi, Novel fluorinated inorganic-organic finishing materials for nylon carpeting. Text. Res. J. 74(12), 1079–1084 (2004)

    Article  CAS  Google Scholar 

  127. W.A. Daoud, J.H. Xin, Nucleation and growth of anatase crystallites on cotton fabrics at low temperatures. J. Am. Ceram. Soc. 87(5), 953–955 (2004)

    Article  CAS  Google Scholar 

  128. A. Bozzi, T. Yuranova, J. Kiwi, Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J. Photochem. Photobiol. A Chem. 172(1), 27–34 (2005)

    Article  CAS  Google Scholar 

  129. A. Bozzi, T. Yuranova, I. Guasaquillo, D. Laub, J. Kiwi, Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J. Photochem. Photobiol. A Chem. 174(2), 156–164 (2005)

    Article  CAS  Google Scholar 

  130. K.T. Meilert, D. Laub, J. Kiwi, Photocatalytic Self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers. J. Mol. Catal. A Chem. 237(1–2), 101–108 (2005)

    Article  CAS  Google Scholar 

  131. T. Yuranova, R. Mosteo, J. Bandara, D. Laub, J. Kiwi, Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J. Mol. Catal. A Chem. 244(1–2), 160–167 (2006)

    Article  CAS  Google Scholar 

  132. Y.A. Matsuda, Y. Kotani, T. Kogure, M. Tatsumisago, T. Minami, Transparent anatase nanocomposite films by the sol-gel process at low temperatures. J. Am. Ceram. Soc. 83(1), 229–231 (2000)

    Article  CAS  Google Scholar 

  133. M. Langlet, A. Kim, M. Audier, J.M. Herrmann, Sol-gel preparation of photocatalytic TiO2 films on polymer substrates. J. Sol-Gel Sci. Technol. 25(3), 223–234 (2002)

    Article  CAS  Google Scholar 

  134. H. Imai, H. Morimoto, A. Tominaga, H. Hirashima, Structural changes in sol-gel derived SiO2 and TiO2 films by exposure to water vapor. J. Sol-Gel Sci. Technol. 10(1), 45–54 (1997)

    Article  CAS  Google Scholar 

  135. H. Imai, H. Hirashima, Preparation of porous anatase coating from sol-gel-derived titanium dioxide and titanium dioxide-silica by water-vapor exposure. J. Am. Ceram. Soc. 82(9), 2301–2304 (1999)

    Article  CAS  Google Scholar 

  136. W.A. Daoud, J.H. Xin, Low temperature sol-gel processed photocatalytic titania coating. J. Sol-Gel Sci. Technol. 29(1), 25–29 (2004)

    Article  CAS  Google Scholar 

  137. K. Qi, W.A. Daoud, J.H. Xin, C.L. Mak, W. Tang, W.P. Cheung, Self-cleaning cotton. J. Mater. Chem. 16(47), 4567–4574 (2006)

    Article  CAS  Google Scholar 

  138. W.A. Daoud, J.H. Xin, Y.-H. Zhang, Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf. Sci. 599(1–3), 69–75 (2005)

    Article  CAS  Google Scholar 

  139. H.F. Moafi, A.F. Shojaie, M.A. Zanjanchi, The comparison of photocatalytic activity of synthesized TiO2 and ZrO2 nanosize onto wool fibers. Appl. Surf. Sci. 256(13), 4310–4316 (2010)

    Article  CAS  Google Scholar 

  140. W.S. Tung, W.A. Daoud, Effect of wettability and silicone surface modification on the self-cleaning functionalization of wool. J. Appl. Polym. Sci. 112(1), 235–243 (2009)

    Article  CAS  Google Scholar 

  141. B. Liu, Z. Wang, J. He, SiO2/TiO2 multilayer films grown on cotton fibers surface at low temperature by a novel two-step process. Mater. Lett. 67(1), 8–10 (2012)

    Article  CAS  Google Scholar 

  142. M. Montazer, E. Pakdel, M.B. Moghadam, The role of nano colloid of TiO2 and butane tetra carboxylic acid on the alkali solubility and hydrophilicity of proteinous fibers. Colloids Surf. A Physicochem. Eng. Asp. 375(1–3), 1–11 (2011)

    Article  CAS  Google Scholar 

  143. K. Qi, B. Fei, J.H. Xin, Visible light-active iron-doped anatase nanocrystallites and their self-cleaning property. Thin Solid Films 519(8), 2438–2444 (2011)

    Article  CAS  Google Scholar 

  144. M.J. Uddin, F. Cesano, S. Bertarione, F. Bonino, S. Bordiga, D. Scarano, A. Zecchina, Tailoring the activity of Ti-based photocatalysts by playing with surface morphology and silver doping. J. Photochem. Photobiol. A Chem. 196(2–3), 165–173 (2008)

    Article  CAS  Google Scholar 

  145. M.J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, A. Zecchina, Cotton textile fibres coated by Au/TiO2 films: synthesis, characterization and self cleaning properties. J. Photochem. Photobiol. A Chem. 199(1), 64–72 (2008)

    Article  CAS  Google Scholar 

  146. A. Farouk, T. Textor, E. Schollmeyer, A. Tarbuk, A.M. Grancacic, Sol-gel derived inorganic-organic hybrid polymers filled with ZnO nanoparticles as ultraviolet protection finish for textiles. Autex Res. J. 9(4), 114–120 (2009)

    Google Scholar 

  147. W.S. Simpson, Chemical processes for enhanced appearance and performance, in Wool: Science and Technology, ed. by W.S. Simpson, G.H. Crawshaw (Woodhead Publishing, Abington, 2002), pp. 215–236

    Chapter  Google Scholar 

  148. J.H. Xin, W.A. Daoud, Y.Y. Kong, A new approach to UV-blocking treatment for cotton fabrics. Text. Res. J. 74(2), 97–100 (2004)

    Article  CAS  Google Scholar 

  149. P. Xu, W. Wang, S.-L. Chen, UV blocking treatment of cotton fabrics by titanium hydrosol. AATCC Rev. 5(6), 28–31 (2005)

    Google Scholar 

  150. P. Xu, X. Liu, W. Wang, S. Chen, Improving the antibacterial and UV resistant properties of cotton by the titanium hydrosol treatment. J. Appl. Polym. Sci. 102(2), 1478–1482 (2006)

    Article  CAS  Google Scholar 

  151. N. Abidi, E. Hequet, S. Tarimala, L.L. Dai, Cotton fabric surface modification for improved UV radiation protection using sol-gel process. J. Appl. Polym. Sci. 104(1), 111–117 (2007)

    Article  CAS  Google Scholar 

  152. Y. Xing, X. Ding, UV photo-stabilization of tetrabutyl titanate for aramid fibers via sol-gel surface modification. J. Appl. Polym. Sci. 103(5), 3113–3119 (2007)

    Article  CAS  Google Scholar 

  153. T. Textor, T. Bahners, E. Schollmeyer, Inorganic-organic hybrid polymers improve the stab resistance of ballistic fabrics. Tech. Text. 47(2), 85–87, E72–E74 (2004)

    Google Scholar 

  154. H. Kan, L. Zhang, H. Xu, Z. Mao, H. Cao, Optimization of conditions for nanocrystal ZnO in-situ growing on SiO2-coated cotton fabric. Text. Res. J. 80(7), 660–670 (2010)

    Article  CAS  Google Scholar 

  155. P.G. Parejo, M. Zayat, D. Levy, Photostability and retention of UV absorber molecules in sol-gel hybrid UV-protective coatings. J. Sol-Gel Sci. Technol. 53(2), 280–286 (2010)

    Article  CAS  Google Scholar 

  156. M.A. Tshabalala, R. Libert, C.M. Schaller, Photostability and moisture uptake properties of wood veneers coated with a combination of thin sol-gel films and light stabilizers. Holzforschung 65(2), 215–220 (2011)

    Article  CAS  Google Scholar 

  157. B. Mahltig, H. Böttcher, K. Rauch, U. Dieckmann, R. Nitsche, T. Fritz, Optimized UV protecting coatings by combination of organic and inorganic UV absorbers. Thin Solid Films 485(1–2), 108–114 (2005)

    Article  CAS  Google Scholar 

  158. B. Mahltig, D. Knittel, E. Schollmeyer, H. Böttcher, Incorporation of triarylmethane dyes into sol-gel matrices deposited on textiles. J. Sol-Gel Sci. Technol. 31(1–3), 293–297 (2004)

    Article  CAS  Google Scholar 

  159. B. Mahltig, H. Böttcher, D. Knittel, E. Schollmeyer, Light fading and wash fastness of dyed nanosol-coated textiles. Text. Res. J. 74(6), 521–527 (2004)

    Article  CAS  Google Scholar 

  160. A.C. Aķsit, N.A. Onar, Leaching and fastness behavior of cotton fabrics dyed with different type of dyes using sol-gel process. J. Appl. Polym. Sci. 109(1), 97–105 (2008)

    Article  CAS  Google Scholar 

  161. C. Schramm, B. Rinderer, Dyeing and DP treatment of sol-gel pre-treated cotton fabrics. Fibers Polym. 12(2), 226–232 (2011)

    Article  CAS  Google Scholar 

  162. L. Min, Z. Xiaoli, C. Shuilin, Enhancing the wash fastness of dyeings by a sol-gel process. Part 1: direct dyes on cotton. Color. Technol. 119(5), 297–300 (2003)

    Article  Google Scholar 

  163. D. Juan, Z. Li, C. Shuilin, Wash fastness of dyed fabric treated by the sol-gel process. Color. Technol. 121(1), 29–36 (2005)

    Article  Google Scholar 

  164. B. Mahltig, T. Textor, Combination of silica sol and dyes on textiles. J. Sol-Gel Sci. Technol. 39(2), 111–118 (2006)

    Article  CAS  Google Scholar 

  165. Y. Yin, C. Wang, Sol-gel synthesis and characterizations of organically modified silica coatings on knitted cellulose for fixation applications. Prog. Org. Coat. 73(1), 14–18 (2012)

    Article  CAS  Google Scholar 

  166. D. Hegemann, M.M. Hossain, D.J. Balazs, Nanostructured plasma coatings to obtain multifunctional textile surfaces. Prog. Org. Coat. 58(2–3), 237–240 (2007)

    Article  CAS  Google Scholar 

  167. H. Yi, K.-L. Yan, Polyurethane modified with 3-aminopropyltriethoxysilane as wool anti-felting agent. J. Appl. Polym. Sci. 109(4), 2169–2175 (2008)

    Article  CAS  Google Scholar 

  168. Y. Hu, J. Liu, C. Xu, Antifelting-coating for wool from PPD-[Si(OH)3]2 agent via a sol-gel process. Adv. Mater. Res. 233–235, 151–154 (2011)

    Article  CAS  Google Scholar 

  169. C. Schramm, W.H. Binder, R. Tessadri, Durable press finishing of cotton fabric with 1,2,3,4-butanetetracarboxylic acid and TEOS/GLYMO. J. Sol-Gel Sci. Technol. 29(3), 155–165 (2004)

    Article  CAS  Google Scholar 

  170. C. Schramm, B. Rinderer, W.H. Binder, R. Tessadri, H. Duelli, Treatment of 1,3-dimethylol-4,5-dihydroxyimidazolidine-2-one finished cellulosic material with tetraethoxysilane or glycidyloxypropyltrimethoxysilane solutions. J. Mater. Sci. 40(8), 1883–1891 (2005)

    Article  CAS  Google Scholar 

  171. K.S. Huang, Y.H. Nien, K.C. Hsiao, Y.S. Chang, Application of DMEU/SiO2 gel solution in the antiwrinkle finishing of cotton fabrics. J. Appl. Polym. Sci. 102(5), 4136–4143 (2006)

    Article  CAS  Google Scholar 

  172. K.-S. Huang, K.-L. Yang, S.-J. Lin, W.-T. Lian, Antiwrinkle treatment of cotton fabric with a mixed sol of TEOS-TTD/DMDHEU. J. Appl. Polym. Sci. 106(4), 2559–2564 (2007)

    Article  CAS  Google Scholar 

  173. K.-S. Huang, M.-C. Hwang, J.-S. Chen, S.-J. Lin, S.-P. Wang, Application of mixed gel solution in the anti-wrinkle finishing of cotton fabrics. J. Text. Inst. 98(2), 169–176 (2007)

    Article  CAS  Google Scholar 

  174. C. Wang, L. Chen, Surface treatment of anti-crease finished cotton fabric based on sol-gel technology. Surf. Rev. Lett. 16(5), 715–721 (2009)

    Article  CAS  Google Scholar 

  175. S. Hribernik, M.S. Smole, K.S. Kleinschek, M. Bele, J. Jamnik, M. Gaberscek, Flame retardant activity of SiO2-coated regenerated cellulose fibers. Polym. Degrad. Stab. 92(11), 1957–1965 (2007)

    Article  CAS  Google Scholar 

  176. A. Cireli, N. Onar, M.F. Ebeoglugil, I. Kayatekin, B. Kutlu, O. Culha, E. Celik, Development of flame retardancy properties of new halogen-free phosphorous doped silica thin films on fabrics. J. Appl. Polym. Sci. 105(6), 3747–3756 (2007)

    Article  CAS  Google Scholar 

  177. S.A. Chapple, E. Ferg, The influence of precursor ratios on the properties of cotton coated with a sol-gel flame retardant. AATCC Rev. 6(11), 36–40 (2006)

    CAS  Google Scholar 

  178. B.C. Kim, P.C. Innis, G.G. Wallace, C.T.J. Low, F.C. Walsh, W.J. Cho, K.H. Yu, Electrically conductive coatings of nickel and polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) on nylon Lycra® textiles. Prog. Org. Coat. 76(10), 1296–1301 (2013)

    Article  CAS  Google Scholar 

  179. J. Alongi, M. Ciobanu, G. Malucelli, Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes. Carbohydr. Polym. 85(3), 599–608 (2011)

    Article  CAS  Google Scholar 

  180. S. Hu, Y. Hu, L. Song, H. Lu, Effect of modified organic-inorganic hybrid materials on thermal properties of cotton fabrics. J. Therm. Anal. Calorim. 103(2), 423–427 (2011)

    Article  CAS  Google Scholar 

  181. J. Alongi, M. Ciobanu, G. Malucelli, Sol-gel treatments on cotton fabrics for improving thermal and flame stability: effect of the structure of the alkoxysilane precursor. Carbohydr. Polym. 87(1), 627–635 (2012)

    Article  CAS  PubMed  Google Scholar 

  182. J. Alongi, M. Ciobanu, G. Malucelli, Sol-gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: optimisation of the process and evaluation of the durability. Cellulose 18(1), 167–177 (2011)

    Article  CAS  Google Scholar 

  183. J. Alongi, M. Ciobanu, J. Tata, F. Carosio, G. Malucelli, Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol-gel treatments. J. Appl. Polym. Sci. 119(4), 1961–1969 (2011)

    Article  CAS  Google Scholar 

  184. J. Alongi, M. Ciobanu, G. Malucelli, Cotton fabrics treated with hybrid organic-inorganic coatings obtained through dual-cure processes. Cellulose 18(5), 1335–1348 (2011)

    Article  CAS  Google Scholar 

  185. P. Xu, W. Wang, S.-L. Chen, Application of nanosol on the antistatic property of polyester. Melliand Int. 11(1), 56–59 (2005)

    CAS  Google Scholar 

  186. (a) L. Andreozzi et al., Free radical generation upon plasma treatment of cotton fibers and their initiation efficiency in surface-graft polymerization. J. Colloid Interface Sci. 289, 455–465 (2005). (b) G.B. Chu, F.N. Jones, Low-temperature curing higher-solids polyester coatings with melamine-formaldehyde resin cross-linkers. J. Coat. Technol. 65(819), 43–48 (1993). (c) P.K.T. Oldring, SITA Technology Limited, Resins for Surface Coatings, 2nd edn. (Wiley, Chichester/New York, 2000)

    Google Scholar 

  187. (a) N. Abidi, E. Hequet, Cotton fabric graft copolymerization using microwave plasma. II. Physical properties. J. Appl. Polym. Sci. 98, 896–902 (2005). (b) J.W. Gilman, A.B.. Morgan, R.H. Harris, P.C. Trulove, H.C. DeLong, T.E. Sutto, Polymer layered silicate nanocomposites: thermal stability of organic cationic treatments. Polym. Mater. Sci. Eng. 83, 59–60 (2000)

    Google Scholar 

  188. (a) J.L.G. Kamlangkla, Multifunctional silk fabrics by means of the plasma induced graft polymerization (PIGP) process. Surf. Coat. Technol. 205, 3755–3762 (2011). (b) W. Caseri, Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromol. Rapid Commun. 21, 705–722 (2000). (c) C. Sanchez, B. Julian, P. Belleville, M. Popall, Applications of hybrid organic/inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005). (d) H.H. Huang, B. Orler, G.L. Wilkes, Structure-property behavior of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane). Macromolecules 20, 1322–1330 (1987)

    Google Scholar 

  189. (a) A. Cavaco-Paulo, G.M. Gübitz, Textile Processing with Enzymes (Woodhead Publishing Ltd., Cambridge, 2003), pp. 1–234. (b) A.J. Barrett, N.D. Rawlings, J.F. Woessner, The Handbook of Proteolytic Enzymes, 2nd edn. (Academic, Oxford, 2003)

    Google Scholar 

  190. (a) M.J. Tsafack, J. Levalois-Grützmacher, Flame retardancy of cotton textiles by plasma-induced graft-polymerization (PIGP). Surf. Coat. Technol. 201, 2599–2610 (2006). (b) A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002)

    Google Scholar 

  191. (a) A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034–2057 (2002). (b) A. Lendlein, S. Kelch, Shape-memory polymers as stimuli-sensitive implant materials. Clin. Hemorheol. Microcirc. 32, 105–116 (2005)

    Google Scholar 

  192. (a) C. Liu, P.T. Mather, Thermomechanical characterization of a tailored series of shape memory polymers. J. Appl. Med. Polym. 6, 47–52 (2002). (b) W. Sokolowsky, A. Metcalfe, S. Hayashi, L. Yahia, J. Raymond, Medical applications of shape memory polymers. Biomed. Mater. 2, 23–27 (2007). (c) Z.W. Wicks, Organic Coatings: Science and Technology, 3rd edn. (Wiley-Interscience, Hoboken, 2007). (d) O. Coulembier, P. Degee, J.L. Hedrick, P. Dubois, From controlled ringopening polymerization to biodegradable aliphatic polyester: especially poly(betamalic acid) derivatives. Progr. Polym. Sci. 31(8), 723–747 (2006)

    Google Scholar 

  193. B. Mahltig, D. Fiedler, H. Böttcher, Antimicrobial sol-gel coatings. J. Sol-Gel Sci. Technol. 32(1–3), 219–222 (2004)

    Article  CAS  Google Scholar 

  194. B. Tomšič, B. Simončič, B. Orel, L. Černe, P.F. Tavčer, M. Zorko, I. Jerman, A. Vilčnik, J. Kovač, Sol-gel coating of cellulose fibres with antimicrobial and repellent properties. J. Sol-Gel Sci. Technol. 47(1), 44–57 (2008)

    Article  CAS  Google Scholar 

  195. B. Simončič, B. Tomšič, L. Černe, B. Orel, I. Jerman, J. Kovač, M. Žerjav, A. Simončič, Multifunctional water and oil repellent and antimicrobial properties of finished cotton: influence of sol-gel finishing procedure. J. Sol-Gel Sci. Technol. 61(2), 340–354 (2012)

    Article  CAS  Google Scholar 

  196. X. Liu, T. Lin, B. Peng, X. Wang, Antibacterial activity of capsaicin coated wool fabric. Text. Res. J. 82(6), 584–590 (2012)

    Article  CAS  Google Scholar 

  197. H. Haufe, K. Muschter, J. Siegert, H. Böttcher, Bioactive textiles by sol-gel immobilised natural active agents. J. Sol-Gel Sci. Technol. 45(1), 97–101 (2008)

    Article  CAS  Google Scholar 

  198. S. Tarimala, N. Kothari, N. Abidi, E. Hequet, J. Fralick, L.L. Dai, New approach to antibacterial treatment of cotton fabric with silver nanoparticle-doped silica using sol-gel process. J. Appl. Polym. Sci. 101(5), 2938–2943 (2006)

    Article  CAS  Google Scholar 

  199. B. Mahltig, E. Gutmann, M. Reibold, D.C. Meyer, H. Böttcher, Synthesis of Ag and Ag/SiO2 Sols by solvothermal method and their bactericidal activity. J. Sol-Gel Sci. Technol. 51(2), 204–214 (2009)

    Article  CAS  Google Scholar 

  200. Y. Xing, X. Yang, J. Dai, Antimicrobial finishing of cotton textile based on water glass by sol-gel method. J. Sol-Gel Sci. Technol. 43(2), 187–192 (2007)

    Article  CAS  Google Scholar 

  201. X. Wang, C. Wang, The antibacterial finish of cotton via sols containing quaternary ammonium salts. J. Sol-Gel Sci. Technol. 50(1), 15–21 (2009)

    Article  CAS  Google Scholar 

  202. L. Song, R.H. Baney, Antibacterial evaluation of cotton textile treated by trialkoxysilane compounds with antimicrobial moiety. Text. Res. J. 81(5), 504–511 (2011)

    Article  CAS  Google Scholar 

  203. B. Mahltig, D. Fiedler, A. Fischer, P. Simon, Antimicrobial coatings on textiles: modification of sol-gel layers with organic and inorganic biocides. J. Sol-Gel Sci. Technol. 55(3), 269–277 (2010)

    Article  CAS  Google Scholar 

  204. A.S. Chan, J.D. Valle, K. Lao, C. Malapit, M. Chua, R.C. So, Evaluation of silica sol-gel microcapsule for the controlled release of insect repellent, N, N-diethyl-2-methoxybenzaimide, on cotton. Philipp. J. Sci. 138(1), 13–21 (2009)

    Google Scholar 

  205. A.F. Little, R.M. Christie, Textile applications of photochromic dyes. Part 3: factors affecting the technical performance of textiles screen printed with commercial photochromic dyes. Color. Technol. 127(5), 275–281 (2011)

    Article  CAS  Google Scholar 

  206. R. Pardo, M. Zayat, D. Levy, Photochromic organic-inorganic hybrid materials. Chem. Soc. Rev. 40(2), 672–687 (2011)

    Article  CAS  PubMed  Google Scholar 

  207. T. Cheng, T. Lin, R. Brady, X. Wang, Fast response photochromic textiles from hybrid silica surface coating. Fibers Polym. 9(3), 301–306 (2008)

    Article  CAS  Google Scholar 

  208. R. Zimehl, T. Textor, T. Bahners, E. Schollmeyer, Smart textiles when colloid chemistry bears a challenge. Progr. Colloid Polym. Sci. 125, 49–53 (2004)

    CAS  Google Scholar 

  209. L.V. Schueren, K.D. Clerck, G. Brancatelli, G. Rosace, E. Van Damme, W.D. Vos, Novel cellulose and polyamide halochromic textile sensors based on the encapsulation of Methyl Red into a sol-gel matrix. Sens. Actuators B Chem. 162(1), 27–34 (2012)

    Article  CAS  Google Scholar 

  210. R.B. Bhatia, C.J. Brinker, C.S. Ashley, T.M. Harris, Synthesis of Sol-Gel Matrices for Encapsulation of Enzymes Using an Aqueous Route, Report SAN098-2610c (Sandia Corporation, Albuquerque, 1998)

    Book  Google Scholar 

  211. F.-Y. Li, Y.-J. Xing, X. Ding, Immobilization of papain on cotton fabric by sol-gel method. Enzyme Microb. Technol. 40(7), 1692–1697 (2007)

    Article  CAS  Google Scholar 

  212. A. Pannier, D. Fiedler, U. Soltmann, S. Matys, H. Böttcher, Cellulose producing Biocer coatings. Ver. Dtsch. Ing. Ber. 2027, 129–132 (2008)

    Google Scholar 

  213. C. Schramm, W.H. Binder, R. Tessadri, H. Duelli, Modification of cotton fabrics by means of hydrolyzed TEOS-, GLYMO- and Ti(OiPr)3(acac)- solutions. Cellul. Chem. Technol. 39(3–4), 303–314 (2005)

    CAS  Google Scholar 

  214. B. Tomšič, P.K. Lavrič, B. Simončič, B. Orel, D. Jocić, Sol-gel technology for functional finishing of PES fabric by stimuli-responsive microgel. J. Sol-Gel Sci. Technol. 61(3), 463–476 (2012)

    Article  CAS  Google Scholar 

  215. X. Xiao, F. Chen, Q. Wei, N. Wu, Surface modification of polyester nonwoven fabrics by Al2O3 sol-gel coating. J. Coat. Technol. Res. 6(4), 537–541 (2009)

    Article  CAS  Google Scholar 

  216. B. Orel, A. Surca, U.O. Krasovec, Recent progress in sol-gel derived electrochromic devices. Acta Chim. Slov. 45(4), 487–506 (1998)

    CAS  Google Scholar 

  217. E.H. Lan, B.C. Dave, J.M. Fukuto, B. Dunn, J.I. Zink, J.S. Valentine, Synthesis of sol-gel encapsulated heme proteins with chemical sensing properties. J. Mater. Chem. 9(1), 45–53 (1999)

    Article  CAS  Google Scholar 

  218. L.M. Fortes, M.C. Gonalves, R.M. Almeida, Flexible photonic crystals for strain sensing. Opt. Mater. 33(3), 408–412 (2011)

    Article  CAS  Google Scholar 

  219. S. Mann, S.L. Burkett, S.A. Davis, C.E. Fowler, N.H. Mendelson, S.D. Simms, D. Walsh, N.T. Whilton, Sol-gel synthesis of organized matter. Chem. Mater. 9(11), 2300–2310 (1997)

    Article  CAS  Google Scholar 

  220. M. Sumper, N. Kröger, Silica formation in diatoms: the function of long-chain polyamines and silaffins. J. Mater. Chem. 14(14), 2059–2065 (2004)

    Article  CAS  Google Scholar 

  221. S.C. Nunes, N.J.O. Silva, J. Hümmer, R.A.S. Ferreira, P. Almeida, L.D. Carlos, V.Z. Bermudez, Water-mediated structural tunability of an alkyl/siloxane hybrid: from amorphous material to lamellar structure or bilamellar superstructure. RSC Adv. 2(5), 2087–2099 (2012)

    Article  CAS  Google Scholar 

  222. F.C. Meldrum, H. Cölfen, Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 108(11), 4332–4432 (2008)

    Article  CAS  PubMed  Google Scholar 

  223. Y. Chen, D.W. Lloyd, S.C. Harlock, Mechanical characteristics of coated fabrics. J. Text. Inst. 86(4), 690–700 (1995)

    Article  Google Scholar 

  224. F. Rombaldoni, R. Demichelis, G. Mazzuchetti, Prediction of human psychophysical perception of fabric crispness and coolness hand from rapidly measurable low-stress mechanical and thermal parameters. J. Sens. Stud. 25(6), 899–916 (2010)

    Article  Google Scholar 

  225. H.T. Amine, S. Msahli, F. Sakli, A new index for evaluating the mechanical comfort of linen fabric. J. Nat. Fibers 7(4), 251–266 (2010)

    Article  Google Scholar 

  226. Y. Gao, X. Yu, A.P. Pierlot, R.J. Denning, R. Cranston, A simultaneous antimicrobial and shrink resistance treatment of wool woven fabrics using the polymeric biocide polyhexamethylene biguanide. J. Mater. Sci. 46(9), 3020–3026 (2011)

    Article  CAS  Google Scholar 

  227. M. Parvinzadeha, I. Ebrahimib, Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone. Appl. Surf. Sci. 257(9), 4062–4068 (2011)

    Article  CAS  Google Scholar 

  228. K. Wongcharee, M. Brungs, R. Chaplin, Y.J. Hong, E. Sizgek, Influence of surfactant and humidity on sol-gel macroporous organosilicate coatings. J. Sol-Gel Sci. Technol. 29(2), 115–124 (2004)

    Article  CAS  Google Scholar 

  229. C.D. Volpe, S. Dire, E. Pagani, A comparative analysis of surface structure and surface tension of hybrid silica films. J. Non-Cryst. Solids 209(1–2), 51–60 (1997)

    Article  Google Scholar 

  230. G. Dubois, W. Volksen, T. Magbitang, M. Sherwood, R.D. Miller, D.M. Gage, R.H. Dauskardt, Superior mechanical properties of dense and porous organic-inorganic hybrid thin films. J. Sol-Gel Sci. Technol. 48(1–2), 187–193 (2008)

    Article  CAS  Google Scholar 

  231. D. Aslanidou, I. Karapanagiotis, C. Panayiotou, Superhydrophobic, superoleophobic coatings for the protection of silk textiles. Prog. Org. Coat. 97, 44–52 (2016)

    Article  CAS  Google Scholar 

  232. D. Avnir, V.R. Kaufman, R. Reisfeld, Organic fluorescent dyes trapped in silica and silica-titania thin films by the sol-gel method. Photophysical, film and cage properties. J. Non-Cryst. Solids 74(2–3), 395–406 (1985)

    Article  CAS  Google Scholar 

  233. G.B. Guise, G.C. Smith, The chemistry of a polyamide-epichlorohydrin resin (Hercosett 125) used to shrink-resist wool. J. Appl. Polym. Sci. 30(10), 4099–4111 (1985)

    Article  CAS  Google Scholar 

  234. C.H. Giles, G. Baxter, S.M.K. Rahman, Studies of high fastness to light in coloring matters in hydrophilic substrates. Text. Res. J. 31(10), 831–844 (1961)

    Article  CAS  Google Scholar 

  235. C. Rottman, G.S. Grader, Y. De Hazan, D. Avnir, Sol-gel entrapment of ET(30) in ormosils. Interfacial polarity-fractality correlation. Langmuir 12(23), 5505–5508 (1996)

    Article  CAS  Google Scholar 

  236. A. Datyner, M.T. Pailthorpe, A study of dyestuff aggregation, Part III. The effect of levelling agents on the aggregation of some anionic dyes. Dyes Pigments 8, 253–263 (1987)

    Article  CAS  Google Scholar 

  237. H.H. Sumner, T. Vickerstaff, E. Waters, The effects of the soaping after treatment on vat dyeings. J. Soc. Dye. Colour. 69(6), 181–194 (1953)

    Article  CAS  Google Scholar 

  238. Y. Chen, L. Jin, Y. Xie, Sol-gel processing of organic-inorganic nanocomposite protective coatings. J. Sol-Gel Sci. Technol. 13(1–3), 735–738 (1998)

    Article  CAS  Google Scholar 

  239. S. Amberg-Schwab, E. Arpac, W. Glaubitt, K. Rose, G. Schottner, U. Schubert, Protective coatings for organic polymers by sol-gel techniques, in High Performance Ceramic Films and Coatings, ed. by P. Vincenzini (Elsevier Science, New York City, 1991), pp. 203–310

    Google Scholar 

  240. S. Luo, W.J.V. Oij, Surface modification of textile fibres for the improvement of adhesion to polymeric matrices: a review. J. Adhes. Sci. Technol. 16(13), 1715–1735 (2002)

    Article  CAS  Google Scholar 

  241. R. Krüger, M.J. Bockmeyer, A. Dutschke, P.C. Löberman, Continuous sol-gel coating of ceramic multifilaments: evaluation of fiber bridging by three point bending test. J. Am. Ceram. Soc. 89(7), 2080–2088 (2006)

    Google Scholar 

  242. J.G. Dominguez, P. Erra, A. Maza, M.R. Julia, T. Shaw, The use of surfactants to improve the regularity of deposition of resins on wool. Text. Inst. Ind. 15(6), 214–216 (1977)

    Google Scholar 

  243. A.-C. Hellgren, P. Weissenborn, K. Holmberg, Surfactants in water-borne paints. Prog. Org. Coat. 35(1–4), 79–87 (1999)

    Article  CAS  Google Scholar 

  244. N. Brack, R. Lamb, D. Pham, P. Turner, Nonionic surfactants and the wool fibre surface. Colloids Surf. A Phys. Eng. Asp. 146, 405–415 (1999)

    Article  CAS  Google Scholar 

  245. H.D. Feldtman, J.R. McPhee, The spreading and adhesion of polymers on wool. Text. Res. J. 34(7), 634–642 (1964)

    Article  CAS  Google Scholar 

  246. R.L. McConnell, M.F. Meyer, F.D. Petke, W.A. Haile, Polyester adhesives in nonwovens and other textile applications. J. Coat. Fabrics 16(1), 199–208 (1987)

    Article  CAS  Google Scholar 

  247. R.R. Costa, C.A. Custódio, F.J. Arias, J.C. Rodríguez-Cabello, J.F. Mano, Layer-by-layer assembly of chitosan and recombinant biopolymers into biomimetic coatings with multiple stimuli-responsive properties. Small 7, 2640–2649 (2011)

    Article  CAS  PubMed  Google Scholar 

  248. G. Decher, Fuzzy nanoassemblies: toward layered polymeric multi-composites. Science 277, 1232–1237 (1997)

    Article  CAS  Google Scholar 

  249. P.T. Hammond, Engineering materials layer-by-layer: challenges and opportunities in multilayer assembly. AIChE J. 57, 2928–2940 (2011)

    Article  CAS  Google Scholar 

  250. Z. Tang, Y. Wang, P. Podsiadlo, N.A. Kotov, Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 18, 3203–3224 (2006)

    Article  CAS  Google Scholar 

  251. K.V. Rijswijk, H. Bersee, Reactive processing of textile fiber-reinforced thermoplastic composites – an overview. Compos. A Appl. Sci. Manuf. 38, 666–681 (2007)

    Article  CAS  Google Scholar 

  252. J.M. Yeh, C.P. Chin, Structure and properties of poly(omethoxyaniline)-clay nano-composite materials. J. Appl. Polym. Sci. 88, 1072–1078 (2003)

    Article  CAS  Google Scholar 

  253. M. Kendig, M. Hon, L. Warren, Smart corrosion inhibiting coating. Prog. Org. Coat. 47, 183–189 (2003)

    Article  CAS  Google Scholar 

  254. Y. Castro, B. Ferrari, R. Moreno, A. Duran, Coatings produced by electrophoretic deposition from nano-particulate silica sol–gel suspensions. Surf. Coat.Technol. 182, 199–203 (2004)

    Article  CAS  Google Scholar 

  255. L. Fogelstrom, P. Antoni, E. Malmstrrom, A. Hult, UV-curable hyperbranced nanocomposite coatings. Prog. Org. Coat. 55, 284–290 (2006)

    Article  CAS  Google Scholar 

  256. C. Chen, M. Khobaib, D. Curliss, Epoxy layered-silicate nanocomposites. Prog. Org. Coat. 47(3–4), 376–383 (2003)

    Article  CAS  Google Scholar 

  257. L.H. Yang, F.C. Liu, E.H. Han, Effects of P/B on the properties of anticorrosive coatings with different particle size. Prog. Org. Coat. 53, 91–98 (2005)

    Article  CAS  Google Scholar 

  258. T. Xu, C.S. Xie, Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Prog. Org. Coat. 46, 297–301 (2003)

    Article  CAS  Google Scholar 

  259. A.S. Hamdy, A clean low cost anti-corrosion molybdate based nano-particles coating for aluminum alloys. Prog. Org. Coat. 56, 146–150 (2006)

    Article  CAS  Google Scholar 

  260. F. Masson, C. Decker, S. Andre, X. Andrieu, UV-curable formulations for UV-transparent optical fiber coatings. I. Acrylic resins. Prog. Org. Coat. 49, 1–12 (2004)

    Article  CAS  Google Scholar 

  261. J. Kaetsu, M. Yoshida, New coating materials and their preparation by radiation polymerization -antifogging coating composition. J. Appl. Polym. Sci. 24(1), 235 (1979)

    Article  CAS  Google Scholar 

  262. J. Manara, M. Reidinger, M. Rydzek, M. Arduini-Schuster, Polymer-based pigmented coatings on flexible substrates with spectrally selective characteristics to improve the thermal properties. Prog. Org. Coat. 70(4), 199–204 (2011)

    Article  CAS  Google Scholar 

  263. W. Fung, M. Hardcastle, Textiles Automotive Engineering (The Textile Institute, Woodhead Publishing Limited, Cambridge, 2001)

    Book  Google Scholar 

  264. M. Skoko, Investigations of properties and multiaxial strength and deformations of coated textile fabrics. Tekstil 47(7), 339–344 (1998)

    CAS  Google Scholar 

  265. P. Durst, PU transfer coating of fabrics for leather like fashion products. J. Coat. Fabrics 14, 227–241 (1985)

    Article  CAS  Google Scholar 

  266. S. Park, J. Kim, C.H. Park, Superhydrophobic textiles: review of theoretical definitions, fabrication and functional evaluation. J. Eng. Fibers Fabr. 10(4), 1–18 (2015)

    Article  Google Scholar 

  267. T. Makowski, D. Kowalczyk, W. Fortuniak, D. Jeziorska, S. Brzezinski, A. Tracz, Superhydrophobic properties of cotton woven fabrics with conducting 3D networks of multiwall carbon nanotubes, MWCNTs. Cellulose 21, 4659–4670 (2014)

    Article  CAS  Google Scholar 

  268. J. Hu, H. Meng, G. Li, S.I. Ibekwe, A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 21, 1–22 (2012)

    Google Scholar 

  269. S. Paul, Surface Coatings, Science and Technology (Wiley, Chichester, 1996)

    Google Scholar 

  270. Z.W. Wicks, F.N. Jones, S.P. Pappas, Organic Coatings: Science and Technology (Wiley-Interscience, Chichester, 1992), pp. 3–89

    Google Scholar 

  271. T.A. Misev, Powder Coatings, Chemistry and Technology (Wiley, Chichester, 1991), pp. 1–68

    Google Scholar 

  272. D.S. Richart, in Coating Processes (Powder Technology), vol. 6 ed. by M. Howe-Grant (Wiley, New York, 1993), pp. 635–661

    Google Scholar 

  273. J.D. Pont, Further advances in low temperature cure polyurethane powder coatings, in Proceedings of the International Waterborne, High Solids and Powder Coatings Symposium, New Orleans (1999), pp. 232–245

    Google Scholar 

  274. M. Sohoni, P. Figlioti, Developments in low temperature cure: urethane powder curing agents, in Proceedings of the International Waterborne, High Solids and Powder Coatings Symposium, New Orleans (1998), pp. 267–280

    Google Scholar 

  275. R. Subramanian, C.J. Sullivan, Unsaturated polyesters in low temperature cure powder coatings, in Proceedings of the International Waterborne, High Solids and Powder Coatings Symposium, New Orleans (2001), pp. 381–389

    Google Scholar 

  276. S. Joneydi, A. Khoddami, A. Zadhoush, Novel superhydrophobic top coating on surface modified PVC-coated fabric. Prog. Org. Coat. 76, 821 (2013)

    Article  CAS  Google Scholar 

  277. G.R.J. Artus, S. Jung, J. Zimmermann, H.P. Gautschi, K. Marquardt, S. Seeger, Silicone nanofilaments and their application as superhydrophobic coatings. Adv. Mater. 18(20), 2758–2762 (2006)

    Article  CAS  Google Scholar 

  278. J. Zimmermann, F.A. Reifler, G. Fortunato, L.-C. Gerhardt, S. Seeger, A simple, one-step approach to durable and robust superhydrophobic textiles. Adv. Funct. Mater. 18(22), 3662–3669 (2008)

    Article  CAS  Google Scholar 

  279. S.S. Latthe, A.B. Gurav, C.S. Maruti, R.S. Vhatkar, Recent progress in preparation of superhydrophobic surfaces: a review. J. Surf. Eng. Mater. Adv. Technol. 2, 76–94 (2012)

    Google Scholar 

  280. A. Mukhopadhyay, V.K. Midha, Fundamental principles and designing aspects of breathable fabrics: a review on designing the waterproof breathable fabrics. Part I. J. Ind. Text. 37, 225–262 (2008)

    Article  CAS  Google Scholar 

  281. M. Jassal, A. Khungar, P. Bajaj, T.J.M. Sinha, Waterproof breathable polymeric coatings based on polyurethanes. J. Ind. Text. 33(4), 269–280 (2004)

    Article  Google Scholar 

  282. V.M. Desai, V.D. Athawale, Water resistant breathable hydrophilic polyurethane coatings. J. Coat. Fabrics 25(1), 39–46 (1995)

    Article  CAS  Google Scholar 

  283. G.R. Lomax, Hydrophilic polyurethane coatings. J. Coat. Fabrics 20(2), 88–107 (1990)

    Article  CAS  Google Scholar 

  284. J. Feng, Z. Ge, C. Chai, S. Wang, D. Yu, G. Wu, Y. Luo, Flame retardant modification of waterborne polyurethane fabric coating agent with high hydrostatic pressure resistance. Prog. Org. Coat. 97, 91–98 (2016)

    Article  CAS  Google Scholar 

  285. N. Onar, M.F. Ebeoglugil, I. Kayatekin, E. Celik, Low-temperature, sol-gel-synthesized, silver-doped titanium oxide coatings to improve ultraviolet-blocking properties for cotton fabrics. J. Appl. Polym. Sci. 106(1), 514–525 (2007)

    Article  CAS  Google Scholar 

  286. T. Suratwala, Z. Gardlund, K. Davidson, D.R. Uhlmann, S. Bonilla, N. Peyghambarian, Photostability of silylated coumarin dyes in polyceram hosts. J. Sol-Gel Sci. Technol. 8(1–3), 973–978 (1997)

    CAS  Google Scholar 

  287. T. Textor, B. Mahltig, A sol-gel, based surface treatment for preparation of water repellent antistatic textiles. Appl. Surf. Sci. 256(6), 1668–1674 (2010)

    Article  CAS  Google Scholar 

  288. C. Molaison, G. Merfeld, E. Acar, R. Koeniger, S. Mordhorst, J. Suriano, Acid/epoxy catalyst screening for low temperature cure (120 °C) powder coatings, in Annual Partners in Environmental Technology Technical Symposium and Workshop, 2–5 Dec 2003, p. 237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Mohammed Reduwan Billah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Billah, S.M.R. (2019). Textile Coatings. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_30

Download citation

Publish with us

Policies and ethics